用户名: 密码: 验证码:
基于蒸渗仪的夏玉米耗水特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究针对华北地区夏玉米生产与水资源紧张的矛盾,使用24台称重式蒸渗仪研究了华北地区夏玉米的耗水特征,比较了不同株型和密度间夏玉米耗水特征的差异,同时建立了夏玉米叶面积指数与作物系数的关系方程,并分析了气象因素与夏玉米日耗水量的相关性。主要研究结果如下:
     1.夏玉米全生育期总耗水量410.6mm,吐丝期至灌浆中期耗水量占总耗水量的38.7%,吐丝前和吐丝后耗水量比值大致为46:54,8月耗水量占全生育期耗水量的45.2%。玉米每5日耗水量平均为19.9mm。日耗水量变化呈单峰曲线,峰值出现在吐丝至灌浆中期,达6.6mm d-1,日耗水量昼:夜比为18:1。玉米日耗水速率变化表现为每日6:00开始增加,高峰出现在12:30-13:00,之后日耗水速率下降,持续约30-45分钟后,日耗水速率出现短时间(15-30分钟)小幅回升,15:00以后耗水速率保持下降趋势,18:00以后耗水速率逐渐趋于平稳,18:00至次日6:00耗水速率波动较小。
     2.与小株型夏玉米(CF1002)相比,大株型夏玉米(CF3330)总耗水量高28.5mm,月耗水量平均高出5.6mm,5日耗水量平均高出1.3mm,8月两种株型夏玉米月耗水量相差12.9mm,吐丝-灌浆中期两种株型夏玉米耗水量差距最大,达14.7mm,吐丝后两种株型玉米耗水量相差18.2mm,大株型夏玉米全生育期在耗水速率高峰期(12:30-13:00)耗水速率均高于小株型夏玉米,吐丝至灌浆中期,高峰期(12:30-13:00)耗水速率大株型夏玉米较小株型夏玉米高16.9%。
     3.密度由6株m-2增加到8株m-2使总耗水量增加55.0mm,月耗水量增加10.9mm,5日耗水量平均增加3.6mm。8月不同密度间夏玉米耗水量相差30.8mm,大喇叭口至吐丝期,两个密度夏玉米阶段耗水量、日耗水量的差异均达最大值,两个密度夏玉米高峰期(12:30-13:00)耗水速率差值也达到最大。
     4.玉米叶面积指数的变化呈单峰曲线,大喇叭口至吐丝期,叶面积每增加1m2,大株型夏玉米耗水量上升77.2mm,小株型夏玉米耗水量上升89.2mm,高密度条件夏玉米耗水量上升84.8mm,低密度条件夏玉米耗水量上升81.6mm。在生育前期13时-14时,玉米光合速率和耗水速率均呈下降趋势,在生育后期13时-14时两种株型玉米光合速率下降,耗水速率上升,高密度条件下夏玉米光合速率和耗水速率增加,低密度条件下夏玉米光合速率和耗水速率下降。大株型夏玉米较小株型夏玉米具有较高的产量潜力和水分利用效率,同一株型玉米低密度条件下水分利用效率更高。
     5.Priestley-Taylor方程适用于计算本地区参考作物蒸散量,本地区作物系数(Kc)为1.00,初期阶段,发育阶段,中期阶段和后期阶段的作物系数分别为0.40,1.03,1.30和1.13。气象因素对不同株型夏玉米日耗水量的促进或抑制效果受到密度的影响。增密导致辐射对日耗水量的促进效果下降,使降水和日均湿度对日耗水的抑制效果增强,不同株型夏玉米表现一致。
In this study, characteristics of water consumption of summer maize was measured by24weighing lysimeters in North China Plain (NCP), the comparison of maize water consumption characteristicsbetween two plant types and two densities was conducted simultaneously, the relationship between Leaf Area Index and crop coefficient was established by an equation, the correlativity of daily meteorological factors and daily water consumption was also analyzed. The main results showed:
     1. The amount of total water consumption of maize was410.6mm,38.7%of total water sonsumption was occupied during R1-R4, respectively, and45.2%of total water sonsumption was occupied in August. The ratio of water consumption of two periods partitioned by silking was46:54. The averaged amount of water consumption in five days was19.9mm. Daily water consumption presented an unimodal pattern, rised in a linear form from jointing stage to silking stage, arrived its peak at stage from silking to grain filling, which was6.6mm d-1. The ratio of water consumption between daytime and nighttime was18:1. The water consumption rate began to rise from6:00, and its apex appeared at12:30-13:00, and slightly rised again for half an hour after a decline lasting about two or three quarters, the downtrend of water consumption rate endured from15:00to18:00, then its fluctuation kept feeble till the6:00next day.
