用户名: 密码: 验证码:
猪链球菌2型omp40基因功能研究及MRP与猪脑组织互作蛋白的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪链球菌(Streptococcus suis)是一种革兰氏阳性、溶血性兼性厌氧的球菌。可引起猪脑膜炎、关节炎、心内膜炎、支气管炎、多发性浆膜炎、脑炎、流产、败血症、脓肿及猝死;致人败血症、心内膜炎、脑膜炎,感染后遗症包括失聪和关节炎,严重的致人死亡,是一种重要的人畜共患病病原。根据其荚膜多糖抗原性的差异,分为33个血清型(1-31,33,1/2)。其中,2型(Streptococcus suis type2, SS2)是毒力最强、危害最严重、流行最广泛的血清型之一。1998年和2005年分别在我国江苏和四川暴发大规模SS2感染猪和人的公共卫生事件,临床上有高比例的病人出现中毒性休克综合征(STSS),对养猪业及公共卫生均构成严重威胁,使得猪链球菌感染的相关研究受到高度关注。
     尽管致病微生物的致病机理各不相同,但是大部分致病菌致病都是利用粘附和侵袭机制穿透宿主细胞屏障,从而逃避机体清除机制。定植是病原菌致病力的关键,在细菌感染并引起疾病的早期发挥重要作用。病原菌的粘附能力是细菌成功定植的关键,黏附素是病原茵重要的毒力因子。链球菌的黏附素分为两大类,其中一类是MSCRAMMS (microbial surface cell recognition adhesion matrix molecule),能够粘附细胞外基质蛋白(ECM)以及细胞相关的整合素。这类黏附素一般是细胞壁锚定蛋白,含有LPXTG基序。已知的SS2LPXTG锚定蛋白并不多,omp40和MRP在结构上均属于此类蛋白。本研究以SS2可能的毒力因子omp40和MRP为研究对象,通过Western affinity blot、基因缺失系统以及基因芯片研究了omp40在SS2致病中的作用。构建了猪脑组织cDNA文库,用酵母双杂交技术筛选MRP互作的宿主蛋白,以期更深入的了解MRP致病机制。
     1猪链球菌2型omp40基因的分布及克隆表达
     omp40基因是通过抑制性差减杂交(Suppression Subtractive Hybridization, SSH)方法鉴定的SS2可能的毒力基因,尚待深入研究。本文对omp40基因进行序列分析,克隆表达,并检测其在31株猪链球菌中的分布情况,以期进一步阐明其在SS2致病过程中的作用。结果显示:omp40开放阅读框为3000bp,编码1000aa,含有锚定基序LYXTG。Western blot证实其编码细菌胞壁蛋白。BLAST结果显示该蛋白与金黄色葡萄球菌的胶原蛋白结合蛋白Cna有共同的保守区域。在31株SS2菌株中,除了无毒株T15omp40PCR检测为阴性外,其他从病猪体内分离到的菌株均为阳性,而SS1、 SS7、SS9、SS10、SS11、SS12均为阴性。配体印迹结合实验显示,omp40蛋白能与人胶原蛋白I型结合,提示omp40在SS2的致病过程中可能发挥重要作用。
     2omp40基因缺失株、互补株的构建及特性分析
     为了进一步研究omp40基因在SS2致病过程中的作用,利用温度敏感型穿梭自杀质粒pSET4s定点敲除SS2ZY05719的omp40基因,构建了omp40基因缺失株△omp40,并通过穿梭载体pSET2构建互补株C△omp40。比较了各菌株在细胞粘附、生物被膜形成能力、毒力以及胶原蛋白粘附能力的差异。试验结果显示,缺失株和互补株具有较好的遗传稳定性,缺失株对HEp-2细胞粘附能力下降30%,生物被膜形成能力是野毒株的0.65倍,在斑马鱼的感染模型中,毒力下降了4倍,对人胶原蛋白I型的粘附显著下降,这些数据表明omp40与SS2的致病性相关。
     3猪链球菌2型OMP40介导感染小鼠脑微血管内皮细胞研究
     为了更好的了解OMP40在SS2感染过程中的作用,以小鼠脑微血管内皮细胞为研究模型,将SS2菌株ZY05719以及OMP缺失株分别与小鼠脑微血管内皮细胞共孵育,Trizol处理后小鼠全基因组表达谱芯片(Roche NimbleGen)分析。结果显示,两组不同处理的细胞中有30个基因的表达出现了差异,对这些基因分析显示,这些基因分属于多种功能范畴,包括免疫反应,炎症反应、信号转导等。其中,在omp40基因的存在下,部分趋化因子以及炎症因子的上调使得中性粒细胞趋化,内皮细胞通透性增加,利于细菌透过血脑屏障,表明omp40基因在SS2引发脑膜炎中起到了一定的作用。
     4猪链球菌2型纤连蛋白及胶原蛋白结合蛋白的筛选
     纤连蛋白及胶原蛋白是宿主体内的生物大分子,细胞外基质(ECM)的重要组成部分,是病原菌粘附作用的底物。将2-DE gels, Western affinity blot以及MS相结合,对SS2纤连蛋白及胶原蛋白结合蛋白进行筛选。结果显示:共有8个Collagen结合蛋白及15个Fn结合蛋白在转印后的PVDF膜上被鉴定出来。其中,有7个蛋白能够同时结合Collagen及Fn蛋白。SS2纤连蛋白及胶原蛋白结合蛋白的筛选为进一步研究SS2与宿主互作机制奠定了基础。
     5MRP与猪脑组织互作蛋白的筛选
