用户名: 密码: 验证码:
溶胶—凝胶法制备稀土掺杂氧化物的光致发光特性及其薄膜工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用非水性sol-gel法,通过Er~(3+)和Er~(3+)-Yb~(3+)共掺杂,获得具有中心波长为1.533μm光致发光(PL)特性的稀土掺杂Al_2O_3。系统研究了SiO_2和P_2O_5复合对掺Er~(3+):Al_2O_3结构和近红外光致发光特性的影响规律,讨论了氧化物复合对光致发光的增强作用。通过干燥控制化学添加剂(DCCA,Drying Control Chemical Addtive)和干燥控制物理添加剂(DCPA,Drying Control Physical Addtive)改性溶胶,控制薄膜的干燥,解决了凝胶化过程中的开裂现象,并显著增加了薄膜工艺的沉积效率,讨论了改善薄膜工艺质量的机理。
     以异丙醇铝[Al(OC_3H_7)_3]为前驱体,稀土硝酸盐Er(NO_3)_3·5H_2O为掺杂介质,在异丙醇(Pr~iOH)的非水性环境下水解合成稀土掺杂Al_2O_3溶胶,在550-1200℃烧结制备掺Er~(3+):Al_2O_3粉末。建立了掺0-5.0 mol%Er~(3+):Al_2O_3构成的Er-Al-O系相组成图。体系中存在γ-(Al,Er)_2O_3,θ-(Al,Er)_2O_3,α-(Al,Er)_2O_3,ErAlO_3(ErAP)和Er_3Al_5O_(12)(ErAG)等5种相。随掺Er~(3+)浓度的提高,γ和θ相Al_2O_3非晶化加剧,且对Al_2O_3的γ→θ→α相变抑制作用增强。
     Er~(3+)掺杂Al_2O_3粉末以γ,θ相为主时,获得了近红外区1.533μm处主峰和1.556μm处肩峰双峰结构的PL谱。Al_2O_3转变至稳定的α相,ErAG与ErAP化合物析出,则PL谱由宽峰劈裂为多峰结构。θ与γ-Al_2O_3存在一定比例无序分布的阳离子空位,结晶程度较低。晶体场环境的多样性导致Er~(3+)的第一激发态~4I_(13/2)向基态~4I_(15/2)跃迁,形成以1.533μm为中心波长,非均匀加宽的宽峰PL谱。α相中同样存在阳离子空位,Er~(3+)确定的晶体场环境导致非均匀加宽效应显著弱化,形成多峰PL谱。掺0.002-2.5 mol%Er~(3+):α-Al_2O_3粉末的低温PL谱表明,0.01 mol%Er~(3+)低于α相的溶解度上限,固溶的Er~(3+)对掺Er~(3+):α-Al_2O_3近红外区发光贡献显著。在高掺杂Er~(3+)浓度时,化合物ErAG对近红外区发光同样具有贡献。但化合物ErAG与ErAP更有利于Er~(3+)由较高激发态向基态的的跃迁,易在可见光区发射,而α-Al_2O_3晶格中Er~(2+)的发光则更有利于较低激发态向基态的跃迁,在近红外区更易被观察到。
     以正硅酸乙酯(TEOS)为前驱体,制备稀土掺杂SiO_2溶胶,通过与Al_2O_3溶胶混合制备了掺Er~(3+):SiO_2-Al_2O_3复合体系氧化物。掺Er~(3+):SiO_2-Al_2O_3粉末在1200℃烧结,仍以γ,θ相Al_2O_3结构为主,同时有α-Al_2O_3与Al_6Si_2O_(13)相形成。Al_2O_3基体中复合SiO_2抑制了γ→θ→α相的转变,大量Er~(3+)仍位于γ,θ-Al_2O_3晶格中,PL谱保持中心波长1.533μm的宽峰结构。PL强度和1.533μm荧光寿命,随烧结温度提高及SiO_2复合量的增加均显著增加。SiO_2复合为Er~(3+)提供了多样的晶体场环境,使ErO_6八面体的对称度低于单一Al_2O_3体系,更有利于Er~(3+)的激发态~4I_(13/2)向基态~4I_(15/2)能级的跃迁。
     通过在溶胶中加入磷酸三乙酯(TEP,(CH_3CH_2O)_3P=O)形成掺1.0 mol%Er~(3+):P_2O_5-Al_2O_3复合体系氧化物,促进了掺Er~(3+):Al_2O_3中残余-OH的脱除。P_2O_5复合量增至30 mol%,1000℃烧结,可以实现FT-IR光谱3300-3600 cm~(-1)波段的-OH振动吸收消逝。P_2O_5复合在基体中引入了振动能量在1300-1600 cm~(-1)之间的P-O键,其振动对Er~(3+)的~4I_(13/2)能级辐射依赖的~4I_(11/2)能级向~4I_(13/2)能级无辐射过程有更为显著的增强作用。P_2O_5复合量增加,既降低了-OH含量,又提高了泵浦效率,双重的作用增强了Er~(3+)的光致发光。利用J-O理论计算掺1.0 mol%Er~(3+):P_2O_5-Al_2O_3复合体系氧化物的强度因子Ω_λ(λ=2,4,6),并拟合得到了Er~(3+)各能级光谱参数。结果显示随P_2O_5复合量的提高,Ω_(2,4,6)都呈现减小的趋势,表明P_2O_5的复合提高了基体的离子性。计算得到的第一激发态~4I_(13/2)的能级寿命随P_2O_5复合量的增加而略有增加,与实验得到的P_2O_5复合量对测量荧光寿命的影响规律一致。
     以N,N-二甲基甲酰胺(DMF)作为DCCA,以乙醇、丙醇作为DCPA,分别对稀土掺杂Al_2O_3溶胶改性,通过浸渍提拉工艺在SiO_2/Si(100)基体上沉积稀土离子掺杂的Al_2O_3薄膜,抑制薄膜在干燥过程中的开裂现象。高浓度1.0 mol%Er~(3+)-10.0 mol%Yb~(3+)共掺Al_2O_3溶胶,经过40次循环提拉,1000℃烧结,可分别得到表面均匀、光滑、无开裂、厚度约为1.5μm和0.8μm,适合光学应用的稀土掺杂Al_2O_3薄膜。以聚乙烯吡咯烷酮(PVP)为增粘剂,调节DCPA改性的溶胶粘度,随着PVP聚合度及加入量的增大,溶胶粘度显著提高,当PVP(K90)与Al(OC_3H_7)_3的摩尔比为1:1时,溶胶粘度由原始的2.3mPa·s增大到31.5 mPa·s,形成的单层氧化物膜厚由20 nm提高至160 nm,在干燥和烧结过程中薄膜不出现开裂,将sol-gel法薄膜工艺沉积效率提高了近一个数量级。在1.400-1.700μm波段获得了以1.533μm为中心的宽峰PL谱。采用DCCA,DCPA和增粘剂改性溶胶对稀土掺杂氧化物薄膜的PL特性无影响。
The Er~(3+)-doped and Er~(3+)-Yb~(3+) codoped Al_2O_3 with the photoluminescence (PL) properties in the near infrared region centered at 1.53μm were prepared by using a non-aqueous sol-gel method. The effects of mixing of SiO_2/P_2O_5 on phase structure and PL properties of the Er~(3+)-doped Al_2O_3 were systematically investigated to explore the enhancement mechanism of PL properties of Er~(3+)-doped Al_2O_3 due to the mixing of oxides. The cracking in the thin films has been suppressed by introducing drying control chemical additive (DCCA) and drying control physical additive (DCPA) in the sols, respectively. The deposition efficiency of the sol-gel dip-coating has been improved by introducing the viscosity increaser (VI). The mechanisms of suppressed cracking and increase of the deposition efficiency for the rare earth ions doped Al_2O_3 thin films in sol-gel method have been discussed.
     The Er~(3+)-doped Al_2O_3 powders sintered at different temperatures were prepared by using the aluminum isopropoxide [Al(OC_3H_7)_3] as precursor, acetylacetone (AcAcH) as chelating agent, nitric acid (HNO_3) as catalyzer, and hydrated nitrate of Er(NO_3)_3·5H_2O as dopant in the non-aqueous isopropanol environment. The phase contents diagram for the Er-Al-O system with the doping concentration up to 5.0 mol% was described at the sintering temperature from 550℃to 1250℃. There were three crystalline types of Er~(3+)-doped Al_2O_3 phases,γ,θandα-(Al,Er)_2O_3, and two stoichiometric compounds composed of Al, Er, and O, the perovskite ErAlO_3 (ErAP) and garnet Er_3Al_5O_(12) (ErAG), in the Er-Al-O phase contents diagram. The Er~(3+) doping suppressed the crystallization of theγandθphases and delayed the phase transitions ofγ→θandθ→α.