     2. Total water consumption of maize with big plant type was28.5mm more than the small type,5days water consumption of maize with big plant type was1.3mm more than the small plant type, the difference of monthly water consumption between two types averaged for5.6mm, its crest value occurred in August with a difference of12.9mm, similar to biggest difference of stage water consumption happened in stage from silking to mid filing, which was14.7mm. The discrepancies of water consumption between two plant types before and after silking stage was10.3mm and18.2mm, respectively. The summit time of water consumption rate appeared in12:30-13:00, maize with big plant type showed higher water consumption rate than the small type at the summit time through whole growth stage, and the higher propotion was16.9between two types at the stage from silking to mid-filling.
     3. Total water consumption increased by55.0mm in pace with the density rising from6plant m-2to8plant m-2, monthly water consumption and5-days water consumption increased by10.9mm and3.6mm, respectively. August was the month that biggest discrepancy of monthly water consumption between two densities occurred, with an amount of30.8mm, which is bigger than the discrepancy of stage water consumption between two densities occurred in stage from V12-VT, with an amount of20.6mm. The max discrepancy value of daily water consumption between two densities was1.20mm d-1at the stage from V13-VT, which was also the biggest difference of water consumption rate happened.
     4. The development of LAI was an unimodalcurve, during the period from V13to silking, water consumption rised77.2mm for maize with big plant type synchronized with each1m2of LAI enlargements well as89.2mm for maize with small plant type,84.8mm for maize under8plant m-2and84.8mm for maize under6plant m-2,respectively. At the time of13:00-14:00, photosynthsis rate and water consumption rate decreased for both plant types and densities before silking, however, photosynthsis rate descended while water consumption rate rised at the same time after silking, the two rates mentioned above rised under high plant density and decreased under low density. Compared to maize with small plant type, the big type exhibited a higher yield potential and water use efficiency, higher WUE appeared under lower density for same plant type.
     5. Local Crop coefficient was1.00, which calculated by the Priestley-Taylor equation resulted from its fine performance ofestimation on local reference evapotranspiration. Four crop coefficients of different periods according to the FAO classification was0.40,1.03,1.30and1.13, respectively. The impact of meteorologic factors on daily water consumption was influenced by density. Both two plant types showed concordant trend:increased density weakened the promotion of radiation on daily water consumption, also enhanced the inhibition of precipitation and daily humidity on daily water consumption.
引文
1. 虞海燕,刘树华,赵娜,等.1951—2009年中国不同区域气温和降水量变化特征[J].气象与环境学报,2011,27(4):1-11
    2. 孟素花,费宇红,张兆吉,等.50年来华北平原降水入渗补给量时空分布特征研究[J].地球科学进展,2013,28(8):923-929
    3. 章光新,邓伟,何岩.我国北方地下水危机与可持续农业的发展[J].干旱区地理,2004,27(3):437-441
    4. 张光辉,费宇红,刘春华,等.华北平原农灌用水强度与地下水承载力适应性状况[J].农业工程学报,2013,29(1):1-10
    5. 夏军,华北地区水循环与水资源安全:问题与挑战[J].地理科学进展,2002,21(6):517-526.