     分离纯化猪脑组织mRNA,以5’端生物素标记的Oligo (dT) primer为引物反转录后连接3种读码框的Adapter,层析柱分级纯化,通过BP重组反应分别构建3种读码框的cDNA入门文库,平均滴度为1.662×106CFU/mL,文库总容量为6.648×106CFU,平均插入片段>1kb,重组率为94%。将3种读码框的cDNA入门文库扩增后提取质粒,取等量的质粒通过LR重组反应将入门文库转换为三框表达文库,经测定滴度为1.78×106CFU/mL,文库总容量为7.12×107CFU,重组率为92%,平均插入片段>1kb。结果表明所构建的三框cDNA表达文库具有较高的重组率和库容量,为进一步酵母双杂交筛选与SS2毒力因子MRP互作的宿主蛋白奠定基础。
     溶茵酶释放蛋白(Muramidase-released protein, MRP)是SS2重要的毒力因子。利用泛素分离酵母双杂交系统,以MRP为诱饵蛋白从猪脑组织cDNA文库中筛选MRP的互作蛋白,探索MRP在SS2致病中的作用。经过诱饵构建、自激活验证、背景及文库筛选等一系列筛选步骤,得到两个与MRP相互作用的阳性克隆,两个基因分别与紧密连接蛋白5(Homo sapiens claudin5,NM_001130861)和突触泡蛋白(Homo sapiens VAMP (vesicle-associated membrane protein)-associated protein A,BC002992)基因高度同源。
Streptococcus suis is an important swine pathogen that causes many pathological conditions, such as arthritis, endocarditis, meningitis, pneumonia, and septicemia. It is also an important zoonotic agent for humans. A total of33capsular types have been identified. There are many differences in virulence between different strains. Among them, the serotype2has always been considered the most virulent and the most frequently isolated serotype from diseased animals.
     Microbial pathogenicity is a complex phenomenon encompassing diverse mechanisms. There are, however, several common strategies that pathogenic organisms use to sustain themselves and overcome host barriers, one of them being the firm adhesion of the microorganism to host cells. Colonization is crucial to pathogenesis of bacteria, being the earliest stage during onset of the disease and the ability to adhere to host surfaces is by far the most vital step in the successful colonization by microbial pathogens. Streptococcal adhesions fall into two major binding categories. One large group of adhesions is the so-called MSCRAMMs (microbial surface cell recognition adhesion matrix molecule) that bind to extracellular matrix proteins and to cell-associated integrins. Many MSCRAMMs are cell wall-anchored LPxTG proteins. omp40and MRP belong to this protein in structural. In this study, Western affinity blot and gene knock out technology were used to explore the role of omp40in SS2pathogenesis. cDNA library was constructed using mRNA of swine brain. Screen the host protein interact with MRP using Y2H technology.
