用户名: 密码: 验证码:
谷物干燥的红外辐射陶瓷材料及红外干燥机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外辐射谷物干燥是一种高效、节能、低污染的新型谷物干燥技术。本文以遴选的Al_2O_3、SiO_2为主体原料,Fe_2O_3、CuO、Y_2O_3为辅助原料,经高温烧结合成了莫来石—铁氧体复相陶瓷,采用烧结工艺,将粉状莫来石复相陶瓷烧结在作为基体的刚玉陶瓷上,再经过球磨制粉工艺,把复合陶瓷材料制备成适合热喷涂的粉体材料,利用等离子喷涂在加热板表面制备复合陶瓷材料涂层。本文还针对自行设计的谷物干燥系统,综合考虑各种影响因素,分析了玉米红外辐射干燥的机理,建立了基于水势理论的玉米红外干燥数学模型。
     实验表明,使用本文研究开发的适用于谷物干燥的高发射率红外辐射陶瓷材料,能够大幅度提高谷物干燥效率,对降低谷物干燥设备能耗并提高加工谷物的品质具有重要的生产实际意义。
Grain drying is one of the key links of the corn processing, it is significant influencing for quality of grain. With the development of the national economy and improvement of people's living standard, requirements the quality of grain becomes higher and higher, regardless of grain for edible or application of deep processing. In addition to through, improved technology of agricultural production and the way of reasonable management to improve the quality of grain, by using of reasonable measures of processing and storage to ensure quality of after harvesting the grains is not serious deterioration. Research in improving the quality of grain of drying; reduce the energy consumption of drying advanced techniques, which plays a crucial role in the development of the rural economy, agriculture and the national economy.
     Infrared radiation is a new type of grain drying technology of efficient, energy-saving, low pollution. Infrared radiation is a process of radiation objects to spread by the way of electromagnetic waves. When the infrared radiation exposure to a object, if the frequency of the incident infrared and objects of molecule is same, the molecular material will be shown on the strong infrared absorption, the energy of be absorbed will be transformed into the thermal movement, and increase the object temperature, effect of heating and drying. High emissivity infrared ceramics material has wide range of application as one of energy saving materials. Radiation characteristic of infrared ceramics directly related to energy saving effect and drying quality of drying device. So developing a kind of high emissivity infrared ceramics material has important significance.
     Corn is one of the major crops in northeast region of China. By taking corn as the research object, the goal is ensure corn quality after drying and improve machining efficiency. A high emissivity infrared ceramics material fitting for grain drying was developed and was applied grain-drying device. This technique can improve grain-drying efficiency and have important practical engineering value in reducing energy consumption. This paper mainly studies the following key technologies.
     1. In this paper, we were selected Al2O3, SiO2 as main precursor, Fe2O3, CuO, Y2O3 as supplementary material and mullite-ferrite ceramics were produced by high-temperature sintering. Infrared emissivity was determined at 5~15μm wave band. Formula scheme of optimum mass fraction is obtained by orthogonal design.
     2. Mullite powder ceramics were sintered on corundum ceramics substrate by using sintering technique. This avoids using binder and improves material service life. Compared with XRD test map and infrared properties map of samples, this paper studies the higher infrared emissivity reason of ceramics material and infrared emissivity effect of different materials and madding technique.
     3. We made powder material that is fit for thermal spraying using composite ceramics material by milling technology and made composite ceramics material coating using plasma-spraying technology. The results show that using heating plate of coating drying efficiency rises 15%.
     4. By the concept of the water potential introduced, this paper analyzed infrared drying mechanism of corn, and thought that moisture content remove force come from the difference of water potential because of the temperature grad and moisture content grad. Moisture content migrates from inside of higher water potential corn pellet to the lower water potential pellet outside, boils away within an inch of the corn pellet outside and spill over the corn pellet surface. In the same condition, compared with having not far-infrared coating, drying efficiency is higher. This is because that infrared coating emission spectrum is fit for corn absorption spectrum, and it benefits corn inner moisture content faster moving forward surface. The result is that corn is not easy to appear surface hardening and crack. In addition, drying efficiency increases as the infrared plate distance short and heating power rises.
