用户名: 密码: 验证码:
医用钛镍形状记忆合金泡沫的制备及其组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔TiNi形状记忆合金具有优良的力学性能、耐蚀性能以及特有的超弹性和形状记忆能力,并且其多孔的结构有利于组织的长入和结合,因而作为生物移植材料,具有重要的应用前景。本文采用了NH4HCO3作为造孔剂,用粉末烧结法成功制备出了孔洞分布均匀的不同孔率和孔径的多孔TiNi形状记忆泡沫合金,并分析了所制备的多孔TiNi合金的孔结构、相组成,在此基础之上,研究了孔隙率和孔径对多孔TiNi合金的力学性能及其形状记忆性能的影响,同时评估了表面碱处理和热处理对其力学性能及其形状记忆性能的影响。
     研究结果表明,用该种方法制备的多孔合金样品具有孔洞分布均匀、各向同性以及开孔率高的特点,其中大孔结构样品平均孔径在200?m左右,微孔样品的平均孔径为31?m左右。合金组织主要由奥氏体NiTi相(B2)和单斜马氏体NiTi相(B19’)组成,同时还可发现有少量的次生相Ni3Ti, Ti2Ni和Ni4Ti3。该泡沫材料的马氏体转变开始和完成温度(Ms和Mf)以及奥氏体转变开始和完成温度(As和Af)分别为:Ms=34?C,Mf=28.5?C,As=50?C,Af=60.5?C。循环加载-卸载实验结果表明,这种具有不同孔率或孔径的泡沫合金能表现出一定的形状记忆效果,但其形状记忆能力均要低于相应成分致密合金,并且随着TiNi泡沫孔隙率的增加,合金的形状记忆性能降低。在相同孔率下,孔径的减小会使多孔TiNi样品的形状记忆性能有所降低,而对合金的强度影响不大。对进行碱处理前后宏孔和微孔样品的力学性能测试结果表明,由于强碱对多孔合金孔壁的腐蚀作用,合金的力学性能和形状记忆性能都有较大幅度的降低。在450?C真空条件下对宏孔样品进行热处理(时间:30min,冰水水淬),合金中B2相体积分数增加,Ni3Ti体积分数减少,热处理后合金的力学性能有所降低。
Porous TiNi shape memory alloys (SMA) have super-elastic and shape memory behaviors. These properties are of great benefits to the healing process because shape memory alloy implants can apply a constant stress to the surrounding and in-growing bone tissues which enhance the regenerating and remodelling process of bone. In this thesis, porous TiNi alloys with a homogenous pore distribution and different pore sizes were successfully fabricated by using powder metallurgy method with NH4HCO3 as space holding particles. The phase constitution and pore structure were characterized. The mechanical properties of the porous alloys, including their shape memory behavior were measured, and the effects of the porosity of the porous and pore size on the mechanical properties and shape memory ability of the porous alloys were investigated. In addition, the degradation of the mechanical properties of the porous alloys caused by the alkali treatment and by heat treatment was evaluated.
     The results indicated that the porous alloys exhibited a homogenous and isotropic pore structure with a high open-cell ratio, and the average pore size for the macro-pore samples is about 200?m and 31?m for micro-pore. The microstructure of the as-sintered alloy mainly consisted of Austenitic NiTi phase (B2) and Martensite NiTi (B19’). Some second phases, such as Ti3Ni, Ti2Ni and Ti3Ni4 can be detected. The matensite start (Ms) and finish (Mf) temperatures 34?C and 28.5?C, respectively, and the austenite start (As) and finish (Af) temperatures are 50?C and 60.5?C respectively. The load-unload recovery curves revealed that the porous alloy can exhibit the shape-memory effect, but it is less than dense TiNi. The mechanical properties of the porous alloys are strongly dependent on the porosity. With the increase of the porosity, both the strength and the shape memory ability decrease significantly. Pore size has a little effect on the strength of the porous alloy, but the porous alloys with the micro-pores exhibits a little poorer shape memory effect than that of the macro-pore samples. Surface treatment has an important influence on the mechanical properties. The alkali treatment degrades the strength and the shape memory ability due to the corrosion damages of the struts of the porous alloys. When the porous alloy is heated at 450?C for 30min, and then quenched in ice water, the fraction of B2 in the alloy increases, and the fraction of Ni3Ti decreases. As a result, the strength of the porous alloy decreases.
引文
[1]徐祖耀.形状记忆材料[M].上海:上海交通大学出版社, 2000.