    6. 马宗晋,高庆华.中国第四纪气候变化和未来北方干旱灾害分析[J].第四纪研究,2004,24(3):245-251
    7. 李庆祥,刘小宁.近半世纪华北干旱化趋势研究[J].自然灾害学报,2002,11(3):50-56
    8. Anderson M C, Kustas W P, Norman J M, et al. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery[J]. Hydrology & Earth System Sciences,2011,15(1):223-239
    9. Djaman K, Irmak S. Actual Crop Evapotranspiration and Alfalfa-and Grass-Reference Crop Coefficients of Maize under Full and Limited Irrigation and Rainfed Conditions [J]. Journal of Irrigation and Drainage Engineering,2012,139(6):433-446
    10. Suyker A E, Verma S B. Interannual water vapor and energy exchange in an irrigated maize-based agroecosystem[J]. Agricultural and forest meteorology,2008,148(3):417-427
    11. Frank F C, Viglizzo E F. Water use in rain-fed farming at different scales in the Pampas of Argentina[J]. Agricultural Systems,2012,109:35-42
    12. Nagore M L, Echarte L, Andrade F H, et al. Crop evapotranspiration in Argentinean maize hybrids released in different decades[J]. Field Crops Research,2014,155:23-29
    13.孟凯,张兴义.东北北部黑土区玉米耗水特征的分析[J].玉米科学,1996,4(3):66-67
    14.张莹,孙占祥,李爽,等.辽西半干早区玉米/大豆单间作田间耗水规律研究[J].干旱地区农业研究,2010(5):43-46
    15. Kang S, Gu B, Du T, et al. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region[J]. Agricultural Water Management,2003,59(3): 239-254
    16.晋凡生,刘凤鸣.旱塬地玉米耗水特点及提高水分利用率途径[J].华北农学报,2000,15(1):76-80
    17.陈奇恩,萧复兴,晋凡生,等.晋中旱地玉米耗水规律及农田水分平衡研究[J].华北农学报,1991,6(4):94-99
    18.张铜会,赵哈林,赵学勇,等.科尔沁沙地玉米耗水规律初探[J].中国沙漠,1999,19(1): 137-139
    19.李玉霖,张铜会.科尔沁沙地农田玉米耗水规律研究[J].中国沙漠,2002,22(4):354-358
    20.冯良山,孙占祥,曹敏建,等.科尔沁沙地南缘地区主要作物耗水规律及水分利用评价[J].作物杂志,2010,4(5):4-10
    21.苏培玺,杜明武.荒漠绿洲主要作物及不同种植方式需水规律研究[J].干旱地区农业研究,2002,20(2):79-85
    22. Liu C, Zhang X, Zhang Y. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter[J]. Agricultural and Forest Meteorology,2002,111(2):109-120
    23.任鸿瑞,罗毅.鲁西北平原冬小麦和夏玉米耗水量的实验研究[J].灌溉排水学报,2004,23(4):37-39
    24.郭长城,刘孟雨,陈素英,等.太行山山前平原农田耗水影响因素与水分利用效率提高的途径[J].中国生态农业学报,2004,12(3):55-58
    25.陈博,欧阳竹,程维新,等.近50a华北平原冬小麦-夏玉米耗水规律研究[J].自然资源学报,2012,27(7):1186-1199
    26.王健,刘红英.利用Penman-Monteith法和蒸发皿法计算农田蒸散量的研究[J].干旱地区农业研究,2002,20(4):67-71
    27.刘恩民,张代桥,刘万章,等.鲁西北平原农田耗水规律与测定方法比较[J].水科学进展,2009,20(2):190-196
    28.曹云者,宇振荣,赵同科.夏玉米需水及耗水规律的研究[J].华北农学报,2003,18(2):47-50
    29.孙景生,肖俊夫.夏玉米耗水规律及水分胁迫对其生长发育和产量的影响[J].玉米科学,1999,7(2):45-48
    30.吴锦奎,丁永建,王根绪.干旱区制种玉米农田蒸散研究[J].灌溉排水学报,2007,26(1):14-17
    31.肖俊夫,刘战东,陈玉民.中国玉米需水量与需水规律研究[J].玉米科学,2008,16(4):21-25
    32.孙宏勇,张喜英.用Micro-Lysimeters和大型蒸渗仪测定夏玉米蒸散的研究[J].干旱地区农业研究,2002,20(4):72-75
    33. Shahrokhnia M H, Sepaskhah A R. Single and dual crop coefficients and crop evapotranspiration for wheat and maize in a semi-arid region [J]. Theoretical and Applied Climatology,2013, 114(3-4):495-510
    34.杨晓光,刘海隆,王玉林,等.华北平原夏玉米农田生态系统蒸散规律研究[J].中国生态农业学报,2003,11(4):66-68
    35.王宇,周广胜.雨养玉米农田生态系统的蒸散特征及其作物系数[J].应用生态学报,2010(3):647-653
    36. Tyagi N K, Sharma D K, Luthra S K. Determination of evapotranspiration and crop coefficients of rice and sunflower with lysimeter[J]. Agricultural Water Management,2000,45(1):41-54
    37. Burn, L.J., Kanemasu, E.T., Power, W.L. Evapotranspiration from soybean and sorghum field [J].Agron.J.1972,64:145-148
    38. Kristensen K. J. Actual evapotranspiration in relation to leaf area [J]. Nordic Hydrology,1974, 5(3):173-182
    39. Ritchie J T, Burnett E. Dryland evaporative flux in a subhumid climate:Ⅱ. Plant influences [J]. Agronomy Journal,1971,63(1):56-62.
