用户名: 密码: 验证码:
基于挤压模式的磁流变液悬置及发动机隔振控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发动机是一种被广泛使用的热能动力机械,其运行时产生的振动是运载器(汽车、船舶、飞机等)的主要振源之一。发动机运行时会产生宽频、多振源和多主频的振动,这不但会影响机载设备的正常工作,而且会降低乘坐舒适性,对周围的环境造成滋扰,严重时还会造成人员财产的损害。采用悬置系统能够有效地降低发动机振动能量向运载器的传播,目前发动机一般采用橡胶悬置或液压悬置,难以满足宽频隔振的要求,基于磁流变液的半主动悬置得到了广泛的研究。本文以某四缸直列柴油发动机为研究对象,探讨了挤压模式磁流变液悬置的力学特性及磁路设计,对发动机隔振系统进行了仿真,研究基于PID和仿人智能控制方法,并在发动机振动台架上进行试验,具体如下:
     ①针对发动机振动位移较小的特点,设计制造了挤压模式的发动机磁流变液悬置,推导出挤压下的径向速度分布、压力分布和剪切应力,确定了牛顿流动区和宾汉流动区的分界面,计算了随着外加电流变化的圆盘挤压力的数学表达式。利用MTS8701电液伺服激振控制台进行了测试,得出的试验阻尼力与理论阻尼力基本相符合。
     ②对四缸直列柴油发动机激振力及其力矩进行了分析,得出引起发动机振动的主要激振是二阶惯性力和倾覆力矩,并对激励力的大小进行了估算。根据拉格朗日方程建立了发动机磁流变液悬置隔振系统的二自由度动力学模型,分析了频率比和阻尼比对力传递率的影响,并估算了系统刚度的范围。
     ③仿人智能控制的主导思想就是在对人的控制结构宏观规模的基础上进一步研究人的控制行为功能并加以模拟。考虑到发动机在运行过程中产生的垂直方向振动和绕输出轴的倾覆力矩设计了PID控制方法和仿人智能控制方法,并进行了仿真,仿真表明了仿人智能控制有较好的隔振效果。
     ④利用重庆交通大学的发动机测试平台搭建了基于磁流变液悬置的发动机振动隔离测试及控制系统,利用NI的CompactRIO(紧凑型可重配置的输入输出)嵌入式实时控制器,设计了发动机振动控制的数据采集和实时控制程序。在不同工况下,对发动机进行整机试验。对基于磁流变悬置仿人智能控制后的数据进行了处理和分析,并和被动的橡胶悬置和PID控制的试验结果进行了对比分析,在低频和高频部分,仿人智能控制有着较好的隔振性能。
Engine is a widely used thermal power machinery, the vibration of which is one of the main vibration source of vehicle(cars, ships, aircraft, etc.). Engine has a wide frequency, multi-sources and multi main frequency vibration when it runs. It not only affect normal work of equipments and instruments on the vehicles, but also decrease riding comfort, and have a serious effect on surrounding environment, and even cause serious property and lives damage. Mounting system can reduce the energy to the launch vehicle transmitted from the engine. The rubber mount and hydraulic mount are used generally at present, which can not meet the isolation requirements in a wider frequency range. So the semi-active mount based magnetorheological fluid(MRF) is studied extensively. A four-cylinder in-line diesel engine is taken to study in this paper; mechanical model and magenetic circuit design of MRF mount is discussed; the engine vibration isolation system is simulated; the PID and human-simulated intelligent control(HSIC) methods are studied; and the test is carried out on the engine vibration bench. The specific work is as followed:
     ①For small displacement of engine vibration, a kind of MRF mount based on the model of disk squeeze is designed and produced. Navier slip condition and boundary compatible condition are established, radial velocity and radial pressure distribution of different location under extrusion are derived. The interface between Newtonian flow area and Bingham flow area is determined, the mathematical expression of stress between two disks changed with the current was calculated. The experimental damping force is in accordance with the theoretical value under the test on MTS870 Electro-hydraulic servo excitation console.
     ②The exciting force and torque of the four-cylinder in-line diesel engine are analyzed. So the main vibration exciting sources of engine are second order reciprocating inertia force and overturning moment, and the force of the incentives is estimated. According to Lagrange equation, the two freedom degrees dynamic model of engine vibration isolation system based MRF mount. Influence of force transmission rate by frequency ratio and damping is analyzed, and the range of stiffness is estimated.
     ③The dominant ideology of HSIC is to study and simulate human control functions based on control structure macro-scale on human. For vertical vibration and overturning around the output shaft, the PID and HSIC methods are designed and simulated. It shows that the HSIC has a good isolation effect.
