用户名: 密码: 验证码:
C_2H_2型锌指蛋白--ZNFD的生物学功能初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C2H2型锌指基因是高等动物基因组中最大且最复杂的基因超家族,在人与小鼠基因组中拥有数百个成员。本实验室使用生物信息学分析,并结合NCBI数据库筛选得到一人源锌指基因ZNFD,基因号为NM_182761,对ZNFD基因进行生物信息学方法分析,结果表明ZNFD为C2H2型锌指蛋白的一员,该锌指基因尚未见相关研究,故本实验室对该基因展开了以下几个方面的初步研究。
     首先,通过RT-PCR的方法从睾丸组织cDNA中克隆获得ZNFD基因,经测序鉴定ZNFD基因序列的正确性。利用生物信息学方法对ZNFD基因和蛋白进行分析,表明ZNFD基因位于第5号染色体,定位在5q23.1。ZNFD cDNA由5个外显子和4个内含子组成,含有990bp的开放阅读框,编码一个由329个氨基酸组成,分子量为37kDa的蛋白。对ZNFD基因进行组织表达谱分析证实ZNFD基因在前列腺、睾丸、脑、胰、子宫中表达,且睾丸和脑组织中表达量较高。通过生物信息学软件CLUSTAL W分析7种物种的ZNFD基因的同源性,分析表明目的蛋白的17-260aa有较高的保守性。
     通过构建真核表达重组质粒pEGFP-C1 -ZNFD,细胞亚定位分析结果显示ZNFD蛋白定位于细胞核。同时为了鉴定ZNFD蛋白的N端氨基酸序列与锌指模序对ZNFD蛋白细胞核定位的影响,分别构建了一系列截短型ZNFD与绿色荧光蛋白表达载体(pEGFP-C1)的重组质粒,转染Hela细胞进行细胞亚定位分析,证明了ZNF结构域对于ZNFD蛋白的核定位不是必须的。
     大量研究证明ZNF蛋白多为转录因子,因此,本文进一步对ZNFD在特定的信号通路中是否有转录调控作用进行了分析。运用Dual-荧光酶报道基因分析系统来检测ZNFD是否对AP1(PMA), GRE, SRE, p53, CRE, HSE, NF-κB和AP1的信号路径有转录调控作用,且ZNFD蛋白对AP1(PMA)有剂量依耐性激活。数据表明ZNFD蛋白导致AP1(PMA)转录活性的增强,pAP1(PMA)-TA-luc质粒含有AP1元件,该质粒专门用来监控蛋白激酶C转导路径的转录调控作用。这说明ZNFD可能作为蛋白激酶C信号途径的转录激活因子来介导调控细胞的一系列功能。另外,串联亲和纯化(TAP)为一种两步亲和纯化方法,该方法适用于分离类似生理条件下的蛋白互作复合体,因此我们构建了TAP-ZNFD真核表达载体,为后续寻找ZNFD互作蛋白奠定基础。
C2H2 zinc finger (C2H2-ZNF) genes are one of the largest and most complex gene super-families in metazoan genomes, with hundreds of members in the human and mouse genome. We got a novel human zinc finger gene ZNFD by bioinformatics analyse and NCBI database screening. The gene ID is NM_182761. The bioinformatics character suggested that ZNFD is a member of C2H2 type zinc finger protein, and this gene has not been investigated. The main complishments are as follows.
     Firstly, we cloned the ZNFD gene from testis cDNA by RT-PCR, then identified by sequencing. Bioinformatics databases were used to analyze and predict its function. We confirmed that ZNFD gene has a 990bp full open reading frame (ORF), which was localized on chromosome 5q23.1. It was composed of five exons and four introns. The ZNFD gene encoded a protein with 329 amino acids. The molecular weight was predicted to be 37kDa. RT–PCR was used to determine the expression pattern of ZNFD in human multiple tissue. The tissue distribution pattern of ZNFD mRNA showed that the band was detected in the prostate, testis, brain, spleen, pancreas, and uterus. ZNFD gene is strongly expressed in adult testis and brain.
     Multiple alignment analysis was performed by ClustalW software in 7 ZNFD orthologs. ZNFD was highly conservative in 17 to 260aa in different species. To verify the subcelluar location of ZNFD protein, we contruct the plasmid pEGFP-C1-ZNFD which express the fused protein EGFP-ZNFD, then transfected it into Hela cells. The result indicated that ZNFD is a nuclear protein. To verify the subcelluar location and the function of N-terminal residues and ZNF motif in location of our interested protein, pEGFP-C1-ZNFD, pEGFP-C1-D-ZNF, and pEGFP-C1-ZNF were transfected into Hela cells. These results indicate that ZNFD is a nuclear protein and the ZNF domain is not required for nuclear localization of the ZNFD protein in Hela cells.