    40. Childs S W., Gilley J R., Splinter W E. A simplified model of corn growth under moisture stress [J]. Trans of the ASAE,1977,20(5):858-870
    41. Belmans C, Wesseling J G, Feddes R A. Simulation model of the water balance of a cropped soil: SWATRE [J]. Journal of Hydrology,1983,63(3):271-286.
    42.李玮,陈根发,刘家宏,等.黑龙港地区夏玉米生长期综合ET试验研究[J].干旱地区农业研究,2011,29(5):128-132
    43. Al-Kaisi M, Brun L J, Enz J W. Transpiration and evapotranspiration from maize as related to leaf area index[J]. Agricultural and Forest Meteorology,1989,48(1):111-116
    44.刘昌明,张喜英,由懋正.大型蒸渗仪和小型棵间蒸发器结合测定冬小麦蒸散的研究[L].水利学报,1998,10:36-39
    45.赵娜娜,刘钰,蔡甲冰.夏玉米生育期叶面蒸腾与棵间蒸发比例试验研究[J].灌溉排水学报,2009,28(2):5-8
    46.东先旺,张道玉,陈维新.夏玉米超高产群体水分蒸腾指标的研究[J].玉米科学,2001,9(1):74-77
    47.唐霞,崔建垣,赵学勇,等.科尔沁沙地玉米叶面蒸腾与棵间蒸发特性[J].草业科学,2011,28(5):788-792
    48.张海林,秦耀东.覆盖免耕夏玉米耗水特性的研究[J].农业工程学报,2002,18(2):3640
    49.李全起,房全孝,陈雨海,等.底墒差异对夏玉米耗水特性及产量的影响[J].农业工程学报,2004,20(2):93-96
    50.王罕博,龚道枝,梅旭荣,等.覆膜和露地旱作春玉米生长与蒸散动态比较[J].农业工程学报,2012,28(22):88-94
    51. Hickman G C, Vanloocke A, Dohleman F G, et al. A comparison of canopy evapotranspiration for maize and two perennial grasses identified as potential bioenergy crops [J]. Gcb Bioenergy, 2010,2(4):157-168
    52. Rana G, Katerji N. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate:a review[J]. European Journal of Agronomy,2000,13(2):125-153
    53. Kool D, Agam N, Lazarovitch N, et al. A review of approaches for evapotranspiration partitioning [J]. Agricultural and Forest Meteorology,2014,184:56-70
    54. Thornthwaite C W, Holzman B. The determination of evaporation from land and water surfaces[J]. Monthly Weather Review,1939,67(1):4-11
    55. Bowen I S. The ratio of heat losses by conduction and by evaporation from any water surface [J]. Physical Review,1926,27(6):779.