     5. Based on the theoretical analyses of water potential, the mathematical model of infrared drying has been developedresult was found after the model was analyzed. are undetermined eonstants and t 15 timeinterval.
     6 .Infrared drying exPerimentaldevce was modifieated based on exPerimental table for grain drying, with heating plate of ceramics material. The model for infrared drying that based on the theoretical is an average moisture content model of corn pellet. Verified the model simulation results by the testing data, the value of simulating average moisture content is as consistent as the trial value; the correlation coefficient is more than 0.98.
     In summary, using infrared ceramics material, which is suitable for grain can, improves grain drying efficiency greatly and having important practical function in reduce energy consumption and improve the grain quality. This research results provide a technology of practical value and have greater social and economic benefits. Meanwhile, the studies can rich basic theory of grain infrared drying. It has academic significance and practical engineering value.
引文
[1]王成芝.谷物干燥原理与谷物干燥机设计[M].哈尔滨:哈尔滨出版社,1997.
    [2]潘永康.现代干燥技术[M].北京:化学工业出版社,1998.
    [3]许东玉,杜玮玲.干燥过程对粮食品质的影响.现代化农业[J],1994(10):34~35.
    [4]农业部农业机械化管理局.世界农业机械化发展要览[M].北京:北京农业大学出版社,1991.
    [5]叶元瑜,刘有明,计福来,田立佳.谷物种干燥机的现状和发展[J].中国农机化, 2003:22.24.
    [6] Ipsita Das,S.K.Das,Satish Bal.Drying performance of a batch type vibration aided infrared dryer[J] . Journal of Food Engineering. 2004,64:129-133.
    [7] S.K.Chou and K.J.Chua*. New hybrid drying technologies for heat sensitive foodstuffs[J]. Trends in Food Science&Technology 2001,12:359-369.
    [8] T.M.Afzal,T.Abe,Y.Hikida. Energy and quality aspects during combined FIR- convection drying of barley[J]. Journal of Food Engineering .1999,42:177-182.
    [9] K.J.Chua,S.K.Chou. Low-cost drying methods for developing countries[J] . Trends in Food &Technology .2003,14:519-528.
    [10]陈创亮,曾令可.红外辐射陶瓷材料与节能[J].佛山陶瓷,1995,(1):9-13.
    [11]罗希雷.触媒远红外干燥技术在粮食行业中的应用前景展望[J].农业机械学报,2006,(10):17-19.
    [12]刘建学,程晓燕,朱文学,徐宝成,孟祥平,张玉先.谷物干燥远红外复合陶瓷材料的研究[J].农业机械学报,2006,6,6(37):59-62.
    [13] HumbertoVega-Mercado, M.MarcelaGongora-Nieto, GustavoV. Barbosa-Canovas. Energyand quality aspects during combined FIR-convection drying of barley[J]. Journal of Food Engincering,2001,49:271-289.
    [14]朱新华,郭文川.谷物干燥设备的现状及发展方向.农机与食品机械[J],1998(4):2~4.
    [15]邵耀坚等.谷物干燥机的原理与构造[M].北京:机械工业出版社,1981.
    [16]初江,韩颖等.谷物干燥机的研究与发展[J].农机化研究,2000,11(4):26~28.
    [17]曹崇文.农产品干燥机理、工艺与技术[M].北京:中国农业大学出版社,1998.
    [18]陈洪之,周网珍,能源技术[J],1999,3:18~20.
    [19]卢为开,李铁津,远红外辐射加热技术[M],上海:科学技术出版社,1982.
    [20]汤定元,红外加热技术[J],上海:复旦大学出版社,1992.
    [21] [苏]列维金著,余福堂译,红外技术在国民经济中的应用[M],上海:科学技术出版社,1985.