     Many papers showed that many ZNF proteins function as transcription factors. Accordingly, it was reasonable to postulate that ZNFD possibly possesses transcription function. Here we performed Dual-luciferase reporter assay system to investigate the potentially role of ZNFD on signaling pathway including AP1(PMA), GRE, SRE, p53, CRE, HSE, NF-κB and AP1. The data indicate that ZNFD protein induces the activation of AP1(PMA) transcription, and ZNFD induced a dose- dependent activation of the AP1(PMA) reporter gene. The pAP1(PMA)-TA-luc plasmid contains the AP1(Activator of protein 1) elements, which are designed for monitoring the induction of the PKC signal transduction pathway. So it suggests that the ZNFD may act as a transcriptional activator in PKC signal pathway to mediate cellular functions. Addition, tandem affinity purification (TAP) is a generic two-step affinity purification protocol that enables the isolation of protein complexes under close-to-physiological conditions. So we construct the plasmid which expresses the fusion TAP-ZNFD protein to analysis of protein-protein interaction.
引文
1. Harrison, S.C., A structural taxonomy of DNA-binding domains. Nature, 1991. 353(6346): p. 715-9.
    2. Rhodes, D. and A. Klug, Zinc fingers. Sci Am, 1993. 268(2): p. 56-9, 62-5.
    3. Frankel, A.D. and C.O. Pabo, Fingering too many proteins. Cell, 1988. 53(5): p. 675.
    4. Ding, G., et al., SysZNF: the C2H2 zinc finger gene database. Nucleic Acids Res, 2009. 37(Database issue): p. D267-73.
    5. Lander, E.S., et al., Initial sequencing and analysis of the human genome. Nature, 2001. 409(6822): p. 860-921.
    6. Venter, J.C., et al., The sequence of the human genome. Science, 2001. 291(5507): p. 1304-51.
    7. Clough, R.L., G. Dermentzaki, and L. Stefanis, Functional dissection of the alpha-synuclein promoter: transcriptional regulation by ZSCAN21 and ZNF219. J Neurochem, 2009. 110(5): p. 1479-90.
    8. Leung, S.W., et al., Splice variants of the human ZC3H14 gene generate multiple isoforms of a zinc finger polyadenosine RNA binding protein. Gene, 2009. 439(1-2): p. 71-8.
    9. Huang, C., et al., Characterization of ZNF23, a KRAB-containing protein that is downregulated in human cancers and inhibits cell cycle progression. Exp Cell Res, 2007. 313(2): p. 254-63.
    10. Liao, X.B., et al., Specific interaction of the first three zinc fingers of TFIIIA with the internal control region of the Xenopus 5 S RNA gene. J Mol Biol, 1992. 223(4): p. 857-71.
    11. Shi, Y. and J.M. Berg, Specific DNA-RNA hybrid binding by zinc finger proteins. Science, 1995. 268(5208): p. 282-4.
    12. Lee, J.S., K.M. Galvin, and Y. Shi, Evidence for physical interaction between the zinc-finger transcription factors YY1 and Sp1. Proc Natl Acad Sci U S A, 1993. 90(13): p. 6145-9.
    13. Jeon, B.N., et al., ZBTB2, a Novel Master Regulator of the p53 Pathway. J Biol Chem, 2009. 284(27): p. 17935-46.
    14. Khalfallah, O., et al., Zinc finger protein 191 (ZNF191/Zfp191) is necessary to maintain neural cells as cycling progenitors. Stem Cells, 2009. 27(7): p. 1643-53.
    15. Yang, Y., et al., The Kruppel-like zinc finger protein Glis3 directly and indirectly activates insulin gene transcription. Nucleic Acids Res, 2009. 37(8): p. 2529-38.
    16. Al-Kandari, W., et al., ZXDC, a novel zinc finger protein that binds CIITA and activates MHC gene transcription. Mol Immunol, 2007. 44(4): p. 311-21.
    17. Li, J., et al., ZNF307, a novel zinc finger gene suppresses p53 and p21 pathway. Biochem Biophys Res Commun, 2007. 363(4): p. 895-900.
    18. Suzuki, C., et al., A novel GDNF-inducible gene, BMZF3, encodes a transcriptional repressor associated with KAP-1. Biochem Biophys Res Commun, 2008. 366(1): p. 226-32.