    56. Brutsaert, W. Evaporation into the Atmosphere:Theory, History and Appli-cations [D]. 1982.Reidel Publishing, Dordrecht, the Netherlands
    57. Swinbank W C. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere[J]. Journal of Meteorology,1951,8(3):135-145
    58. Itier B, Brunet Y. Recent developments and present trends in evaporation research:a partial survey[C]//Evapotranspiration and irrigation scheduling Proc Int Conf, San Antonio, Texas. ASCE.1996:1-20
    59. Baldocchi D, Falge E, Gu L, et al. FLUXNET:A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J]. Bulletin of the American Meteorological Society,2001,82(11):2415-2434
    60. Suyker A E, Verma S B. Evapotranspiration of irrigated and rainfed maize-soybean cropping systems[J]. Agricultural and Forest Meteorology,2009,149(3):443-452
    61. Wilson K, Goldstein A, Falge E, et al. Energy balance closure at FLUXNET sites[J]. Agricultural and Forest Meteorology,2002,113(1):223-243
    62. Wolf A, Saliendra N, Akshalov K, et al. Effects of different eddy covariance correction schemes on energy balance closure and comparisons with the modified Bowen ratio system[J]. Agricultural and Forest Meteorology,2008,148(6):942-952
    63. Grant D R. Comparison of evaporation measurements using different methods[J]. Quarterly Journal of the Royal Meteorological Society,1975,101(429):543-550
    64. Tang J, Bolstad P V, Ewers B E, et al. Sap flux-upscaled canopy transpiration, stomatal conductance, and water use efficiency in an old growth forest in the Great Lakes region of the United States [J]. Journal of Geophysical Research:Biogeosciences, (2005-2012),2006, 111(G2).
    65. Denmead O T, Dunin F X, Wong S C, et al. Measuring water use efficiency of Eucalypt trees with chambers and micrometeorological techniques[J]. Journal of Hydrology,1993,150(2): 649-664.
    66. Yang Y, Shang S, Jiang L. Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China[J]. Agricultural and Forest Meteorology,2012,164:112-122
    67. Kimura R, Bai L, Fan J, et al. Evapo-transpiration estimation over the river basin of the Loess Plateau of China based on remote sensing[J]. Journal of Arid Environments,2007,68(1):53-65
    68. Zhang W, Chen J, Ogawa K, et al. An approach to estimating evapotranspiration in the Urumqi River basin, Tianshan, China, by means of remote sensing and a geographical information system technique[J]. Hydrological Processes,2005,19(9):1839-1854
    69. Kustas W P, Norman J M, Anderson M C, et al. Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiomerric temperature relationship [J]. Remote Sensing of Environment,2003,85(4):429-440
    70. Philip J R. Plant water relations:some physical aspects [J]. Annual Review of Plant Physiology, 1966,17(1):245-268
    71. Flerchinger G N, Hanson C L, Wight J R. Modeling evapotranspiration and surface energy budgets across a watershed [J]. Water Resources Research,1996,32(8):2539-2548
    72. Gusev Y M, Nasonova O N. Modelling annual dynamics of soil water storage for agro-and natural ecosystems of the steppe and forest-steppe zones on a local scale [J]. Agricultural and Forest Meteorology,1997,85(3):171-191
    73. Scott R, Entekhabi D, Koster R, et al. Timescales of land surface evapotranspiration response [J]. Journal of Climate,1997,10(4):559-566
    74. Kim C P, Entekhabi D. Impact of soil heterogeneity in a mixed-layer model of the planetary boundary layer[J]. Hydrological Sciences Journal,1998,43(4):633-658
    75. Young M H, Wierenga P J, Mancino C F. Large weighing lysimeters for water use and deep percolation studies [J]. Soil Science,1996,161(8):491-501
    76.刘士平,杨建锋,李宝庆,等.新型蒸渗仪及其在农田水文过程研究中的应用[J].水利学报,2000,3:29-36
    77.陈家宙,何圆球,陈明亮.用大型Lysimeter和TDR测算赣东北红壤农田的渗漏量[J].水十保持学报,2002,16(1):88-91
    78.刘波,姜彤,翟建青,等.新型蒸渗仪及其对陆面实际蒸散发过程的观测研究[J].气象,2010,36(3):112-116
    79. Yang J, Li B, Shiping L. A large weighing lysimeter for evapotranspiration and soil-water-groundwater exchange studies[J]. Hydrological Processes,2000,14(10):1887-1897
    80. Lopez-Urrea R, Martin de Santa Olalla F, Fabeiro C, et al. Testing evapotranspiration equations using lysimeter observations in a semiarid climate[J]. Agricultural Water Management,2006, 85(1):15-26
    81. Liu Y, Luo Y. A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain [J]. Agricultural Water Management,2010,97(1):31-40.