     The PL spectra in the wavelength range from 1.400μm to 1.700μm with a main peak at 1.535μm and a side peak at 1.556μm were obtained for the Er~(3+)-doped Al_2O_3 with theγphase and the mixture ofγandθphases. The PL spectra were splitting with the appearance ofα-Al_2O_3, ErAP and ErAG phases in the matrix, due to a definite local environment in theα-(Al,Er)_2O_3, ErAP and ErAG lattices, and a weaker effect of inhomogeneous widening than in theγandθ-Al_2O_3 phase. The low temperature PL spectra of Er~(3+)-dopedα-Al_2O_3 powders in the doping concentration range from 0.002 to 2.5 mol% indicated that a very low concentration of Er~(3+) could resolute inα-Al_2O_3 lattice. The combining photoluminescence of Er~(3+)-dopedα-Al_2O_3 unambiguously was mainly derived from the Er~(3+) which replaced with Al~(3+) inα-Al_2O_3 lattice (α-(Al,Er)_2O_3). For the Er~(3+) concentration of 0.5 -5.0 mol%, the luminescence was from two different kinds of optical centers, the ErAG andα-(Al,Er)_2O_3, respectively, and the former mainly benefits to the visible emission, while the latter prefers to contribute to the near-infrared luminescence.
     The Er~(3+)-doped SiO_2-Al_2O_3 powders were prepared by mixing of SiO_2 sol and Al_2O_3 sol with same doping concentration. The phase transitions ofγ→θandθ→αof the 0.1 mol %Er~(3+)-doped Al_2O_3 were suppressed by mixing of SiO_2, and the 0.1 mol %Er~(3+)-doped Al_2O_3 was mainly of theγandθ-Al_2O_3 phases with a mount ofα-Al_2O_3 and Al_6Si_2O_(13) phase for the sintering temperature below 1200℃. The PL spectra maintained a single broadband centered at 1.53μm even though the sintering temperature was up to 1200℃. The PL lifetime and intensity at the wavelength of 1.53μm increased obviously with the increase of the sintering temperature and mixing content of SiO_2, due to the decrease in -OH content and the formation of lower symmetrical octahedral ErO_6, respectively.
     The 1.0 mol% Er~(3+)-doped P_2O_5-Al_2O_3 powders sintered at the temperatures of 1000℃were prepared by introduced triethyl phosphate (TEP, (CH_3CH_2O)_3P=O) in the sols. The -OH has been removed completely due to the addition of TEP with an increased molar ratio to 30.0 mol%. The vibrate energy of P-O bond is about 1300-1600 cm~(-1), which contribute to the transition of the second excited state ~4I_(11/2) to the first excited state ~4I_(13/2). Both the removing of the -OH and the introducing of the P-0 bond led to the increasing of PL properties. The J-0 parametersΩ_λ(λ=2, 4, 6) and radiative transition probabilities of the Er~(3+)-doped P2O5-Al_2O_3 powders were calculated by the J-O theory. The J-O parametersΩ_(2,4,6) were all reduced with the mixing content of P_2O_5 increased, indicating that the ionicity of the materials was enhanced. The radiation lifetime of ~4I_(13/2) was increased gently with increasing the mixing content of P_2O_5, which coincided with the variety of measured lifetime.
     The cracking in the thin films was suppressed by introducing drying control chemical additive (DCCA) and drying control physical additive (DCPA) in the sols to modify the Al_2O_3 sols, respectively. The homogeneous, uniform and crack-free 1.0 mol%Er~(3+)-10.0 mol%Yb~(3+) codoped Al_2O_3 thin films on the thermally oxidized SiO2/Si(100) substrate were formed by 40 dip-coating cycles. Polyringlpyrrolidone (PVP) as a viscosity increaser was used to adjust the viscosity of the sols. When the molar ratio of PVP(K90):AlOC_3H_7 was up to 1:1, the viscosity of the PVP assisted sol increased from 2.3 to 31.5 mPa·s, and homogeneous, uniform and crack-free 1.0 mol%Er~(3+)-10.0 mol%Yb~(3+) codoped Al_2O_3 thin films with the thickness of 1.6μm were formed by 10 dipping and drying cycles sintered at 1000℃. The deposition efficiency of the crack-free thin films by the sol-gel method was increased by about one order in magnitude. The PL spectra of Er~(3+)-Yb~(3+) codoped Al_2O_3 thin films in the wavelength range from 1.400μm to 1.700μm centered at 1.535μm were measured by the face coupling method. The drying control additive and viscosity increaser have no effect on the strong PL of the Er~(3+)-Yb~(3+) codoped Al_2O_3 thin films.
引文
[1] R. J. Mears, L. Reekie. Low noise erbium-doped fiber amplifier operating at 1.54 μm. Electronics Letters, 1987,23: 1026-1028
    