    19. Hayes, P.L., et al., The solution structure of ZNF593 from Homo sapiens reveals a zinc finger in a predominantly unstructured protein. Protein Sci, 2008. 17(3): p. 571-6.
    20. Gao, L., et al., Cloning and characterization of a novel human zinc finger gene, hKid3, from a C2H2-ZNF enriched human embryonic cDNA library. Biochem Biophys Res Commun, 2004. 325(4): p. 1145-52.
    21. Holmes, M., et al., hFOG-2, a novel zinc finger protein, binds the co-repressor mCtBP2 and modulates GATA-mediated activation. J Biol Chem, 1999. 274(33): p. 23491-8.
    22. Bellefroid, E.J., et al., The evolutionarily conserved Kruppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proc Natl Acad Sci U S A, 1991. 88(9): p. 3608-12.
    23. Albagli, O., et al., The BTB/POZ domain: a new protein-protein interaction motifcommon to DNA- and actin-binding proteins. Cell Growth Differ, 1995. 6(9): p. 1193-8.
    24. Shiojima, I., et al., Context-dependent transcriptional cooperation mediated by cardiac transcription factors Csx/Nkx-2.5 and GATA-4. J Biol Chem, 1999. 274(12): p. 8231-9.
    25. Frietze, S., et al., Genomic targets of the KRAB and SCAN domain-containing zinc finger protein 263. J Biol Chem, 2010. 285(2): p. 1393-403.
    26. Tian, C., et al., KRAB-type zinc-finger protein Apak specifically regulates p53-dependent apoptosis. Nat Cell Biol, 2009. 11(5): p. 580-91.
    27. Margolin, J.F., et al., Kruppel-associated boxes are potent transcriptional repression domains. Proc Natl Acad Sci U S A, 1994. 91(10): p. 4509-13.
    28. Witzgall, R., et al., The Kruppel-associated box-A (KRAB-A) domain of zinc finger proteins mediates transcriptional repression. Proc Natl Acad Sci U S A, 1994. 91(10): p. 4514-8.
    29. Barde, I., et al., Regulation of episomal gene expression by KRAB/KAP1-mediated histone modifications. J Virol, 2009. 83(11): p. 5574-80.
    30. Krebs, C.J., et al., Regulator of sex-limitation KRAB zinc finger proteins modulate sex-dependent and -independent liver metabolism. Physiol Genomics, 2009. 38(1): p. 16-28.
    31. Dhordain, P., et al., Colocalization and heteromerization between the two human oncogene POZ/zinc finger proteins, LAZ3 (BCL6) and PLZF. Oncogene, 2000. 19(54): p. 6240-50.
    32. Puccetti, E., et al., Down-stream regions of the POZ-domain influence the interaction of the t(11;17)-associated PLZF/RARalpha fusion protein with the histone-deacetylase recruiting co-repressor complex. Hematol J, 2001. 2(6): p. 385-92.
    33. Cheung, M., et al., The promyelocytic leukemia zinc-finger gene, PLZF, is frequently downregulated in malignant mesothelioma cells and contributes to cell survival. Oncogene, 2009.
    34. Crotty, S., R.J. Johnston, and S.P. Schoenberger, Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nat Immunol, 2010. 11(2): p. 114-20.
    35. Xie, Z., et al., Zinc finger protein ZBTB20 is a key repressor of alpha-fetoprotein gene transcription in liver. Proc Natl Acad Sci U S A, 2008. 105(31): p. 10859-64.
    36. Sutherland, A.P., et al., Zinc finger protein Zbtb20 is essential for postnatal survival and glucose homeostasis. Mol Cell Biol, 2009. 29(10): p. 2804-15.
    37. Chauchereau, A., et al., HDAC4 mediates transcriptional repression by the acute promyelocytic leukaemia-associated protein PLZF. Oncogene, 2004. 23(54): p. 8777-84.
    38. Barna, M., et al., Plzf regulates limb and axial skeletal patterning. Nat Genet, 2000. 25(2): p. 166-72.
    39. Bereshchenko, O.R., W. Gu, and R. Dalla-Favera, Acetylation inactivates the transcriptional repressor BCL6. Nat Genet, 2002. 32(4): p. 606-13.
    40. Attar, R.M. and M.Z. Gilman, Expression cloning of a novel zinc finger protein that binds to the c-fos serum response element. Mol Cell Biol, 1992. 12(5): p. 2432-43.