    82. Ding R, Kang S, Li F, et al. Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China [J]. Agricultural Water Management,2010,98(1): 87-95
    83. Colaizzi P D, Evett S R, Howell T A, et al. Two-source energy balance model:Refinements and lysimeter tests in the Southern High Plains [J]. Transactions of the ASABE,2012,55(2):551-562
    84. Penman H L. Natural evaporation from open water, bare soil and grass [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1948,193(1032): 120-145
    85. Penman H.L.13th International Horticulture Congress Report,1953,2:913-924
    86. Monteith J L. Evaporation and environment [A]. Proceedings of the 19th Symposium of the Society for Experimental Biology[C]. Cambridge University Press, Cambridge,1965:205-234.
    87. Shuttleworth W J. A one-dimensional theoretical description of the vegetation-atmosphere interaction [J]. Boundary-Layer Meteorology,1976,10(3):273-302
    88. Waggoner P E, Reifsnyder W E. Simulation of the temperature, humidity and evaporation profiles in a leaf canopy [J]. Journal of Applied Meteorology,1968,7(3):400-409
    89. Farahani H J, Bausch W C. Performance of evapotranspiration models for maize—bare soil to closed canopy [J]. Transactions of the ASAE,1995,38(4):1049-1059
    90. Shuttleworth W J. A simplified one-dimensional theoretical description of the vegetation-atmosphere interaction [J]. Boundary-Layer Meteorology,1978,14(1):3-27
    91.贾红,胡继超,张佳宝,等.应用Shuttleworth-Wallace模型对夏玉米农田蒸散的估计[J].灌溉排水学报,2008,27(4):77-80
    92. Kustas W P, Schmugge T J, Hipps L E. On using mixed-layer transport parameterizations with radiometric surface temperature for computing regional scale sensible heat flux [J]. Boundary-Layer Meteorology,1996,80(3):205-221
    93. Kim C P, Entekhabi D. Impact of soil heterogeneity in a mixed-layer model of the planetary boundary layer [J]. Hydrological Sciences Journal,1998,43(4):633-658
    94. Jensen M E, Burman R D, Allen R G. Evapotranspiration and irrigation water requirements[C]. ASCE,1990
    95. Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large-scale parameters [J]. Monthly Weather Review,1972,100(2):81-92
    96. Anothai J, Soler C M T, Green A, et al. Evaluation of two evapotranspiration approaches simulated with the CSM-CERES-Maize model under different irrigation strategies and the impact on maize growth, development and soil moisture content for semi-arid conditions[J]. Agricultural and Forest Meteorology,2013,176:64-76
    97. Utset A, Farre I, Martinez-Cob A, et al. Comparing Penman-Monteith and Priestley-Taylor approaches as reference-evapotranspiration inputs for modeling maize water-use under Mediterranean conditions[J]. Agricultural Water Management,2004,66(3):205-219
    98. Doorenbos J, Pruitt W O. Crop water requirements. FAO irrigation and drainage paper 24[J]. Land and Water Development Division, FAO. Rome,1977
    99. Blaney H F. Determining water requirements in irrigated areas from climatological and irrigation data [R]. US Department of Agriculture, Soil Conservation Service,1950:48
    100. Hargreaves G H, Samani Z A. Reference crop evapotranspiration from ambient air temperature [J]. Applied Engineering in Agriculture,1985,1:96-99
    101. Allen R G. Assessing integrity of weather data for reference evapotranspiration estimation [J]. Journal of Irrigation and Drainage Engineering,1996,122(2):97-106
    102. Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[J]. FAO, Rome,1998,300:6541
    103. Lopez-Urrea R, Martin de Santa Olalla F, Fabeiro C, et al. Testing evapotranspiration equations using lysimeter observations in a semiarid climate[J]. Agricultural Water Management,2006, 85(1):15-26
    104. Doorenbos J, Kassam A H. Yield response to water [M].1979
    105. Allen R G, Pereira L S, Smith M, et al. FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions [J]. Journal of Irrigation and Drainage Engineering,2005,131(1):2-13
    106. Liu Y, Luo Y. A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain [J]. Agricultural Water Management,2010,97(1):31-40.