    [2] N.Grote,H.Venghaus编,王景山,沈欣捷,孙玮译.光纤通信器件.北京:国防工业出版社, 2003.7
    
    [3] H. Ennen, J. Schneider, G. Pomrenke, A. Axmann. 1.54 μm luminescence of erbium-implanted III-Vsemiconductors and silicon. Applied Physics Letters, 1983,43: 943-945
    
    [4] A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, J. M. Poate. Optical doping of waveguidematerials by MeV Er implantation. Journal of Applied Physics, 1991, 70: 3778-3784
    
    [5] 王迅,盛篪.硅中掺铒发光的研究现状和前景.物理,1995,4:402-408
    
    [6] A. Polman. Erbium implanted thin film photonic materials. Journal of Applied Physics, 1997, 82:1-38
    
    [7] Y. Kurokawa, T. Ishizaka, T. Ikoma, T. K. Shozo. Photo-properties of rare earth ion (Er~(3+), Eu~(3+) andSm~(3+))-doped alumina films prepared by the sol-gel method. Chemical Physics Letters, 1998, 287:737-741
    
    [8] R. M. Almeida, X. M. Du, D. Barbier, X. Orignac. Er~(3+)-doped multicomponent silicate glass planarwaveguides prepared by sol-gel processing. Journal of Sol-Gel Science and Technology, 1999, 14:209-216
    
    [9] R. M. Almeida. Sol-gel planar waveguides for integrated optics. Journal of Non-Crystalline Solids,1999,259: 176-181
    
    [10] A. Pillonnet, C. Garapon, C. Champeaux, C. Bovier, H. Jaffrezic, J. Mugnier. Fluorescence of Cr~(3+)doped alumina optical waveguides prepared by pulsed laser deposition and sol-gel method. Journal ofLuminescence, 2000, 87-89: 1087-1089
    
    [11] Q. Xiang, Y. Zhou, B. S. Ooi, Y. L. Lam, Y. C. Chan, C. H. Kam. Optical properties of Er~(3+)-dopedSiO_2-GeO_2-Al_2O_3 planar waveguide fabricated by sol-gel processes. Thin Solid Films, 2000, 370:243-247
    
    [12] E. M. Yeatman, M. M. Ahmad, O. McCarthy. Sol-gel fabrication of rare-earth doped photoniccomponents. Journal of Sol-Gel Science and Technology, 2000,19: 231 -236
    