    [22]徐龙敏,红外研究[J],1984,3:158-160.
    [23]纪红,红外技术基础与应用[M],北京:科学技术出版社。1979.
    [24]马乐平,张斗.新型红外辐射陶瓷涂层技术的研究与发展[J].节能技术,1998,(4):35.37.
    [25]李红涛,刘建学.远红外辐射陶瓷研究的现状及进展[J].陶瓷,2005,4:49-51.
    [26]刘维良,陈云霞.钠米远红外陶瓷粉体的制备工艺与性能研究[J].中国陶瓷,2002,2,1(38):10-14.
    [27]周建初,陈健康,屠平亮,优质高温红外涂料的研制与应用[J],红外技术,1992.14(1):34.40
    [28]周建初,屠平凉.高发射率陶瓷涂料[P].中国:CN1076942A, 1993
    [29]姜泽春,陈大海,尖晶石族矿物的热辐射性质研究[J],矿物学报,1 993.13(4):382.390
    [30]饶瑞,孙过才.堇青石在红外辐射陶瓷材料中的应用[J],中国陶瓷,1998,(34)2:4.
    [31]欧阳德刚,赵修建,胡铁山.高抗热震性红外辐射涂料的实验研究[J].耐火材料.2002(4): 201-203
    [32]欧阳德刚,赵修建,胡铁山.红外辐射涂料的研制与应用现状及其发展趋势[J].武钢技术.2001 (2): 13-16
    [33]张建奇方小平,红外物理[M],1-10
    [34]陈衡,红外物理学[M],国防工业出版社,1985
    [35]糜正瑜,褚治德等编著.红外加热干燥原理与应用[M].机械工业出版社,7-8.
    [36]任卫,红外陶瓷[M],武汉工业大学出版社,1999:2.10
    [37]胡嘉.远红外涂料应用技术的研究与开发[J],福建能源开发与节能,1996,3.
    [38]王濮,系统矿物学[M],地质出版社,1983:355.357
    [39]陈照峰,张显,张立同,成来飞.氧化铝-莫来石复合粉对莫来石烧结行为的影响[J].耐火材料,2001,35(3):131-134.
    [40]刘从华,邓友全,黄佺,李强,高雄厚,谭争国.莫来石的低温合成与结构研究[J].高等学校化学学报,2003,6,(4):698-702.
    [41]赵世柯,黄校先,郭景坤. ZrSiO4/Al2O3制备氧化锆-莫来石复相陶瓷的反应烧结机制[J].无机材料学报,2000,12,6(15):1102.1106.
    [42]杜晶,薛群虎,刘世聚,周永生,范建超.高纯莫来石原料合成工艺研究[J].耐火材料,2006,40(2):114.116.
    [43]李享成,朱伯铨,龚荣洲.刚玉—莫来石—锌铝尖晶石复相材料的合成与烧结[J].硅酸盐学报,2 0 0 5 ,1,1(33):7-11.
    [44]陈之荣,陈震宙,郑启祥,陈天明.莫来石陶瓷的制备[J].福州大学学报(自然科学版),1995,8,4(23):85.87.
    [45] H scheider等.莫来石和合成莫来石材料的性能[J].国外耐火材料,1990, 15 (11):13
    [46]胡中寅,夏继余,陈文通等.多品矿化黑陶瓷红外辐射材料及应用[P].中国陶瓷:CN1059062A, 1992
    [47]周志刚等,铁氧体磁性材料[M],科学出版社,1981:1-20
    [48]杨钧,汤大新等,锰铁钴铜氧化物及其复合体的红外与热力学性质[J],硅酸盐学报,1990.18(4):322.328
    [49]蔡舒,孟佳宏,陈玉如.莫来石基陶瓷中柱状晶粒的断裂分析[J].无机材料学报,1997,10,5(12):703-709.