     ④The engine vibration isolation test and control system is built using the engine test platform in Chongqing jiaotong university. Using CompactRIO (reconfigurable compact input and output ) embedded real-time controller of NI Company, the data acquisition and real-time control programs are compiled. Vibration isolation control of engine is carried out in different conditions and then the data of PID and HSIC based on MRF mount is analyzed and processed. The results show that the HSIC has good isolation performance in the low and high frequency.
引文
[1]王曦.内燃机整机振动主动控制中模糊控制方法的研究[D].江苏:江苏大学硕士论文,2003.
    [2]朱石坚,何琳.船舶机械振动控制[M].北京:国防工业出版社,2006.
    [3]邹华.航空发动机振动试验技术及试验测试系统软件的研发[D] .陕西:西北工业大学硕士论文,2006.
    [4]王立公.轿车动力总成液压悬置隔振降噪技术的理论和应用研究[D].吉林:吉林工业大学博士论文,1996.
    [5]梁天也,史文库,唐明祥.发动机悬置研究综述[J].噪声与振动控制,2007,1:6-7.
    [6]季晓刚.汽车动力总成悬置研究的发展[J].汽车科技,2004,1:4-6.
    [7] Brochure[EB/01].http://www.loggers.nl/brochure.html.2005.3.
    [8] Y.H. Yu, N.G. Naganathan, R.V. Dukkipati. A literature review of automotive vehicle engine mounting systems[J]. Mechanism and Machine Theory,2001,36:123-142
    [9]张新刚.磁流变阻尼器在结构振动控制中的应用研究[D].哈尔滨:哈尔滨工程大学硕士论文,2004.
    [10] Ping Lee. Elastomeric Engine Mount with Hydraulic Damping[P]. The U.S.A. Patent,No.4915365,1935.
    [11] Corcoran P.E., Ticks G.H. Hydraulic Engine Mount Characteristics[C]. SAE Paper,840407,1984.
    [12] Shoureshi R, Graf P L, LiHouston T. Adaptive engine mounts[C].SAE paper,860549,1986.
    [13]季晓刚.汽车动力总成悬置研究的发展[J].汽车科技,2004,1:4-6.
    [14]范让林,吕振华.三代液阻悬置非线性动特性的试验研究及其参数识别方法[J].机械工程学报,2006,42(5):174-181.
    [15]叶向好.汽车发动机动力总成悬置系统隔振性能的优化设计研究[D].浙江:浙江大学硕士论文,2005.
    [16] M.Michael, W.S.Thomas. Methods for the reduction of the reduction of noise and vibration in vehicles using an appropriate engine mount system[J]. SAE Paper, 942414,1994.
    [17] N.K.Petek. Actively Controlled Damping Engine Mounts[C]. The U.S.A.: SAE Paper, 881785, 1988 .
    [18]李美艳,张少华.电流变隔振器工作特性的理论分析[J].中国机械工程, 2002,13(17):20-22.
    [19]姜波,史文库,梁天也.电流变液发动机悬置建模及模糊半主动控制仿真研究[J].噪声与振动控制,2009,1:81-89.
    [20] J.D.Carlson, M.J.Chrzan, F.O.James. Magneto-rheological fluid devices[P]. US Patent, No.5398917, 1995.
    [21] J.D.Carlson, M R. Jolly. MR fluid elastomer and foam devices[J].Mechatronics, 2000,10(2):555-569
    [22] D.F.Goncalves, J.H.Koo and M.Ahmadian. A Review of the State of the Art in Magnetorheological Fluid Technologies-Part I: MR Fluid and MR Fluid Models[J].The Shock and Vibration Digest,2006,38(3):203-319.
    [23]郑坚,熊超等.磁流变液研究进展及其在军事领域应用综述[J].军械工程学院学报,2004,16(1):6-10.
    [24] S.R.Hong,S.B.Choi,Vibration Control of a Structural System Using Magneto-Rheological Fluid Mount[J].Journal of Intelligent Material System and Structures,2005,16(111-12):931-936.
    [25]裘揆,陈乐生,陈大跃.力隔振试验系统的结构设计和性能分析[J].机械工程学报,2007,43(2):168-172.
    [26]李锐,陈伟民,廖昌荣.发动机磁流变悬置隔振模糊控制与仿真[J].系统仿真学报,2009,21(4):944-953.
    [27] G.Y.Zhou.Complex shear modulus of a magnetorheological elastomer[J]. Smart Materialsand Structures,2004,13:1203-1210.