    41. Gonsky, R., et al., Identification of rapid turnover transcripts overexpressed in thyroid tumors and thyroid cancer cell lines: use of a targeted differential RNA display method to select for mRNA subsets. Nucleic Acids Res, 1997. 25(19): p. 3823-31.
    42. Noce, T., et al., Expression of a mouse zinc finger protein gene in both spermatocytes and oocytes during meiosis. Dev Biol, 1992. 153(2): p. 356-67.
    43. Williams, A.J., et al., Isolation and characterization of a novel zinc-finger protein with transcription repressor activity. J Biol Chem, 1995. 270(38): p. 22143-52.
    44. Itokawa, Y., et al., KAP1-independent transcriptional repression of SCAN-KRAB-containing zinc finger proteins. Biochem Biophys Res Commun, 2009. 388(4): p. 689-94.
    45. Lovering, R., et al., Identification and preliminary characterization of a proteinmotif related to the zinc finger. Proc Natl Acad Sci U S A, 1993. 90(6): p. 2112-6.
    46. Zeba, N., et al., Heat-inducible C3HC4 type RING zinc finger protein gene from Capsicum annuum enhances growth of transgenic tobacco. Planta, 2009. 229(4): p. 861-71.
    47. Borden, K.L., RING domains: master builders of molecular scaffolds? J Mol Biol, 2000. 295(5): p. 1103-12.
    48. Tanimura, S., et al., MDM2 interacts with MDMX through their RING finger domains. FEBS Lett, 1999. 447(1): p. 5-9.
    49. Chien, C.T., et al., The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A, 1991. 88(21): p. 9578-82.
    50. Dai, K.S. and C.C. Liew, Characterization of a novel gene encoding zinc finger domains identified from expressed sequence tags (ESTs) of a human heart cDNA database. J Mol Cell Cardiol, 1998. 30(11): p. 2365-75.
    51. Hsu, T., et al., The transcriptional factor CF2 is a mediator of EGF-R-activated dorsoventral patterning in Drosophila oogenesis. Genes Dev, 1996. 10(11): p. 1411-21.
    52. Shi, Y. and J.M. Berg, DNA unwinding induced by zinc finger protein binding. Biochemistry, 1996. 35(12): p. 3845-8.
    53. Nekludova, L. and C.O. Pabo, Distinctive DNA conformation with enlarged major groove is found in Zn-finger-DNA and other protein-DNA complexes. Proc Natl Acad Sci U S A, 1994. 91(15): p. 6948-52.
    54. McBryant, S.J., et al., Interaction of the RNA binding fingers of Xenopus transcription factor IIIA with specific regions of 5 S ribosomal RNA. J Mol Biol, 1995. 248(1): p. 44-57.
    55. Hansen, P.K., et al., Dissection of the DNA-binding domain of Xenopus laevis TFIIIA. Quantitative DNase I footprinting analysis of specific complexes between a 5 S RNA gene fragment and N-terminal fragments of TFIIIA containing three, four or five zinc-finger domains. J Mol Biol, 1993. 233(2): p. 191-202.
    56. Koh, D.I., et al., A novel POK family transcription factor, ZBTB5, represses transcription of p21CIP1 gene. J Biol Chem, 2009. 284(30): p. 19856-66.
    57. Moroy, T., et al., The zinc finger protein and transcriptional repressor Gfi1 as a regulator of the innate immune response. Immunobiology, 2008. 213(3-4): p. 341-352.
    58. Wu, L.C., ZAS: C2H2 zinc finger proteins involved in growth and development. Gene Expr, 2002. 10(4): p. 137-52.
    59. Takeuchi, A., et al., Heterozygosity with respect to Zfp148 causes complete loss of fetal germ cells during mouse embryogenesis. Nat Genet, 2003. 33(2): p. 172-6.
    60. Ganss, B., et al., Krox-26 is a novel C2H2 zinc finger transcription factor expressed in developing dental and osteogenic tissues. Connect Tissue Res, 2002. 43(2-3): p. 161-6.
    61. Matsuo-Takasaki, M., et al., Cloning and expression of a novel zinc finger gene, Fez, transcribed in the forebrain of Xenopus and mouse embryos. Mech Dev, 2000. 93(1-2): p. 201-4.
    62. Nagai, T., et al., Zic2 regulates the kinetics of neurulation. Proc Natl Acad Sci U S A, 2000. 97(4): p. 1618-23.
    63. Zhou, L., et al., Identification and characterization of two novel zinc finger genes, ZNF359 and ZFP28, in human development. Biochem Biophys Res Commun, 2002. 295(4): p. 862-8.