    [50]周健儿,张小珍,王双华.常温远红外辐射釉的研究进展及其功能[J],陶瓷学报,2004,6.第25卷.
    [51]陆佩文.无机材料科学基础[M]:281-308.
    [52]王长全,电灶用红外辐射材料的研究[D],甘肃工业大学硕士毕业论文,2000,30
    [53]孙汉东,樊震,提高高温红外辐射涂层发射率的途径[J],红外技术,1990,第12卷第三期
    [54]阎国进,堇青石红外辐射复相陶瓷的研究[D],2002,武汉理工大学硕士学位论文,42.45
    [55]王志发,李如春,高温节能复合涂料的研制[J],耐火材料,1997,31(3)143-146
    [56]靳正国,王一光,Al2O3-SiO2基陶瓷特定波段红外发射特性的研究[J],硅酸盐学报,1997,25(1)
    [57]黄荣华.红外技术及其在工业生产中的应用[M].北京:水利电力出版社,1987.
    [58] H. Umesh Hebbar, K.H. Vishwanathan, M.N. Ramesh. Development of combined infrared and hot air dryer for vegetables[J]. Journal of Food Engineering, 2004,65:557- 556.
    [59]汪喜波.红外辐射与对流联合干燥的实验研究[D].北京:中国农业大学,2003.
    [60]习岗,李伟昌.现代农业和生物学中的物理学[M].北京:科学出版社, 2001.
    [61] Christopher G.J.Baker.张愍等译.食品工业化干燥[M].北京:中国轻工业出版社, 2003.
    [62] Umesh Hebbar H, Rastogi N K. Mass transfer during infrared drying of cashew kernel [J]. Journal of Food Engineering, 2001,47(1):1-5.
    [63]尹丽妍,于辅超等.谷物低温真空干燥机理的探讨[J].中国粮油学报,2006,21(5):129-132
    [64]杨奇林.数学物理方程与特殊函数[M].北京:人民教育出版社, 2004
    [65]董宏宇,杨光敏等.适用于谷物干燥的红外辐射陶瓷材料[J].吉林大学学报(工学版),2007, 37(4): 804.808.
    [66] GB/T 10362.89.中华人民共和国国家标准.玉米水分测定法
    [67] Tan M, Chua K J, Mujumdar A S, et al. Effect of osmotic pre-treatment and infrared radiation on drying rate and color changes during drying of potato and pineapple[J ]. Drying Technology, 2001,9 (9):2193 - 2270.
    [68] Mongpraneet S, Abe T, Tsurusaki T. Accelerated drying of welsh onion by far infrared radiation under vacuum conditions [J]. Journal of Food Engineering, 2002(55):147 - 156.
    [69]李红涛,刘建学.锆钛系远红外谷物干燥复合材料的研究[J].红外技术,2006,28 (1):16-18.
    [70] Umesh Hebbar H, Rastogi N K. Mass transfer during infrared drying of cashew kernel [J]. Journal of Food Engineering, 2001 (47):1-5.
    [71]焦士龙,褚治德,江菊元等.红外辐射与热风振动流化稻谷干燥实验研究[J].上海理工大学学报, 2001, 23:271-273.
    [72]欧阳德刚,周明石,张奇光.提高红外辐射涂料特性途径的分析[J] .钢铁研究.2000, (3):34.37.
    [73]张正勇.谷物红外辐射干燥机理与基础参数研究[D].洛阳:洛阳工学院. 2003.
    [74]程晓燕.新型高能谷物远红外辐射器及辐射特性匹配研究[D] .洛阳:河南科技大学, 2004.
    [75]夏朝勇.红外热风组合干燥机参数研究[D] .洛阳:河南科技大学. 2006.
    [76]饶瑞,孙国才,崔万秋.堇青石在红外辐射陶瓷材料中的应用[ J].中国陶瓷.1998, 34( 2): 39- 41.
    [77]杨俊红,植物性含湿多孔介质在干操过程中优化传热传质机理的研究[D],[博士学位论文],天津:天津大学,1998.