    [13] T. Ishizaka, Y. Kurokawa. Optical properties of rare-earth ion (Gd~(3+), Ho~(3+), Pr~(3+), Sm~(3+), Dy~(3+), andTm~(3+))-doped alumina films prepared by the sol-gel method. Journal of Luminescence, 2001, 92:57-63
    
    [14] T. Ishizaka, Y. Kurokawa, T. Makino, Y. Segawa. Optical properties of rare earth ion (Nd~(3+), Er~(3+) andTb~(3+))-doped alumina films prepared by the sol-gel method. Optical Materials, 2001, 15: 293-299
    
    [15]张思远,毕宪章.稀土光谱理论.吉林:吉林科学技术出版社,1991
    
    [16] A. Bahtat, M. Bouazaoui, M. Bahtat, J. Mugnier. Fluorescence of Er~(3+) ions in TiO_2 planar waveguides prepared by a sol-gel process. Optics Communications, 1994, 111: 5-60
    
    [17] M. Ferrari, C. Armellini, S. Ronchin, R. Rolli, C. Duverger, A. Monteil, N. Balu, P. Innochenzi. Influence of the Er~(3+) content on the luminescence properties and on the structure of Er_2O_3-SiO_2 xerogels. Journal of Sol-Gel Science and Technology, 2000, 19: 569-572
    
    [18] T. Kimura, A. Yokoi, H. Horiguchi, R. Saito. Electrochemical Er doping of porous silicon and itsroom-temperature luminescence at 1.54 pun. Applied Physics Letters, 1994, 65: 983-985
    
    [19] G. Gu, Y. Du, T. Yu. Room temperature photoluminescence from erbium-doped silica thin filmsprepared by cosputtering. Thin Solid Films, 1998, 315: 263-265
    
    [20] Z. S. Xiao, F. Xu, T. H. Zhang, G. Cheng, L. L. Gu, X. Wan. A novel method to achieve 1.54 μmlight emission from silica thin films. Journal of Luminescence, 2002, 96: 195-200
    
    [21] A. M. Martucci, A. Chiasera, M. Montagna, M. Ferrari. Erbium-doped GeO_2-TiO_2 sol-gelwaveguides. Journal of Non-Crystalline Solids, 2003, 322: 295-299
    
    [22] M. V. Ibanez, C. L. Luyer, O. Marty, J. Mugnier. Annealing and doping effects on the structure ofeuropium-doped HfO_2 sol-gel material. Optical Materials, 2003,24: 51-57
    
    [23] J. H. Yang, S. X. Dai, N. L. Dai, L. Wen, L. L. Hu, Z. H. Jiang. Investigation on nonradiative decayof transition of Er~(3+)-doped oxide glasses. Journal of Luminescence, 2004,106: 9-14
    
    [24] S.X. Dai, T.F. Xu, Q.H. Nie, X. Shen, X.S. Wang. Investigation of concentration quenching inEr~(3+):Bi_2O_3-B_2O_3-SiO_2 glasses. Physics Letters A, 2006,359: 330-333
    
    [25] S.X. Dai, C.L. Yu, G. Zhou, J.J. Zhang, G.N. Wang, L.L. Hu. Concentration quenching inerbium-doped tellurite glasses. Journal of Luminescence, 2006, 117: 39-45
    
    [26] Z. Pan, S.H. Morgan, A. Loper. Infrared to visible upconversion in Er~(3+) doped lead germanate glass:effects of Er~(3+) ion concentration. Journal of Applied Physics, 1995, 77: 4688-4692
    
    [27] X. Wang, G.Y. Shan, K.F. Chao, Y.L. Zhang, R.L. Liu, L.Y. Feng, Q.H Zeng, Y.J. Sun, Y.C. Liu,X.G. Kong. Effects of Er~(3+) concentration on UV/blue upconverted luminescence and a three-photonprocess in the cubic nanocrystalline Y_2O_3:Er~(3+). Materials Chemistry and Physics 2006, 99: 370-374
    
    [28]姜淳,高文燕,卓敦水,张俊洲.OH基对磷酸盐激光玻璃激光性能和物理性质的影响.磋酸盐 学报,1998,26:97-102
    
    [29] I.A.A. Terra, A.S.S. de Camargo, M.C. TerrileL.A.O. Nunes. Spectroscopic investigations of OHinfluence on near-infrared fluorescence quenching of Yb~(3+)/Tm~(3+) co-doped sodium-metaphosphateglasses. Journal of Luminescence, 2008, 128: 891-893
    
    [30] S.X. Dai, C.L. Yu, G. Zhou, J.J. Zhang, G.N. Wang. Effect of OH~- content on emission properties inEr~(3+)-doped tellurite glasses. Journal of Non-Crystalline Solids, 2008, 354: 1357-1360
    
    [31] Y. Yan, A.J. Faber, H. de Waal. Luminescence quenching by OH groups in highly Er-dopedphosphate glasses Journal of Non-Crystalline Solids, 1995, 181: 283-290
    
    [32] G.J. De, W.P. Qin, J.S. Zhang, J.S. Zhang, Y. Wang, C.Y. Cao, Y. Cui. Effect of OH~- on theupconversion luminescent efficiency of Y_2O_3:Yb~(3+), Er~(3+) nanostructures Solid State Communications,2006, 137: 483-487
    