     1Distribution and expression of omp40gene of SS2
     omp40gene was identified using Suppression Subtractive Hybridization(SSH)in our previous study, whereas the role of omp40was not clear. Thus, the sequence and distribution of omp40in31different SS were analyzed, which contribute to study the pathogenic mechanism of omp40in SS2. The open reading frame (ORF) of omp40gene is3000bp, which encoded1000aa protein. Based on predicted protein features sharing same conserved domain with the collagen-binding protein Cna of Staphylococcus aureus, omp40is likely to function as a direct mediator of collagen adhesion. Western blotting using swine convalescent sera and omp40-specif\c antiserum confirmed its role as an immunogenic cell wall protein. Collagen binding activity can be detected by western affinity blot. Using PCR detect the distribution of the omp40in S.suis strains from different sources, serotypes, regions. The results showed that the omp40can only be found in SS2which were isolated from diseased pigs, which means this gene is related to the virulence.
     2. Construction and Characterization of omp40gene mutant strains and complementation strains in ZY05719
     To research the function of omp40gene, the isogenic omp40mutant (△.omp40) was constructed by allelic replacement using a temperature-sensitive S. suis-E. coli shuttle vector, pSET4s. Deletion of the omp40gene in SS2reduced its adhesion to collagen and Hep-2cells, capacity for biofilm formation, and its virulence in a zebrafish infection model. Our data suggest that omp40is involved in the pathogenesis of SS2.
     3. Microarray analysis of omp40-mediated bEnd.3infection
     To increase our knowledge of the mechanism of omp40in SS2infection, we profiled the response of bEnd.3to infection with SS2strain ZY05719and omp40-knockout strain using the Roche NimbleGen Porcine Genome Expression Array. Found omp40contributed to differential expression of30genes. Gene Ontology category and KEGG pathway were analyzed for relationships among differentially expressed genes. These genes were represented in a variety of functional categories, including genes involved in immune response, regulation of chemokine production, signal transduction and regulation of apoptosis. The data showed that omp40have an effect on SS2infection CNS.
     4. Identification of Collagen and Fibronectin-binding proteins of SS2
     Collagen and Fibronectin belong to ECM proteins and mediate bacteria adhesion to the host as substrates.2-DE gels, Western affinity blot and MS were combined to screen the Collagen and Fibronectin-binding proteins of SS2. The results showed that there were8Collagen-binding proteins and15Fn-binding proteins of SS2. Among them,7proteins showed the activity to bind Collagen and Fn simultaneously.
     5. Identification of proteins interaction between MRP and swine brain tissue
     Three-frame cDNA expression library was constructed using mRNA of brain tissue of swine. cDNA were synthesized using biotin-conjugated Oligo (dT) primer in the5'end. Double-strand cDNA was ligated to three-frame adapter and passed the cDNA Size Fractionation Columns. cDNA entry libraries were constructed by BP recombination. The libraries have a high titer of1.662×106CFU/mL, and contains a total clones of6.648×106CFU with an average inserts size of>1kb. The constructed cDNA expression library by LR recombination has a titer of1.78×106CFU/mL and contains total clones of7.12×106CFU, with an average inserts size of>1kb.
     MRP gene was directional cloned into pDHB1vector after the amplified PCR product and pDHB1vector were digested with sfi I, yielding the bait plasmid pDHBl-mrp. The library was screened by transformation into a yeast strain contains bait protein. After plasmid isolation, confirmations assay, sequencing, BLAST analysis, two positive target plasmid received from the swine brain cDNA library. One of these genes is identical to the Homo sapiens claudin5. The other showed homology to Homo sapiens VAMP (vesicle-associated membrane protein)-associated protein A.