    107. Zhao N, Liu Y, Cai J, et al. Dual crop coefficient modelling applied to the winter wheat-summer maize crop sequence in North China Plain:basal crop coefficients and soil evaporation component [J]. Agricultural Water Management,2013,117:93-105
    108.刘晓英,李玉中,王庆锁.几种基于温度的参考作物蒸散量计算方法的评价[J].农业工程学报,2006,22(6):12-18
    109. Jacobs J M, Satti S R. Evaluation of reference evapotranspiration methodologies and AFSIRS crop water use simulation model [M]. University of Florida, Department of Civil and Coastal Engineering, Gainesville, Florida.2001
    110.封志明,杨艳昭,任晓强,等.甘肃地区参考作物蒸散量时空变化研究[J]农业工程学报,2004,20(1):99--103
    111.孙景生,康绍忠.夏玉米田蒸散的计算[J].中国农业气象,1995,16(5):1-7
    112.王春乙,郭建平,于修兰,等.CO2浓度增加对C3,C4作物生理特性影响的实验研究[J].作物学报,2000,26(6):813-817
    113. Kaur H, Jalota S K, Kan war R, et al. Climate change impacts on yield, evapotranspiration and nitrogen uptake in irrigated maize (Zea mays)-wheat (Triticum aestivum) cropping system:a simulation analysis[J]. Indian Journal of Agricultural Sciences,2012,82
    114. Hussain M Z, VanLoocke A, Siebers M H, et al. Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize [J]. Global Change Biology,2013,19(5):1572-1584
    115. Anda A, Burucs Z, Loke Z, et al. Effects of hail on evapotranspiration and plant temperature of maize [J]. Journal of Agronomy and Crop Science,2002,188(5):335-341
    116. Hickman G C, Vanloocke A, Dohleman F G, et al. A comparison of canopy evapotranspiration for maize and two perennial grasses identified as potential bioenergy crops [J]. Global Change Biology Bioenergy,2010,2(4):157-168
    117. Alberto M C R, Quilty J R, Buresh R J, et al. Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation[J]. Agricultural Water Management,2014,136:1-12
    118. Zhang C, Yan H, Shi H, et al. Study of crop coefficient and the ratio of soil evaporation to evapotranspiration in an irrigated maize field in an arid area of Yellow River Basin in China [J]. Meteorology and Atmospheric Physics,2013,121(3-4):207-214
    119.东先旺,张道玉,陈维新.夏玉米超高产群体水分蒸腾指标的研究[J].玉米科学,2001,9(1):74-77
    120. Zhang X, Chen S, Sun H, et al. Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades [J]. Agricultural Water Management,2011,98(6): 1097-1104
    121. Li S, Kang S, Li F, et al. Evapotranspiration and crop coefficient of spring maize with plastic mulch using eddy covariance in northwest China [J]. Agricultural Water Management,2008, 95(11):1214-1222
    122. Ding R, Kang S, Li F, et al. Evapotranspiration measurement and estimation using modified Priestley-Taylor model in an irrigated maize field with mulching [J]. Agricultural and Forest Meteorology,2013,168:140-148
    123. Zhou L M, Li F M, Jin S L, et al. How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China [J]. Field Crops Research,2009,113(1):41-47