    [33]高嫒,聂秋华,徐铁峰,沈祥.Er~(3+)/Yb~(3+)共掺锗碲酸盐玻璃荧光特性及OH~-的影响.光电子.激光, 2004,11:1343-1347
    
    [34]马红萍,徐时清.OH~-对掺Er~(3+)碲酸盐玻璃上转换发光的影响.中国激光,2006,33:1113-1116
    
    [35] C. B. Layne, W. H. Lowdermilk, M. J. Weber. Multiphonon relaxation of rare-earth ions in oxide glasses. Phys . Rev. B, 1977, 16: 10-20
    
    [36]任国仲,陈宝玖,杨艳民,吕少哲,于晓君.OH~-对Er掺杂的亚碲酸盐氟氧化物玻璃上转换发光 的影响.发光学报,2006,27:325-330
    
    [37] G.-C. Yi, B. A. Block, G. M. Ford, B. M. Wessels. Luminescence quenching in Er-doped BaTiO_3 thinfilms. Applied Physics Letters, 1998,73: 1625-1627
    
    [38] A.J. Barbosa, F.A. Dias Filho, Y. Messaddeq, S.J.L. Ribeiro, R.R. Goncalves, S.R. Lu thi, A.S.L.Gomes. 1.5 μm emission and infrared-to-visible frequency upconversion in Er~(3+)/Yb~(3+)-dopedphosphoniobate glasses. Journal of Non-Crystalline Solids, 2006, 352: 3636-3641
    
    [39] P. Babu, Hyo Jin Seo, Kyoung Hyuk Jang, K. Upendra Kumar, C.K. Jayasankar. 1.55 μm emissionand upconversion properties of Er~(3+)-doped oxyflurotellurite glasses. Chemical Physics Letters, 2007,445:162-166
    
    [40] D.Q. Chen, Y.S. Wang, Y.L. Yu, En Ma, F. Bao, Z.J. Hu, Y. Cheng. Influences of Er~(3+) content onstructure and upconversion emission of oxyfluoride glass ceramics containing CaF_2 nanocrystals.Materials Chemistry and Physics, 2006, 95: 264-269
    
    [41] S.X. Dai, L.J. Lu, T.F. Xu, Q.H. Nie, X. Shen, X.S. Wang. Optical properties of and concentrationquenching in Bi_2O_3-B_2O_3-Ga_2O_3 glasses. Journal of Non-Crystalline Solids, 2007, 353: 2744-2749
    
    [42] G.A. Kumar, E. De la Rosa, H. Desirena. Radiative and non radiative spectroscopic properties of Er~(3+)ion in tellurite glass. Optics Communications, 2006,260: 601-606
    
    [43] K. Kumar, S.B. Rai, D.K. Rai. Upconversion and concentration quenching in Er~(3+)-doped TeO_2-Na_2Obinary glasses. Journal of Non-Crystalline Solids, 2007, 353: 1383-1387
    
    [44] J.F. Suyver, J. Grimm, M.K. van Veen, D. Biner, K.W. Kramer, H.U. Gudel. Upconversionspectroscopy and properties of NaYF_4 doped with Er~(3+), Tm~(3+) and/or Yb~(3+). Journal of Luminescence,2006,117: 1-12
    
    [45] E. De la Rosa, L.A. Diaz-Torres, P. Salas, R.A. Rodriguez. Visible light emission under UV and IRexcitation of rare earth doped ZrO_2 nanophosphor. Optical Materials, 2005,27: 1320-1325
    
    [46] R. Serna, M. Jimenez de Castro, J. A. Chaos, A. Sua'rez-Garcia, C. N. Afonso, M. Ferna'ndez, I.Vickridge. Photoluminescence performance of pulsed-laser deposited Al_2O_3 thin films with largeerbium concentrations. Journal of Applied Physics, 2001, 90: 5120-5125
    
    [47] F. d'Acapito, S. Mobitio, P. Gastaldo, D. Barbier, L. F. Santos, O. Martins, R. M. Almeida. Localorder around Er~(3+) ions in SiO_2-TiO_2-Al_2O_3 glassy films studied by EXAFS. Journal ofNon-Crystalline Solids, 2001,293-295: 118-124
    
    [48] C.C. Ting, S.Y. Chen, W.F. Hsieh. Effects of yttrium codoping on photoluminescence oferbium-doped TiO_2 films. Journal of Applied Physics, 2001, 90: 5564-5569
    
    [49] X. Feng, S. Tanabe, T. Hanada. Hydroxyl grups in erbium-doped germanotellurite glasses. Journal ofNon-Crystalline Solids, 2001, 281: 48-54
    
    [50] A. Biswas, G. S. Maciel, R. Kapoor, C. S. Friend, P. N. Prasad. Er~(3+)-doped multicomponentsol-gel-processed silica glass for optical signal amplification at 1.5 urn. Applied Physics Letters, 2003,82:2389-2391
    
    [51] M. Fukushima, N. Managaki, M. Fujili, H. Yanagi, S. Hayashi. Enhancement of 1.54 μm emissionfrom Er-doped sol-gel SiO_2 films by Au nanoparticles doping. Journal of Applied Physics, 2005, 98:1-4
    
    [52] T. Kimura, A. Yokoi, Y. Nishida, R. Saito, S. Yugo. Photoluminescence of ytterbium-doped poroussilicon. Applied Physics Letters, 1995,67: 2687-2690
    