    [2]舟久保,熙康.形状记忆合金[M].北京:机械工业出版社,1992.
    [3]李丙运,戎利建,李依依.生物医用多孔TiNi形状记忆合金的研究进展[J].材料研究学报, 2000, 14(6): 110.
    [4]徐祖耀.相变内耗与伪滞弹性[J].金属学报, 1997, 33: 45-49.
    [5]蒂吉斯切,克雷兹特.多孔泡沫金属[M].北京:化学工业出版社, 2005.
    [6] Yahia I L, Lombardi S, Hagemeister N, et al. Improvement of cyto-compatibility and biomechanical compatibility of NiTi shape memory alloys[J]. Appl. Biomech, 1995, 6(10):19-24.
    [7] Assad M, Lemieux N, Zhu Jun, et al. Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: Genotoxicity and atomic absorption evaluation [J]. Biomed Mater. Eng, 1999, 22(9): l-12.
    [8] Gjunter V E. Superelastic shape memory implants in maxillofacial surgery, traumatology, orthopaedics and neurosurgery[J]. Tomsk University Publishing House, 1995, 7:13-19.
    [9] Dambaev G Z, Gjunter V E, Radionchenko A, et al, Porous permeable superelastic implants in surgery[M]. Tomsk University Publishing House, 1996, 23:25.
    [10] Austin G T. The use of ceramics as an implant material in the cavity[J]. MilitMed, 1981, 46(1): 50.
    [11] Dai C S, Zhang L, Wang D L, et al. The Newest Developments of Foam Materials[J]. Rare Metal Materials and Engineering, 2005, 34(3):337-340.
    [12] Yuan B, Zhang X P, Chung C Y, et al. The effect of porosity on phase transformation behavior of porous Ti-50.8at.% Ni shape memory alloys prepared by capsule-free hot isostatic pressing[J]. Materials Science and Engineering, 2006, A438-440:585-588.
    [13] Zhang Y P, Yuan B, Zeng M Q, et al. High porosity and large size shape memory alloys fabricated by using pore-forming agent (NH4HCO3) and capsule-free hot isostatic pressing [J]. Journal of Materials Processing Technology, 2007, 192-193:439-442.
    [14] Yuan B, Chung C Y, Huang P, et al. Superelastic properties of porous TiNi shape memory alloys prepared by hot isostatic pressing [J]. Materials Science and Engineering, 2006, A438-440:657-660.
    [15] Yuan B, Chung C Y, Zhu M. Microstructure and martensitic transformation behavior of porous NiTi shape memory alloy prepared by hot isostatic pressing processing [J]. Materials Science and Engineering, 2004, A382(1-2):181-187.
    [16] Xiong J Y, Li Y C, Wang X J, et al. Titanium–nickel shape memory alloy foams for bone tissue engineering [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1(3):269-273.
    [17] Ampika B, David D. Shape-memory NiTi foams produced by solid-state replicaion with NaF [J]. Intermetallics, 2007, 15:1612-1622
    [18]刘培生.多孔材料引论[M].北京:清华大学出版社, 2004.
    [19] Lorna J G, Michael F A.多孔固体结构与性能[M].北京:清华大学出版社, 2003.
    [20]刘培生.多孔材料检测方法[M].北京:冶金工业出版社, 2006.
    [21]邢树忠,王世栋,杨晓曦等.自蔓延高温合成镍钦形状记忆合金的生物医学基础研究[M],上海:上海生物医学工程出版社, 1999.
    [22]牛金龙.多孔轻基磷灰石生物陶瓷的合成和特性研究进展[M].北京:生物医学工程出版社, 2002.
    [23]李丙运,戎利建,李依依.多孔合金的微观结构及超弹性[J].中国科学学报, 1999, 29:11-15.
    [24]杨杰,吴文华.形状记亿合金及其应用[M].北京:中国科学技术大学出版社, 1993.
    [25] Li B Y, Rong L J, Li Y Y, et al. Synthesis of porous NiTi shape-memory alloys by self-propagating high-temperature synthesis: reaction mechanism and anisotropy in pore structure [J]. Acta Materialia, 2000, 48(15): 3895-3904.
    [26] Yuan B, Zhang X P, Chung C Y, et al. A comparative study of the porous TiNi shape-memory alloys fabricated by three different processes [J]. Metallurgical and Materials Transactions, 2006, A37:755-761.