    [78]卞伯绘,辐射的传热与计算[M],北京:清华大学出版社,1988.
    [79]杨世铭,传热学[M],北京:高等教育出版社,1980.
    [80] Howell,J.R.,Themonte calo method in radiative heat transfer,Joumal of Heat Transfer[J],ASME,1998,120:547-560.
    [81] Sakai,N.,HanZawa.T.,APPlieations and advances in far-infrared heating in JaPan,Trends in food science and technology[J],1994,5 :357-362.
    [82] Hashimoto,A,Igarashi,H.,Far-infrared irradiation effect on Pasteurization of bacteria on or with wet-solid medium,Joumal of chenmical engineering of Japan[J],1992,25(6):666-671.
    [83] Sawai,J,Sagara,K,Injury of escherchia coli in physilosical phosphate-buffered salin induced by far-infrared irradiation, Journal of chemical engineering of Japan[J],1994,28(3):294.299.
    [84] Buffler.C.R.,Microwave cooking and processing[M],AVI, NewYork,1992,5.47.
    [85] R.Ranjan,J.Irudayaraj,S.Jun,Simulation of infrared drying process,Dryingtechnology[J],2002,20(2):363-379.
    [86] Afazal,T.M,Diffusion in potato using Far-Infrared radiation drying, Elsevier Science Limited[J],Great Britain,1994.
    [87] Turner,I.W,Mathematical approach to convective and infrared heating of food[D],[Master Thesis], Pennsylvania state university, 2001.
    [88] S.SOkhansaxlj, DM Bruce, Finite difference solutions of heat conduction and moisture diffusion equations in single grain drying[J],National Institute of agricultura; engineering, 1986.
    [89] P.K.Chandra, R.P.Singh,Applied numerical methods for food and agricultural engineers[M],Boca Raton,FL:CRC PresS.1994.
    [90] Parrouffe , J.M., High intensity infrared drying[C] , Electrotech Meeting Proceeding.Montreal,1992.
    [91] Nadeau, J.R,Infrared Tunnel Dryer:a Kinetics Study[C],Proc.Sixth IDS’88, 1988.
    [92] Seki, N., Fukusako, Drying Phenomina of a horizontal wetted porous layer under high heat flux[R], Bulletin of the J.S.M.E., 1987, 20.
    [93] Bird,R.B., Steward, W.E., Transport Phenomena[M].New York, 1960.
    [94] Navajrri,P.,Gevaudan, A., Preliminary study of drying of coated film heated by Infrared radiation[J], Drying’92, 1992.
    [95] I.Zbieinski,A.Jakobsen,Application of Infrared radiation for drying of Particular material[C],drying’92, 1992.
    [96] Tavers,D.N,Augmented solute migration in the drying of fixed beds by infrared radiation[M],J. pharm. Pharmac.1976, 28.
    [97] Chu Zhi De,Infrared thermal radiation drying of wood[C],7th.Intemational drying symposium,IDS’90, Pragea.
    [98]李亚涛,王春生,红外幅射加热在织物后整理上的应用[J],印染,2000,(7):26-27.
    [99] C.W., Hall, Theory of infrared drying[J],Trans ASAE,1962, 5(1),P14.16.
    [100]侯兰田,汤大新等,木材的红外光谱和非匹配吸收干燥机理的研究[J],红外研究,1983,(2)1:1-7.
    [101] Sandu.C.,Infrared radiative drying in food engineering ,A proess analysis[J],Biotechnology progress 1986,2(3):109~119.
    [102] Masamura. A., Sado, H., Nabtani, H, drying of potato by far infrared radiation[M]. Nippon Shokuhin Kogyo Gakkaishi,1988,35(5):309-314.
    [103]糜正瑜等,红外辐射加热干燥原理与应用[M],北京:机械工业出版社,1996.