引文
[1]Arends JP, Zanen HC. Meningitis caused by Streptococcus suis in humans. Rev Infect Dis,1988,10: 131-137.
    [2]Chanter N, Jones PW, Alexander TJ. Meningitis in pigs caused by Streptococcus suis-a speculative review. Vet Microbiol,1993,36:39-55.
    [3]Clifton-Hadley FA, Alexander TJ. The carrier site and carrier rate of Streptococcus suis type II in pigs. Vet Rec,1980,107:40-41.
    [4]Higgins R, Gottschalk M. Distribution of Streptococcus suis capsular types in 1999. Can Vet J,2000, 41:414.
    [5]Hynes WL, Walton SL. Hyaluronidases of Gram-positive bacteria. FEMS Microbiol Lett,2000,183: 201-207.
    [6]Yu H, Jing H, Chen Z, et al. Human Streptococcus suis outbreak, Sichuan, China. Emerg Infect Dis, 2006,12:914-920.
    [7]姚火春,陈国强,陆承平.猪链球菌1998分离株病原特性鉴定.南京农业大学学报,1999,22:67-70.
    [8]Tang J, Wang C, Feng Y, et al. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Med,2006,3:e151.
    [9]Staats JJ, Feder I, Okwumabua O, et al. Streptococcus suis:past and present. Vet Res Commun,1997, 21:381-407.
    [10]陆承平主编.兽医微生物学,2008.中国农业出版社.
    [11]Arends JP, Hartwig N, Rudolphy M, et al. Carrier rate of Streptococcus suis capsular type 2 in palatine tonsils of slaughtered pigs. J Clin Microbiol,1984,20:945-947.
    [12]Robertson ID, Blackmore DK. Prevalence of Streptococcus suis types 1 and 2 in domestic pigs in Australia and New Zealand. Vet Rec,1989,124:391-394.
    [13]Berthelot-Herault F, Marois C, Gottschalk M, et al. Genetic diversity of Streptococcus suis strains isolated from pigs and humans as revealed by pulsed-field gel electrophoresis. J Clin Microbiol,2002,40:615-619.
    [14]Smith HE, Veenbergen V, van der Velde J, et al. The cps genes of Streptococcus suis serotypes 1,2, and 9:development of rapid serotype-specific PCR assays. J Clin Microbiol,1999,37:3146-3152.
    [15]Windsor RS, Elliott SD. Streptococcal infection in young pigs. Ⅳ. An outbreak of streptococcal meningitis in weaned pigs. J Hyg (Lond),1975,75:69-78.
    [16]Clifton-Hadley FA. Studies of Streptococcus suis type 2 infection in pigs. Vet Res Commun,1984,8: 217-227.
    [17]Power SB. Streptococcus suis type 2 infection in pigs. Vet Rec,1978,102:215-216.
    [18]Sanford SE, Tilker ME. Streptococcus suis type II-associated diseases in swine:observations of a one-year study. J Am Vet Med Assoc,1982,181:673-676.
    [19]Sihvonen L, Kurl DN, Henrichsen J. Streptococcus suis isolated from pigs in Finland. Acta Vet Scand,1988,29:9-13.
    [20]Tarradas C, Luque I, de Andres D, et al. Epidemiological relationship of human and swine Streptococcus suis isolates. J Vet Med B Infect Dis Vet Public Health,2001,48:347-355.
    [21]Heidt MC, Mohamed W, Hain T, et al. Human infective endocarditis caused by Streptococcus suis serotype 2. J Clin Microbiol,2005,43:4898-4901.
    [22]Elliott SD, Tai JY. The type-specific polysaccharides of Streptococcus suis. J Exp Med,1978,148: 1699-1704.
    [23]Wibawan IW, Lammler C. Relation between encapsulation and various properties of Streptococcus suis. Zentralbl Veterinarmed B,1994,41:453-459.