    [53] X. Origac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, E. Yeatman. Sol-gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 μm. Optical Materials,1999,12:1-18
    
    [54] M. Fujii, S. Hayashi, K. Yamamoto. Excitation of intra-4f shell luminescence of rare earth ions (Er~(3+)and Yb~(3+)) by the energy transfer from Si nanocrystals. Journal of Nanoparticle Research, 1999, 1:83-90
    
    [55] A. Kozanecki, K. Homewood, B. J. Sealy. Sensitization of Er~(3+) emission at 1.5 μm in SiO_2 thermallygrown on silicon by coimplantation of Yb. Applied Physics Letters, 1999, 75: 793-795
    
    [56] A. Kozanecki, B. J. Sealy, K. Homewood. Excitation of Er~(3+) emission in Er, Yb codoped thin silicafilms. Journal of Alloys and Compounds, 2000, 300-301: 61-64
    
    [57] A. Kozanecki, B. J. Sealy, K. Homewood, S. Ledain, W. Jantsch, D. Kuritsyn. Sensitization of the1.54 μm luminescence of Er~(3+) in SiO_2 films by Yb and Si-nanocrystals. Materials Science andEngineering B, 2001, 81: 23-28
    
    [58] L. Zhang, H. F. Hu, C. H. Qi, F. Y. Lin. Spectroscopic properties and energy transfer in Yb~(3+)/Er~(3+)-doped phosphate glasses. Optical Materials, 2001, 17: 371-377
    
    [59] C. Strohhofer, A. Polman. Relationship between gain and Yb~(3+) concentration in Er~(3+)-Yb~(3+) dopedwaveguide amplifiers. Journal of Applied Physics, 2001, 90: 4314-4320
    
    [60] C. E. Chryssou, F. D. Paquale, C. W. Pitt. Improved gain performance in Yb~(3+)-sensitized Er~(3+)-dopedalumina channel optical waveguide amplifiers. Journal of Lightwave Technology, 2001, 19: 345-349
    
    [61] C. Strohhofer, A. Polman. Absorption and emission spectroscopy in Er~(3+)-Yb~(3+) doped aluminiumoxide waveguides. Optical Materials, 2003, 21: 705-712
    
    [62] C. C. Ting, S. Y. Chen, H. Y. Lee. Physical characteristics and infrared fluorescence properties ofsol-gel derived Er~(3+)-Yb~(3+) codoped TiO_2. Journal of Applies Physics, 2003,94: 2102-2109
    
    [63] X.J. Wang, M.K. Lei, T. Yang, B.S. Cao. Coherent effect of Er~(3+)-Yb~(3+) co-doping on enhancedphotoluminescence properties of Al_2O_3 powders by the sol-gel method. Optical Materials, 2004, 26:253-259
    
    [64]杨涛.非水性sol-gel法合成稀土掺杂氧化铝的光致发光增强机制研究.大连:大连理工大学, 2006.10.
    
    [65] H. B. Xiao, C. S. Zhang, X. L. Jia, Y. J. Wang, X. L. Cheng, G. B. Cao, F. Zhang, S. C. Zou.Photoluminescence and transmission spectrum characterization of Er-implanted Al_2O_3 films. AppliedSurface Science, 2004,222: 180-185
    
    [66] N. V. Gaponenko, I. S. Molchan, D. A. Tsyrkunov, G. K. Maliarevich, M. Aegerter, J. Puetz, N. A.Dahoudi, J. Misiewicz, R. Kudrawiec, V. Lambertini, N. L. Pira, P. Repetto. Optical and structuralproperties of sol-gel derived materials embedded in porous anodic alumina. MicroelectronicEngineering, 2005, 81: 255-261
    
    [67] C. E. Chryssou, C. W. Pitt. Er~(3+)-doped Al_2O_3 thin films by plasma-enhanced chemical vapordeposition (PECVD) exhibiting a 55-nm optical bandwidth. IEEE Journal of Quantum Electronics,1998,34:282-285
    
    [68] X. J. Wang, M. K. Lei, T. Yang, L. J. Yuan. Phase transformation of Er~(3+)-doped Al_2O_3 powdersprepared by the sol-gel method. Journal of Material Research, 2003, 18: 2401 -2405
    
    [69] X. J. Wang, M. K. Lei, T. Yang, H. Wang. Phase structure and photoluminescence properties of Er~(3+)-doped Al_2O_3 powders prepared by the sol-gel method. Optical Materials, 2004, 26: 247-252
    
    [70] X. J. Wang, M. K. Lei. Preparation and photoluminescence of Er~(3+)-doped Al_2O_3 films by the sol-gel method. Thin Solid Films, 2005,476: 41-45
    
    [71] X. J. Wang, M. K. Lei. Photoluminescence properties of Er~(3+)-doped Al_2O_3 film synthesized from Er-ion-implanted γ-AlOOH xerogel. Thin Solid Films, 2006, 497: 254-258
    
    [72]王兴军,杨涛,王晶,雷明凯.溶胶-凝胶法制备SiO_2基片Er~(3+):Al_2O_3光学薄膜.光学学报,2004, 24:397-400
    
    [73]王兴军,王辉,陈涛,雷明凯.Er离子注入Al_2O_3光波导薄膜发光特性研究.中国激光,2004,31: 323-325
    
    [74]王兴军,杨涛,雷明凯.溶胶.凝胶法制备掺Er~(3+):Al_2O_3/SiO_2光波导薄膜.中国激光,2004,31: 465-467
    
    [75]王兴军,曹保胜,雷明凯.Sol-gel法制备Er~(3+)-Yb~(3+)共掺杂Al_2O_3粉末光致发光特性.光子学报, 2004,33:935-938
    