    [27] Shearwood C, Fu Y Q, Yu L, et al. Spark plasma sintering of TiNi nano-powder [J]. Scripta Materialia, 2005, 52(6):455-460.
    [28] Zhang X. P, Liu H Y, Yuan B, et al. Superelasticity decay of porous NiTi shape memory alloys under cyclic strain-controlled fatigue conditions [J]. Materials Science and Engineering, 2008, A481-482:170-173.
    [29] Christian G, Scott M O, David C D. High strength, low stiffness, porous NiTi with superelastic properties [J]. Acta Biomaterialia, 2005, 1:705-716.
    [30] Li Y H, Wang Y, Tan W, et al. Research Development of Porous TiNi Shape Memory Alloy [J]. Rare Metal Materials and Engineering, 2007, 36:154-157.
    [31] John A, Shaw, Stelios K. Thermomechanical aspects of NiTi [J]. Journal of the Mechanics and Physics of Solids, 1995, 43(8):1243-1281.
    [32] Wen C E, Yamada Y, Shimojima K, et al. Compressibility of porous mgnesium foam: dependency on porosity and pore size [J]. Materials Letters, 2004, 58:357-360.
    [33] Jafari J, Zebarjad S M, Sajjadi A S. Effect of pre-strain on microstructure of NiTi orthodontic archwires [J]. Materials Science and Engineering, 2008, A473:42-48.
    [34] Semlitsch M F, Weber H, Streicher R M, et al. Joint replacement components made of hot forged and surface-treated Ti-6A1-7Nb alloy [J]. Biomater, 1992, 13(11): 781-788.
    [35] Carroll M C, Somsen C, Eggeler G. Multiple-step martensitic transformaions in Ni-rich NiTi shape memory alloys [J]. Scripta Materialia, 2004, 50:187-192.
    [36]钱九红.外科植入物用纯钛及其合金[J].稀有金属, 2001, 25(4):303-306.
    [37] Wang K. The use of titanium for medical applications in the USA [J]. Material Science and Engineering, 1996, A213:134-137.
    [38] Yoshimistisu O, Yoshimasa I, Kenj K, et al. Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al [J]. Material Science and Engineering, 1996, A213:138-147.
    [39] Christian G, Scott M, Oppenheimer, et al. High strength, low stiffness, porous NiTi with superelastic properties [J]. Atca Biomaterialia, 2005, 1:705-716.
    [40] Zhuang H Y, Han Y, Feng A L. Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds [J]. Materials Science and Engineering C,2008, 32:17-25.
    [41] Cavalli M, Gnappi G, Bersani D, et al. Hydroxy-and fluorapatite films on Ti alloy substrates: Sol-gel preparation and characterization [J]. J. Mat. Sci., 2001, 36:3253-3260.
    [42] Groot K, Geeesink R G T, Serekian P, et al. Plasma sprayed coatings of hydroxylapatite [J]. J. Biomed. Mater. Res., 1987, 21:1375.
    [43] Thomas K A, Kay J F, Cook S D, et al. The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials [J]. J. Biomed Mater. Res., 1987, 21:1395.
    [44]郑学斌,丁传贤.等离子喷涂制备HA/Ti复合涂层研究Ⅰ[J].无机材料学报, 2000, 15(5): 987-902.
    [45]郑学斌,丁传贤.等离子喷涂制备HA/Ti复合涂层研究Ⅱ[J].无机材料学报, 2000, 15(5): 1083-1088.
    [46] Barrere F, Layrolle P, Blitterswijk C A V, et al. Biomimetic calcium phosphate coatings on Ti6Al4V: A crystal growth study of octacalcium phosphate and inhibition by Mg2+ and HCO3 [J]. Bone, 1999, 25:107-111.
    [47] Habibovic P, Li J P, Van D V C M, et al. Biological performance of uncoated and octacalcium phosphate-coated Ti6Al4V [J]. Biomaterials, 2005, 26:23-36.
    [48] Barrere F, Layrolle P, Van B C A, et al. Biomimetic coatings on titanium: a crystal growth study of octacalcium phosphate [J]. Journal of Materials Science: Materials in Medicine, 2001, 12:529-534.
    [49] Kim H M, Miyaji F, Kokubo T, et al. Bonding strength of bone like apatite layer to Ti metal substrate [J]. J Biomed Mater. Res., 1997, 38:121.