    124. Mann C C. Crop scientists seek a new revolution [J]. Science,1999,283(5400):310-314.
    125. Almeida M L, Sangoi L. Aumento da densidade de plantas de milho para regioes de curta estacao estival de crescimento [J]. Pesquisa Agropecuaria Gaucha, Porto Alegre,1996,2(2):179-183
    126. Tetio-Kagho F, Gardner F P. Responses of maize to plant population density. I. Canopy development, light relationships, and vegetative growth [J]. Agronomy Journal,1988,80(6): 930-935
    127. Gardiol J M, Serio LA, Della Maggiora A I. Modelling evapotranspiration of corn (Zea mays) under different plant densities [J]. Journal of Hydrology,2003,271(1):188-196
    128.刘战东,肖俊夫,于景春,等.春玉米品种和种植密度对植株性状和耗水特性的影响[J].农业工程学报,2012,28(11):125-131
    129.窦超银,于秀琴,于景春.控制灌溉条件下种植密度对玉米中地77生长和耗水的影响[J].干旱地区农业研究,2013,31(2):141-145
    130. Watanabe K, Yamamoto T, Yamada T, et al. Changes in seasonal evapotranspiration, soil water content, and crop coefficients in sugarcane, cassava, and maize fields in Northeast Thailand[J]. Agricultural Water Management,2004,67(2):133-143
    131. Piccinni G, Ko J, Marek T, et al. Determination of growth-stage-specific crop coefficients (Kc) of maize and sorghum[J]. Agricultural Water Management,2009,96(12):1698-1704
    132. Herbst M, Kappen L, Thamm F, et al. Simultaneous measurements of transpiration, soil evaporation and total evaporation in a maize field in northern Germany [J]. Journal of Experimental Botany,1996,47(12):1957-1962
    133. Karam F, Breidy J, Stephan C, et al. Evapotranspiration, yield and water use efficiency of drip irrigated corn in the Bekaa Valley of Lebanon [J]. Agricultural Water Management,2003,63(2): 125-137
    134. Howell T.A., Steiner J.L., Schneider A.D., et al.Seasonal and maximum daily evapotranspiration of irrigated winter wheat, sorghum, and corn:Southern High Plains [J]. Transaction of the ASAE, 1997,40:623-634
    135. Ritchie J T, Burnett E. Dryland evaporative flux in a subhumid climate:Ⅱ. Plant influences [J]. Agronomy Journal,1971a,63(1):56-62
    136. KJ K. Actual evapotranspiration in relation to leaf area [J]. Nordic Hydrology,1974,5(3): 173-182
    137. Condon A G, Richards R A, Rebetzke G J, et al. Improving intrinsic water-use efficiency and crop yield[J]. Crop Science,2002,42(1):122-131
    138.吕丽华,陶洪斌,夏来坤,等.不同种植密度下的夏玉米冠层结构及光合特性[J].作物学报,2008,34(3):447-455
    139.董树亭,胡昌浩,岳寿松,等.夏玉米群体光合速率特性及其与冠层结构,生态条件的关系[J].植物生态学与地植物学学报,1992,16(4):372-379
    140. Kalt-Torres W, Kerr P S, Usuda H, et al. Diurnal changes in maize leaf photosynthesis I. Carbon exchange rate, assimilate export rate, and enzyme activities [J]. Plant Physiology,1987,83(2): 283-288
    141. Leakey A D B, Bernacchi C J, Dohleman F G, et al. Will photosynthesis of maize (zea mays) in the US corn-belt increase in future [CO2] rich atmospheres? An analysis of diurnal courses of CO2 uptake under free-air concentration enrichment (face)[J]. Global Change Biology,2004, 10(6):951-962
    142. Gharsallah O, Facchi A, Gandolfi C. Comparison of six evapotranspiration models for a surface irrigated maize agro-ecosystem in Northern Italy [J]. Agricultural Water Management,2013,130: 119-130
    143.纪瑞鹏,班显秀,张淑杰.辽宁地区玉米作物系数的确定[J].中国农学通报,2004,20(3):246-248
    144.陈凤,蔡焕杰,王健,等.杨凌地区冬小麦和夏玉米蒸发蒸腾和作物系数的确定[J].农业工程学报,2006,22(5):191-193
    145. Ritchie J T. Dryland evaporative flux in a subhumid climate:Ⅰ. Micrometeorological influences [J]. Agronomy Journal,1971,63(1):51-55
    146.曾燕,邱新法,刘昌明,等.1960-2000年中国蒸发皿蒸发量的气候变化特征[J].水科学进展,2007,18(3):311-318
    147. Hupet F, Vanclooster M. Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration [J]. Journal of Hydrology,2001,243(3):192-204
    148. Iones P D, Wigley T M L, Wright P B. Global temperature variations between 1861 and 1984[J]. The Warming Papers:The Scientific Foundation for the Climate Change Forecast,2013:208
    149. Brutsaert W, Parlange M B. Hydrologic cycle explains the evaporation paradox [J]. Nature,1998, 396:30
    150.邱新法,刘昌明,曾燕.黄河流域近40年蒸发皿蒸发量的气候变化特征[J].自然资源学报,2003,18(4):437442
    151.李林,张国胜,汪青春,等.黄河上游流域蒸散量及其影响因子研究(?)[J].地球科学进展,2000,15(3):256-259
    152.刘昌明,张丹.中国地表潜在蒸散发敏感性的时空变化特征分析[J].地理学报,2011,66(5):579-588

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700