    [76]杨涛,王兴军,王辉,雷明凯.掺Er~(3+)勃姆石凝胶高温烧结相变.无机材料学报,2004,19: 671-675
    
    [77] T. Yang, H. Wang, M. K. Lei. Phase transition of the Er~(3+)-doped Al_2O_3 powders prepared by thenon-aqueous sol-gel method. Materials Chemistry and Physics, 2006, 95: 211-217
    
    [78] C. Strohhofera, S. Capecchia, J. Ficka, A. Martuccib, G. Brusatinb, M. Guglielmib. Active opticalproperties of erbium-doped GeO_2-based sol-gel planar waveguides. Thin Solid Films, 1998, 326:99-105
    
    [79] A.Q. Le Quang, I. Ledoux J. Zyss, V.G. Truong, A.-M. Jurdyc, B. Jacquier, D.H. Le, A. Gibaud. Anhybrid organic-inorganic approach to erbium-functionalized nanodots for emission in the telecomwindow. Chemical Physics, 2005, 318: 33-43
    
    [80] Y. Y. Chen, W. Cheng, J. Wei. Formation of mullite thin film via a sol-gel process withpolyvinylpyrrolidone additive. Journal of the European Ceramic Society, 2001, 21: 2535-2540
    
    [81] B. Guo, Z. Liu, L. Hong. Sol gel derived photocatalytic porous TiO_2 thin films. Surface and CoatingsTechnology, 2005,198: 24-29
    
    [82] G. Orcel, L. L. Hench, I. Artaki, J. Jonas, T. W. Zerda. Effect of formamide additive on the chemistryof silica sol-gels II. Gel structure. Journal of Non-Crystalline Solids, 1988, 105: 223-231
    
    [83] N. Uchida, N. Ishiyama, Z. Kato. Chemical effects of DCCA to the sol-gel reaction process. Journalof Materials Science, 1994, 29: 5188-5192
    
    [84] A. V. Rao, H. M. Sakhare, A. K. Tamahankar. Influence of N,N-dimethylformamide additive on thephysical properties of citric acid catalyzed TEOS silica aerogels. Materials Chemistry and Physics,1999,60:268-273
    
    [85] U. Janosovits, Gunter Ziegler, U. Scharf, A. Wokaun. Structural characterization of intermediatespecies during synthesis of Al_2O_3-aerogels. Journal of Non-Crystalline Solids, 1997,210: 1-13
    
    [86] C. Stocker, A. Baiker. Zirconia aerogels: effect of acid-to-alkoxide ratio, alcoholic solvent andsupercritical drying method on structural properties. Journal of Non-Crystalline Solids, 1998, 223:165-178
    
    [87] C.T. Wang, C.L. Wu, C. Chen, Y.H. Huang. Humidity sensors based on silica nanoparticle aerogelthin films. Sensors and Actuators B: Chemical, 2005, 107: 402-410
    
    [88] P. Sepulveda, J.G.P. Binner. Processing of Cellular Ceramics by Foaming and in situ Polymerisationof Organic 1999,19: 2059-2066
    
    [89] A.P. Minardi, O. Marty, C. Bovier. Optical and structureal analysis of Eu~(3+)-doped alumina plamarwaveguides elaborated by the sol-gel process. Optical Materials, 2001, 16: 9-13
    
    [90] P. K. Arcot, J. Luo. Solution-based synthesis of oxide thin films via a layer-by-layer depositionmethod: Feasibility and phenomenological film growth model. Surface & Coationgs Technology,2008, 202: 2690-2697
    
    [91] R. Drasovean, R. Monteiro, E. Fortunato, V. Musat. Optical properties of cobalt oxide films by adipping sol-gel process. Journal of Non-Crystalline Solids, 2006, 352: 1479-1485
    
    [92] C. K. Loong, J. W. Richardson, M. Ozawa. Structural phase transformation of rare-earth modifiedtransition alumina to corundum. Journal of Alloys and Compounds, 1997,250: 356-359
    
    [93] K. Okada, A. Hattori, Y. Kameshima, A. Yasumori. Concentration effect of Cs~+ additive on theγ-Al_2O_3 to α-Al_2O_3 phase transition. Materials Letters, 2000, 42: 175-178
    
    [94] P.A. Tanner, K.L. Wong, Y. Liang. Multiple phase production on doping Er~(3+) into α-Al_2O_3.Chemical Physics Letters, 2004, 399: 15-19
    
    [95] R. S. Zhou, R. L. Snyder. Structures and transformation mechanisms of the η, γ and θ transitionalumina. Acta Crystallographica, 1991,47:617-630
    
    [96] I. Levin, L. A. Bendersyk, D. G. Brandon, M. Buhle. Cubic to monoclinic phase transformations inalumina. Acta Materialia, 1997,45: 3659-3669
    