    64. Pi, H., et al., A novel human SCAN/(Cys)2(His)2 zinc-finger transcription factor ZNF323 in early human embryonic development. Biochem Biophys Res Commun, 2002. 296(1): p. 206-13.
    65. Rijli, F.M., et al., A Zn-finger protein, Xfin, is expressed during cone differentiation in the retina of the frog Xenopus laevis. Int J Dev Biol, 1993. 37(2): p. 311-7.
    66. Tripodis, N., et al., Construction of a high-resolution 2.5-Mb transcript map of the human 6p21.2-6p21.3 region immediately centromeric of the major histocompatibility complex. Genome Res, 2000. 10(4): p. 454-72.
    67. Bellefroid, E.J., et al., Kzf1 - a novel KRAB zinc finger protein encoding gene expressed during rat spermatogenesis. Biochim Biophys Acta, 1998. 1398(3): p. 321-9.
    68. Katoh, O., et al., ZK1, a novel Kruppel-type zinc finger gene, is induced following exposure to ionizing radiation and enhances apoptotic cell death on hematopoietic cells. Biochem Biophys Res Commun, 1998. 249(3): p. 595-600.
    69. Kuramoto, K., et al., ZK7, a novel zinc finger gene, is induced by vascular endothelial growth factor and inhibits apoptotic death in hematopoietic cells. Cancer Res, 2000. 60(2): p. 425-30.
    70. Li, X.A., et al., Cloning and characterization of a novel human gene encoding a zinc finger protein with 25 fingers. Biochim Biophys Acta, 1999. 1489(2-3): p.405-12.
    71. Jiang, F. and Z. Wang, Identification and characterization of PLZF as a prostatic androgen-responsive gene. Prostate, 2004. 59(4): p. 426-35.
    72. Kikugawa, T., et al., PLZF regulates Pbx1 transcription and Pbx1-HoxC8 complex leads to androgen-independent prostate cancer proliferation. Prostate, 2006. 66(10): p. 1092-9.
    73. Holm, R., et al., Expression of ZNF652, a novel zinc finger protein, in vulvar carcinomas and its relation to prognosis. J Clin Pathol, 2008. 61(1): p. 59-63.
    74. Rocchi, M., et al., The human KRAB/FPB containing zinc finger gene ZNF2 maps to chromosome 2q11.2. Cytogenet Cell Genet, 1999. 86(3-4): p. 305-6.
    75. Tommerup, N. and H. Vissing, Isolation and fine mapping of 16 novel human zinc finger-encoding cDNAs identify putative candidate genes for developmental and malignant disorders. Genomics, 1995. 27(2): p. 259-64.
    76. Hussey, D.J., et al., Characterization of a KRAB family zinc finger gene, ZNF195, mapping to chromosome band 11p15.5. Genomics, 1997. 45(2): p. 451-5.
    77. Collins, C., et al., Positional cloning of ZNF217 and NABC1: genes amplified at 20q13.2 and overexpressed in breast carcinoma. Proc Natl Acad Sci U S A, 1998. 95(15): p. 8703-8.
    78. Kim, Y.S., et al., Kruppel-like zinc finger protein Glis2 is essential for the maintenance of normal renal functions. Mol Cell Biol, 2008. 28(7): p. 2358-67.
    79. Deng, Z., et al., Identification of two Kruppel-related zinc finger genes (ZNF200 and ZNF210) from human chromosome 16p13.3. Genomics, 1998. 53(1): p. 97-103.
    80. Hashida, H., et al., Cloning and mapping of ZNF231, a novel brain-specific gene encoding neuronal double zinc finger protein whose expression is enhanced in a neurodegenerative disorder, multiple system atrophy (MSA). Genomics, 1998. 54(1): p. 50-8.
    81. Holmes, D.I., N.A. Wahab, and R.M. Mason, Cloning and characterization of ZNF236, a glucose-regulated Kruppel-like zinc-finger gene mapping to human chromosome 18q22-q23. Genomics, 1999. 60(1): p. 105-9.
    82. Carl, M., et al., Specific inhibition of Egr-1 prevents mesangial cell hypercellularity in experimental nephritis. Kidney Int, 2003. 63(4): p. 1302-12.
    83. Sun, J., et al., Lack of the transcriptional coactivator OBF-1 prevents the development of systemic lupus erythematosus-like phenotypes in Aiolos mutant mice. J Immunol, 2003. 170(4): p. 1699-706.