    [24]Segers RP, Kenter T, de Haan LA, et al. Characterisation of the gene encoding suilysin from Streptococcus suis and expression in field strains. FEMS Microbiol Lett,1998,167:255-261.
    [25]Smith HE, Damman M, van der Velde J, et al. Identification and characterization of the cps locus of Streptococcus suis serotype 2:the capsule protects against phagocytosis and is an important virulence factor. Infect Immun,1999,67:1750-1756.
    [26]Charland N, Harel J, Kobisch M, et al. Streptococcus suis serotype 2 mutants deficient in capsular expression. Microbiology,1998,144 (Pt 2):325-332.
    [27]Vecht U, Wisselink HJ, Jellema ML, et al. Identification of two proteins associated with virulence of Streptococcus suis type 2. Infect Immun,1991,59:3156-3162.
    [28]Smith HE, Vecht U, Gielkens AL, et al. Cloning and nucleotide sequence of the gene encoding the 136-kilodalton surface protein (muramidase-released protein) of Streptococcus suis type 2. Infect Immun,1992,60:2361-2367.
    [29]曾巧英,陆承平.猪链球菌2型溶菌酶释放蛋白诱导上皮细胞融合和凋亡.微生物学报,2003,43:407-412.
    [30]范红结,陆承平.表达猪源链球菌类M-MRP融合蛋白基因工程菌的构建及免疫保护试验.农业生物技术学报,2006,14:22-26.
    [31]Smith HE, Vecht U, Wisselink HJ, et al. Mutants of Streptococcus suis types 1 and 2 impaired in expression of muramidase-released protein and extracellular protein induce disease in newborn germfree pigs. Infect Immun,1996,64:4409-4412.
    [32]Smith HE, Reek FH, Vecht U, et al. Repeats in an extracellular protein of weakly pathogenic strains of Streptococcus suis type 2 are absent in pathogenic strains. Infect Immun,1993,61:3318-3326.
    [33]King SJ, Heath PJ, Luque I, et al. Distribution and genetic diversity of suilysin in Streptococcus suis isolated from different diseases of pigs and characterization of the genetic basis of suilysin absence. Infect Immun,2001,69:7572-7582.
    [34]Gottschalk MG, Lacouture S, Dubreuil JD. Characterization of Streptococcus suis capsular type 2 haemolysin.Microbiology,1995,141 (Pt 1):189-195.
    [35]Gottschalk M, Lebrun A, Jacques M, et al. Hemagglutination properties of Streptococcus suis. J Clin Microbiol,1990,28:2156-2158.
    [36]Jacobs AA, Loeffen PL, van den Berg AJ, et al. Identification, purification, and characterization of a thiol-activated hemolysin (suilysin) of Streptococcus suis. Infect Immun,1994,62:1742-1748.
    [37]Norton PM, Rolph C, Ward PN, et al. Epithelial invasion and cell lysis by virulent strains of Streptococcus suis is enhanced by the presence of suilysin. FEMS Immunol Med Microbiol,1999,26: 25-35.
    [38]Lalonde M, Segura M, Lacouture S, et al. Interactions between Streptococcus suis serotype 2 and different epithelial cell lines. Microbiology,2000,146 (Pt 8):1913-1921.
    [39]Jacobs AA, van den Berg AJ, Loeffen PL. Protection of experimentally infected pigs by suilysin, the thiol-activated haemolysin of Streptococcus suis. Vet Rec,1996,139:225-228.
    [40]Staats JJ PB, Stewart GC. Presence of the Streptococcus suis suilysin gene and expression of MRP and EF correlates with high virulence in Streptococcus suis type 2 isolates. Veterinary Microbio,1990,70:201-211.
    [41]Cunningham MW. Pathogenesis of group A streptococcal infections. Clin Microbiol Rev,2000,13: 470-511.
    [42]孙理云,范红结,陆承平.猪链球菌2型纤连蛋白/血纤蛋白原结合蛋白全基因的克隆及表达.农业生物技术学报,2005,6.