    [50]付涛,黄平,憨勇等.碱液处理诱导钛合金基体表面沉积磷灰石[J].稀有金属材料与工程, 2000, 29(3):168-171.
    [51]俞耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社, 2000.
    [52] Baker C. The shape memory effect in a titannium-35wt.%niobium alloy [J]. Metal Science Journal, 1971, 5:92-100.
    [53] Menditatta M G, Liitjering G, Weissman S. Strength increase in Ti-35wt.%Nb through step-aging [J]. Metallurgical Transactions, 1971, 9(2): 2599-2605.
    [54] Moffet D L, Larvalestier D C. The competition between martensite and omega phases in quenched Ti-Nb alloys [J]. Matallurgical Transactions A, 1988, 7(19): 1677-1686.
    [55] Moffet D L, Larvalestier D C. The competition between the alpha and omega phases in aged Ti-Nb alloys [J]. Metallurgical Transactions A, 1988, 7(19): l687-1694.
    [56] Hee Y K, Hasimoto S, Hideki H, et al. Mechanical properties and shape memory behavior of Ti-Nb alloys [J]. Materials Transactions, 2004, 45(7): 2443-2448.
    [57] Hosoda H, Fukui Y, Inamura T, et al. Mechanical properties of Ti-base shape memory alloys [J]. Materials Science Forum, 2003, 426:3121-3126.
    [58] Hosoda H, Fukui Y, Wakashima K, et al. Dynamic mechanical analysis of TiNbAl biomedical shape memory alloys [J]. Transactions of the Materials Research Society of Japan, 2003, 28(3): 599-602.
    [59] Kuroda K, Hosoda H, Wakashima K, et al. Tensile properties of Ti-Nb-Ge biomedical shape memory alloys [J]. Transactions of the Materials Research Society of Japan, 2003, 28(3):631-634.
    [60] Mitsuo N. Fatigue performance and cyto-toxicity of low rigidity titanium alloyTi-29Nb-13Ta-4.6Zr [J]. Biomaterials, 2003, 24:2673-2683.
    [61]任伊宾,杨柯,梁勇.医用金属材料中的镍危害[J].生物医学工程学杂志, 2005, 22(5):1067-1069.
    [62] Wu S L, Liu X M, Chan Y L, et al. In vitro bioactivity and osteoblast response on chemically modified biomedical porous NiTi synthesized by capsule-free hot isostatic pressing [J]. Surface & Coatings Technology, 2007, 16:38-41.
    [63] Chu C L, Chung J, Paul K, et al. Effects of heat treatment on characteristics of porous Ni-rich NiTi SMA prepared by SHS technique [J]. Trans. Nonferrous Met. Soc. China, 2006, 16:49-53.
    [64] Jiang H C, Rong L J. Ways to lower transformation temperatures of porous NiTi shape memory alloy fabricated by self-propagating high-temperature synthesis [J]. Materials Science and Engineering, 2008, A438-440:883-886.
    [65] Jiang H C, Rong L J. Effect of hydroxyapatite coating on nickel release of the porous NiTi shape memory alloy fabricated by SHS method [J]. Surface & Coatings Technology, 2006, 201:1017-1021.
    [66] Zorn G, Lesman A, Gotman I. Oxide formation on low modulus Ti45Nb alloy by anodic versus thermal oxidation [J]. Surface & Coatings Technology, 2006, 201: 612-618.
    [67] Moranta C, Lo′pez M F, Gutie′rrez A, Jime′nez J A. AFM and SEM characterization of non-toxic vanadium-free Ti alloys used as biomaterials [J]. Applied Surface Science, 2003, 220:79-87.
    [68] Li B Y, Rong L J, Li Y Y. Stress-strain behavior of porous Ni-Ti shape memory intermetallics synthesized from powder sintering [J]. Intermetallics, 2000, 8:643-646.
    [69] Chu C L, Chung C Y, Lin P H, et al. Fabrication of porous NiTi shape momory alloy for hard tissue implants by combustion synthesis [J]. Materials Science and Engineering, 2004, A366:114-119.
    [70] Wu S L, Liu X M, Chu P K, et al. Phase transformation behavior of porous NiTi alloys fabricated by capsule-free hot isostatic pressing [J]. Journal of alloys and compounds, 2007, 48:121-126.
    [71] Fukui Y, Inamura T, Hosoda H, et al. Mechanical properties of a Ti-Nb-Al shape memory alloy[J]. Mater. Trans., 2004, 45:1077-1082.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700