    84. Banerjee, S.S., et al., The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. J Biol Chem, 2003. 278(4): p. 2581-4.
    85. Li, Y., et al., ZNF418, a novel human KRAB/C2H2 zinc finger protein, suppresses MAPK signaling pathway. Mol Cell Biochem, 2008. 310(1-2): p. 141-51.
    86. Kang, Y.A., et al., Novel Cancer Antiangiotherapy Using the VEGF Promoter-targeted Artificial Zinc-finger Protein and Oncolytic Adenovirus. Mol Ther, 2008.
    87. Xu, D.Q., et al., Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett, 2008. 582(7): p. 1037-43.
    88. Kim, J.C., et al., A novel cold-inducible zinc finger protein from soybean, SCOF-1,enhances cold tolerance in transgenic plants. Plant J, 2001. 25(3): p. 247-59.
    89. Sugano, S., et al., Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J, 2003. 36(6): p. 830-41.
    90. Huang, J., et al., A novel rice C2H2-type zinc finger protein lacking DLN-box/EAR-motif plays a role in salt tolerance. Biochim Biophys Acta, 2007. 1769(4): p. 220-7.
    91. Rehm, B.H., Bioinformatic tools for DNA/protein sequence analysis, functional assignment of genes and protein classification. Appl Microbiol Biotechnol, 2001. 57(5-6): p. 579-92.
    92. Leung, A.K., et al., Bioinformatic analysis of the nucleolus. Biochem J, 2003. 376(Pt 3): p. 553-69.
    93. Strausberg, R.L., et al., Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A, 2002. 99(26): p. 16899-903.
    94. Igwe, E., et al., The zinc finger protein Gfi1 is implicated in the regulation of IgG2b production and the expression of Igamma2b germline transcripts. Eur J Immunol, 2008. 38(11): p. 3004-14.
    95. Alonzo, E.S., et al., Development of promyelocytic zinc finger and ThPOK-expressing innate gammadelta T cells is controlled by strength of TCR signaling and Id3. J Immunol, 2010. 184(3): p. 1268-79.
    96. Zegarra-Moro, O.L., et al., Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer Res, 2002. 62(4): p. 1008-13.
    97. Lou, W., et al., Interleukin-6 induces prostate cancer cell growth accompanied by activation of stat3 signaling pathway. Prostate, 2000. 42(3): p. 239-42.
    98. Weber, A., et al., Zbtb4 represses transcription of P21CIP1 and controls the cellular response to p53 activation. EMBO J, 2008. 27(11): p. 1563-74.
    99. Fields, S. and O. Song, A novel genetic system to detect protein-protein interactions. Nature, 1989. 340(6230): p. 245-6.
    100. Schaerer, M.T., et al., Interaction between GABA(A) receptor beta subunits and the multifunctional protein gC1q-R. J Biol Chem, 2001. 276(28): p. 26597-604.
    101. Burckstummer, T., et al., An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods, 2006. 3(12): p. 1013-9.
    102. Kim, J.Y., et al., A proteomic approach for identifying cellular proteins interacting with erythropoietin in recombinant Chinese hamster ovary cells. Biotechnol Prog, 2010. 26(1): p. 246-51.
    103. Dempsey, E.C., et al., Protein kinase C isozymes and the regulation of diverse cell responses. Am J Physiol Lung Cell Mol Physiol, 2000. 279(3): p. L429-38.
    104. Stabel, S. and P.J. Parker, Protein kinase C. Pharmacol Ther, 1991. 51(1): p. 71-95.
    105. Newton, A.C., Protein kinase C: structure, function, and regulation. J Biol Chem, 1995. 270(48): p. 28495-8.
    106. Resing, K.A. and N.G. Ahn, Proteomics strategies for protein identification. FEBS Lett, 2005. 579(4): p. 885-9.
    107. Rigaut, G., et al., A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol, 1999. 17(10): p. 1030-2.
    108. Shevchenko, A., et al., Deciphering protein complexes and protein interaction networks by tandem affinity purification and mass spectrometry: analytical perspective. Mol Cell Proteomics, 2002. 1(3): p. 204-12.
    109. Drakas, R., M. Prisco, and R. Baserga, A modified tandem affinity purification tag technique for the purification of protein complexes in mammalian cells. Proteomics, 2005. 5(1): p. 132-7.
    110. Tagwerker, C., et al., A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivocross-linking. Mol Cell Proteomics, 2006. 5(4): p. 737-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700