    [43]de Greeff A, Buys H, Verhaar R, et al. Contribution of fibronectin-binding protein to pathogenesis of Streptococcus suis serotype 2. Infect Immun,2002,70:1319-1325.
    [44]Okwumabua O, Persaud JS, Reddy PG. Cloning and characterization of the gene encoding the glutamate dehydrogenase of Streptococcus suis serotype 2. Clin Diagn Lab Immunol,2001,8: 251-257.
    [45]Gottschalk M, Lebrun A, Wisselink H, et al. Production of virulence-related proteins by Canadian strains of Streptococcus suis capsular type 2. Can J Vet Res,1998,62:75-79.
    [46]Benkirane R, Gottschalk MG, Dubreuil JD. Identification of a Streptococcus suis 60-kDa heat-shock protein using western blotting. FEMS Microbiol Lett,1997,153:379-385.
    [47]Pancholi V, Fischetti VA. A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med.1992,176: 415-426.
    [48]Lottenberg R, Broder CC, Boyle MD, et al. Cloning, sequence analysis, and expression in Escherichia coli of a streptococcal plasmin receptor. J Bacteriol,1992,174:5204-5210.
    [49]Gase K, Gase A, Schirmer H, et al. Cloning, sequencing and functional overexpression of the Streptococcus equisimilis H46A gapC gene encoding a glyceraldehyde-3-phosphate dehydrogenase that also functions as a plasmin(ogen)-binding protein. Purification and biochemical characterization of the protein. Eur J Biochem,1996,239:42-51.
    [50]Hughes MJ, Moore JC, Lane JD, et al. Identification of major outer surface proteins of Streptococcus agalactiae. Infect Immun,2002,70:1254-1259.
    [51]Quessy S, Busque P, Higgins R, et al. Description of an albumin binding activity for Streptococcus suis serotype 2. FEMS Microbiol Lett,1997,147:245-250.
    [52]Brassard J, Gottschalk M, Quessy S. Cloning and purification of the Streptococcus suis serotype 2 glyceraldehyde-3-phosphate dehydrogenase and its involvement as an adhesin. Vet Microbiol,2004,102:87-94.
    [53]Brassard J, Gottschalk M, Quessy S. Decrease of the adhesion of Streptococcus suis serotype 2 mutants to embryonic bovine tracheal cells and porcine tracheal rings. Can J Vet Res,2001,65: 156-160.
    [54]Smith HE, Buijs H, Wisselink HJ, et al. Selection of virulence-associated determinants of Streptococcus suis serotype 2 by in vivo complementation. Infect Immun,2001,69:1961-1966.
    [55]李干武,姚火春,陆承平.在猪链球菌2型江苏分离株中发现新的orf2毒力相关基因.农业生物技术学报,2003,11:295-298.
    [56]Chen C, Tang J, Dong W, et al. A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. PLoS One,2007,2:e315.
    [57]Holden MT, Hauser H, Sanders M, et al. Rapid evolution of virulence and drug resistance in the emerging zoonotic pathogen Streptococcus suis. PLoS One,2009,4:e6072.
    [58]Kendall MM, Sperandio V. Quorum sensing by enteric pathogens. Curr Opin Gastroenterol,2007,23: 10-15.
    [59]Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol,2001,55:165-199.
    [60]Wang Y, Zhang W, Wu Z, et al. Functional analysis of luxS in Streptococcus suis reveals a key role in biofilm formation and virulence. Vet Microbiol,2011,152:151-160.
    [61]Shibata Y, Kawada M, Nakano Y, et al. Identification and characterization of an autolysin-encoding gene of Streptococcus mutans. Infect Immun,2005,73:3512-3520.
    [62]Ju CX, Gu HW, Lu CP. Characterization and functional analysis of atl, a novel gene encoding autolysin in Streptococcus suis. J Bacteriol,2012,194:1464-1473.