    [97]尹衍升,张景德.氧化铝陶瓷及其复合材料:化学工业出版社,2001
    
    [98] H. Ennen, J. Wagner, H. D. Muller, R. S. Smith. Photoluminescence excitation measurements onGaAs: Er grown by molecular-beam epitaxy. Journal of Applied Physics, 1987, 61: 4877-4879
    
    [99] Y. S. Tang, K. C. Heasman, W. P. Gillin, B. J. Sealy. Characteristics of rare-earth element erbiumimplanted in silicon. Applied Physics Letters, 1989, 55: 432-433
    
    [100]S. Y. Ren, J. D. Dow. Crystal-field splitting of Er~(3+) in Si. Journal of Applied Physics, 1997, 81:1877-1882
    
    [101]E. Alves, M. F. da Silva, G. N. van den Hoven, A. Polman, A. A. Melo, J. C. Soares. Incorporationand stability of erbium in sapphire by ion implantation. Nuclear Instruments and Methods in PhysicsReserchB, 1995, 106: 429-432
    
    [102]N. V. Gaponenko. Synthesis and optical properties of films formed by the sol-gel method inmesoporous matrices Journal of Applied Spectroscopy, 2002, 69: 1 -20
    
    [103]A. J. Kenyon. Recent developments in rare-earth doped materials for optoelectronics Progress inQuantum Electronics, 2002, 26: 225-284
    
    [104]G. N. van den Hoven, R. J. 1. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit.Net optical gain at 1.53 μm in Er-doped Al_2O_3 waveguides on silicon. Applied Physics Letters, 1996,68: 1886-1888
    
    [105]N. V. Gaponenko, A. V. Mudryi, O. V. Sergeev, V. E. Borisenko, E. A. Stepanova, A. S. Baran, A. I.Rat'ko, J. C. Pivin, J. F. McGilp. Erbium luminescence in sol-gel derived oxide glass filmsSpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1998, 54: 2177-2182
    
    [106]T. Ishizaka, R. Nozaki, Y. Kurokawa. Luminescence properties of Tb~(3+) and Eu~(3+)-doped alumina filmsprepared by sol-gel method under various conditions and sensitized luminescence Journal of Physicsand Chemistry of Solids, 2002, 63: 613-617
    
    [107]N. Rakov, E. Francisco, Ramos, G. Hirata, M.F. Xiao. Strong photoluminescence andcathodoluminescence due to f-f transitions in Eu~(3+) doped Al_2O_3 powders prepared by directcombustion synthesis and thin films deposited by laser ablation. Applied Physics Letters, 2003, 83:272-274
    
    [108]G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, M. K. Smit.Photoluminescence characterization of Er-implanted Al_2O_3 films. Applied Physics Letters, 1993, 62:3065-3067
    
    [109]R. Serna, M. Jimenez de Castro, J. A. Chaos, C. N. Afonso, I. Vickridge. The role of Er~(3+) -Er~(3 +)separation on the luminescence of Er-doped Al_2O_3 films prepared by pulsed laser deposition. AppliedPhysics Letters, 1999, 75: 4073-4075
    
    [110]C. Verdozzi, D. R. Jennison, P. A. Schultz, M. P. Sears, J. C. Barbour, B. G. Potter. UnusualStructural Relaxation for Rare-Earth Impurities in Sapphire: Ab Initio Study of Lanthanum. PhysicalReview Letters, 1998, 80: 5615-5618
    
    [111]A. A. Kaplyanski, A. B. Kulinkin, A. B. Kutsenko, S. P. Feofilov, R. I. Zakharchenya, T. N.Vasilevskaya. Optical spectra of triply-charged rare-earth ions in polycrystalline corundum. Physicsof the Solid State, 1998, 40: 1310-1317
    
    [112]J. H. Lee, S. C. Choi, D. S. Bae, K. S. Han. Synthesis and microstructure of silica-doped aluminacomposite membrane by sol-gel process. Journal of Materials Science letter, 1999, 18: 1367-1369
    
    [113] J. Laegsgaard. Dissolution of rare-earth clusters in SiO_2 by Al codoping: A microscopic model.Physics Review B, 2002, 65: 174114
    
    [114] A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, J. Obriot, S.J.L. Ribeiro, Y. Messaddeq,A. Chiasera, M. Ferrari. Clustering of rare earth in glasses, aluminum effect: experiments andmodeling. Journal of Non-Crystalline Solids, 2004, 348:44-50
    
    [115]B.R. Judd. Operator Techniques in Atomic Spectroscopy. New York: MiGraw-Hill Inc, 1963
    
    [116]B.R. Judd. Optical Absorption Intensities of Rare-Earth Ions. Physics Review, 1962, 127: 750-761
    
    [117]G.S. Ofelt. Intensities of Crystal Spectra of Rare-Earth Ions. Journal of Chemical Physics, 1962, 37:511-520
    
    [118]M. Ishii, Y. Komukai. Theoretical prediction of local distortion in an ErO_6 cluster: Stabilization of aC_(4v) structure by a rack and pinion effect. Applied Physics Letters, 2001, 79: 934-936
    
    [119]S. Tanaabe, T. Ohyagi, N. Soga, T. Hanada. Compositional dependence of Judd-Ofelt parameters ofEr~(3+) ions in alkali-metal borate glasses. Physics Review B, 1992, 46: 3305-3310
    
    [120] Alain de Ryck, David Quere. Gravity and Inertia Effects in Plate Coating. Journal of Colloid andInterface Science, 1998, 203: 278-285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700