    [28] J.M.Ginder,M.E.Nichols,L.D.Elie,er,al.Magnetorheological elastomers: properties and applicati -ons[C].Proceedings of the SPIE-The Internation Society for Optical Engineering. Smart Materic -als Technologies,1999,3675:131-138.
    [29] Stuart Birch. Vibration [J].The U.S.A.: Automotive Engineering,1988,2:56-60.
    [30] Michael Muller.Engine Mount and NVH[J].The U.S.A.: Automotive Engineering,1994,7:19-23.
    [31] Toshiyuki shibayama, Kimio Ito, Toshiyuki Gami,etal. Active Engine Mount for a LargeAmplitude of Idling Vibration[C]. SAE Paper,951298,1995.
    [32]史文库,郑瑞清.主动控制电致伸缩液压悬置隔振特性仿真[J].吉林大学学报(工学版),2005,35(2):117-121.
    [33]史文库,蔡俊.主动控制式电磁液压悬置隔振性能研究[J].噪声与振动控制,2006,(6):1-5.
    [34]李维嘉,曹青松.船舶振动主动控制的研究进展与评述[J],中国造船, Vo.l48(No.2):2007.6.
    [35] D.C.Karnopp.Active Damping in Road Vehicle Suspension System[J]. Vehicle System Dynamics,1983, 12:291-298.
    [36] S.B.Choi and H.J.Song.Vibration Control of a Passenger Vehicle Utilizing a Semi-activeER engine mount[J]. Vehicle System Dynamics.2002,37(3):193-216.
    [37] S.J.Elliott,C.C.Boucher and P.A.Nelson, The behavior of a amultiple channel active control system[J]. IEEE Transactions on Signal Processing,1992,40(5):1041-1052.
    [38] Y.W.Lee and C.W.Lee.Dynamic andalysis and control of an active engine mount system[J]. Proc.IMechE Part D:J.Automobile Engineering,2002,216:313-320.
    [39]刘志刚.柴油机振动自适应有源隔离技术研究[D].黑龙江:哈尔滨工程大学博士论文,2000.
    [40]张军.发动机振动及半主动控制技术研究[D].太原:华北工学院硕士论文,2002.
    [41] S.B.Choi,Y.T.Choi and C.C.Cheong.Performance evaluations of a mixed mode ER enginemount via hardware-in-the-loop simulation[J].Journal of Inelligent Material systems and Structures,1999,10(8):671-677.
    [42]郝志勇,付鲁华.内燃机整机振动部分施控系统理论与试验研究[J].内燃机学报,2002,18(3):230-234.
    [43]李锐,陈伟民,廖昌荣,等.基于磁流变技术的发动机隔振控制[J].机械工程学报,2009,45(3):183-190.
    [44]王向阳.内燃机振动主动控制的应用研究[D].江苏:江苏大学硕士论文,2003.
    [45] X.Feng, C.F.Lin,T.J.Yu,et al.Intelligent Control Design and Simulation Using Neural Networks[C].AIAA Guidance,Navigation and Control Conference. A Collection of TechnicalPapers, Part I, New Orleans, LA, August 11-13,1997:294-299.
    [46] J.D.Fadly, M.Wahyudi, W.F.Faris. Active Vibration Isolation Controller Using Ectended Minimal Resource Allocation Neural Network[C]. Proceedings of the International Conference on Computer and Communication Engineering, May 13-15,2008 Kuala Lumpur, Malaysia.2008:47-51.
    [47]王曦,朱建新,张德庆等.神经网络在内燃机整机振动主动控制中的应用研究[J].车用发动机,2003,(1):44-45.
    [48]华春雷,靳晓雄,蔺玉辉.汽车发动机振动主动控制试验研究[J].振动、测试与诊断,2008,28(3):294-305.
    [49]董小闵.汽车磁流变半主动悬架仿人智能控制研究[D].重庆:重庆大学博士论文,2006.
    [50]廖昌荣.汽车悬架系统磁流变阻尼器研究[D].重庆:重庆大学博士论文,2001.
    [51]王家楣,张志宏.流体力学[M].辽宁:大连海事大学出版社.2002.
    [52]朱克勤,葛蓉.圆盘间的电流变液挤压流[J].清华大学学报,1999,39(8):80-83.
    [53]杨士普.电流变液平行圆盘挤压流的理论分析[D].北京:清华大学,2005.
    [54] Singiresu S.Rao著,李欣业,张明路编译.机械振动[M].北京:北京清华大学出版社,2009.
    [55]李祖枢,涂亚庆.仿人智能控制[M].北京:国防工业出版,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700