    [104]王俊,张敏,王正怀,远红外辐射并配以排湿气流干燥蘑菇片的实验研究[J],浙江大学学报,1999,25(4):448-450.
    [105] Fasina, O.O, R.T., Tyler,Modeling the infrared heating of agricultural crops[J],Drying Technology, 1998, 16(9,10):2065~2082.
    [106]徐松涛,徐永平,红外辐射在生物学、医学、光通信中的应用及其检测[J],光电子技术与信息, 1995, 8(4):34.38.
    [107] AbeT.andT.M.Azfal,Thin-layer inrfaerd ardiation dyring of orugh rice[J],Joumal of Agricultural Engineering Reseacrh. 1997,67 :289-297.
    [108] Afzal, T.M. and Abe, T. Diffusion in potato during for infrared radiation drying urnal of Food Engineering[J] 1998,37:353-365.
    [109] Akpinar A.MidilliandY.Bieer.Single layer drying beheavior of potato sliees in a convective cyclone dryer and mathmeatical modeling[C]. Energy Conversion and Managmeent2003,44:1689-1705.
    [110] AkPinar E.K.. The development of a cyclone type dryer of agricultural Porduets[D].PhD Thesis.First University,Elazig,Tukrey,2002.
    [111] Bayram,M.D.,&Oner M. The new old wheat convneience and nurtition driving dmeand forBulngr[J].WorldGarin, .2002,November.
    [112] Bekki,E..Rouhg rice drying with a far-inrfared plane heater[C]. Jounral of the Japnaese Soeieytof Agricultural Mahcinery 1991,531:55.63.
    [113] Bengtssonetal,Bnegtsson,G.Rahman,M.5,Stanlyc,R.&PeerarC.0.(1998).
    [114] Eeffet of specific pre-treatment on the dyring beheaviour of apple rings[C]. In Proceedeings of the New Zealand Instiutte of Food Seinece and Technology and The Nurtition Soeiety of New Zealand conference,Nelson,NewZealand, 1998.
    [115] Datta,A.K.nadNi,H..Inrfared and hot-air-assisted microwave heating of foods for conortl of surface moisuter.Jounral of Food Engineering[J] 2002,51:355.364.
    [116] Doylllazl.Dyring behaviour of greenbeans Joumal of Food Engineering [J], 2005,69(2): 161-165.
    [117] FAO/IAEA/WHOICGFI. Irradiation of spices,herbs and other vegetable seasonings.A compilation of technical date for its authorization and control[J] . IAEA-TECUOC1992:639.
    [118] Fasina, O.O, Tyler, R.T. and Pickard, M.D,. Modelling the infrared radiative heating of agriculture crops[M]. Drying Technology 169&10, 1998,2065.2082.
    [119] Feng, Tang, Cavalieri,&Plumb H. Feng, J. Tang, R.P. Cavalieri and O.A. Plumb, Heat and mass transport in microwave drying of porous materials in a spouted bed[J], AICHE Journal 2001,47:1499-1511.
    [120] Haghighi K et al ,1988. Modelling Simultaneous Heat and Mass Transfer in“Isotropic sphere-A Finite Element Approach[J]. Transactions of the ASAE.31(2): 629-637.
    [121] Hummedia and Sheikh. M.A. Hummedia and A.E.Sheikh,Determination of drying curves of two varieties of peanuts[C]. Agricultural Mechanization in Asia, Africa and Latin America 1989,204:47-51/58.
    [122] Institute of Agricultural Machinery, Japan. Recirculating batch grain dryer using far-infrared radiation.http://www.brain.go.jp/Organ/sei0301 e.htm. 2003.
    [123] Itoh K. and Chung S.H. Drying of agricultural products using long wave infrared radiation (part2).Drying of Welsh onion[J], Journal of the Society of Agricultural Structures 1995,26:89-96.
    [124] Lin Tm shrimp. Durancetd,Scamanc H. Physical and sensory properties of vacuum microwave dehydrated[J]. Journal of Aquatic Food Product Technology. 1999. 8(4): 41-53.
    [125] Madamba P.S., Driscoll R.H. and Buckle, K.A. The thin layer drying characteristics of garlic slices[J]. Journal of Food Engineerine 1996,29:75.97.
    [126] Maskan A., Kaya S. and Maskan M., Hot air and sun drying of leather (pestil)[J] , Journal of Food Engineering 2002,54:81-88.
    [127] Gabel, M., Pan, Z., Amaratunga, K. S. P., Harris, L. J., & Thompson, J. F. Catalytic infrared dehydration of onions. Journal of Food Science, 2006, 71(9):E351-E356.
    [128] Chua, K., & Chou, S. A comparative study between intermittent microwave and infrared drying of bioproducts. International Journal of Food Science and Technology, 2005, 40(1):23-39.
    [129] Baysal, T., Icier, F., Ersus, S., & Yldz, H.. Effects of microwave and infrared drying on the quality of carrot and garlic[J]. European Food Research and Technology, 2004,218(1):68-73.
    [130] J. Shi et al.Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating [J].Food science and Technology.2008:1-11
    [131] Abe, T. & Afzal, T. M.. Thin layer infrared radiation drying of rough rice[J]. J.Agric.Eng. Res, 1997, 67:289-297.
    [132] T.M. Afzal&T.Abe.Diffusion in potato during far infrared radiation drying[J]. Journal of Food Engineering,1998, 37:353-365
    [133] Datta, A. K., & Ni, H. Infrared and hot-air-assisted microwave heating of foods for control of surface moisture. Journal of Food Engineering, 2002,51:355–364.
    [134] H.U. Hebbar et al. Development of combined infrared and hot air dryer for vegetables[J]. Journal of Food Engineering, 2004,65:557-563.
    [135] P.S. Sheridan, N.C. shilton.Determination of the thermal diffusivity of ground beef patties under infrared radiation oven-shelf cooking[J]. Journal of Food Engineering, 2002,52:39-45.
    [136] Sakai, N., & Hanzawa, T. Applications and advances in farinfrared heating in Japan[J]. Trends Food Sci. Tech., 1994,5:357-362.
    [137] Hashimoto, A., Yamazaki, Y., Shimizu, M., & Sei-Ichi, O. Drying characteristics of gelatinous materials irradiated by infrared radiation[J]. Drying Tech., 1994,12(5):1029-1052
    [138] Sheridan,p.,& Shilton, N. Application of far infra-red radiation to cooking of 93meat products[J].Journal of Food Engineering,1999,41(3-4):203-208.
    [139] P.S.Sheridan, N.C. Shilton.Analysis of yield while cooking beefburger patties using far infrared radiation[J],Journal of Food Engineering,2002,51:3-11.
    [140] Masamura, A., Sado, H., Honda, T., Shimizu, M., Nabethani, H., Hakajima, M., & Watanabe, A.. Drying of potato by far infrared radiation[J]. Nippon Shokuhin Kogyo Gakkaishi,1988, 35(5):309–314.
    [141] Abe, T., & Afzal, T. M. Thin-layer infrared radiation drying of rough rice[J]. Journal of Agricultural Engineering Research, 1997,67:289–297.
    [142] Hashimoto, A., Hirota, K., Honda, T., Shimizu, S., & Watanabe, A. Factors influencing constant drying rate of wet granular bed irradiated by infrared radiation[J]. Journal of Chemical Engineeringm of Japan, 1991,24(6):748–755.
    [143] Hashimoto, A. M. U., & Kameoka, T. Effect of infrared irradiation on drying characteristics of wet porous materials[J]. Drying Technology, 1999, 17(7-8): 1613-1626.
    [144] Jain, D, & Pathare, P. B. Selection and evaluation of thin layer drying models for infrared radiative and convective drying of onion slices. Biosystems Engineering, 2004,89(3): 289-296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700