    [63]de Greeff A, Buys H, van Alphen L, et al. Response regulator important in pathogenesis of Streptococcus suis serotype 2. Microb Pathog,2002,33:185-192.
    [64]Lyon WR, Gibson CM, Caparon MG. A role for trigger factor and an rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes. EMBO J.1998,17:6263-6275.
    [65]Sanders JW, Leenhouts K, Burghoorn J, et al. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol Microbiol,1998,27:299-310.
    [66]Sulavik MC, Tardif G, Clewell DB. Identification of a gene, rgg, which regulates expression of glucosyltransferase and influences the Spp phenotype of Streptococcus gordonii Challis. J Bacteriol,1992,174:3577-3586.
    [67]Zheng F, Ji H, Cao M, et al. Contribution of the Rgg transcription regulator to metabolism and virulence of Streptococcus suis serotype 2. Infect Immun,2011,79:1319-1328.
    [1]Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature,1989,340: 245-246.
    [2]Keegan L, Gill G, Ptashne M. Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. Science,1986,231:699-704.
    [3]Licitra EJ, Liu JO. A three-hybrid system for detecting small ligand-protein receptor interactions. Proc Natl Acad Sci U S A,1996,93:12817-12821.
    [4]Huang J, Schreiber SL. A yeast genetic system for selecting small molecule inhibitors of protein-protein interactions in nanodroplets. Proc Natl Acad Sci U S A,1997,94:13396-13401.
    [5]Serebriiskii I, Khazak V, Golemis EA. A two-hybrid dual bait system to discriminate specificity of protein interactions. J Biol Chem,1999,274:17080-17087.
    [6]Serebriiskii IG, Mitina O, Pugacheva EN, et al. Detection of peptides, proteins, and drugs that selectively interact with protein targets. Genome Res,2002,12:1785-1791.
    [7]Hirst M, Ho C, Sabourin L, et al. A two-hybrid system for transactivator bait proteins. Proc Natl Acad Sci U S A,2001,98:8726-8731.
    [8]Wafa LA, Cheng H, Rao MA, et al. Isolation and identification of L-dopa decarboxylase as a protein that binds to and enhances transcriptional activity of the androgen receptor using the repressed transactivator yeast two-hybrid system. Biochem J,2003,375:373-383.
    [9]Huang A, Ho CS, Ponzielli R, et al. Identification of a novel c-Myc protein interactor, JPO2, with transforming activity in medulloblastoma cells. Cancer Res,2005,65:5607-5619.
    [10]Joshi PB, Hirst M, Malcolm T, et al. Identification of protein interaction antagonists using the repressed transactivator two-hybrid system. Biotechniques,2007,42:635-644.
    [11]Marsolier MC, Prioleau MN, Sentenac A. A RNA polymerase Ⅲ-based two-hybrid system to study RNA polymerase Ⅱ transcriptional regulators. J Mol Biol,1997,268:243-249.
    [12]Petrascheck M, Castagna F, Barberis A. Two-hybrid selection assay to identify proteins interacting with polymerase II transcription factors and regulators. Biotechniques,2001,30:296-298,300,302.
    [13]Borg JP, Marchetto S, Le Bivic A, et al. ERBIN:a basolateral PDZ protein that interacts with the mammalian ERBB2/HER2 receptor. Nat Cell Biol,2000,2:407-414.
    [14]Sugita S, Hata Y, Sudhof TC. Distinct Ca(2+)-dependent properties of the first and second C2-domains of synaptotagmin I. J Biol Chem,1996,271:1262-1265.
    [15]Niethammer M, Kim E, Sheng M. Interaction between the C terminus of NMD A receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J Neurosci,1996,16:2157-2163.
    [16]Aronheim A, Engelberg D, Li N, et al. Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell,1994,78:949-961.
    [17]Broder YC, Katz S, Aronheim A. The ras recruitment system, a novel approach to the study of protein-protein interactions. Curr Biol,1998,8:1121-1124.
    [18]Hubsman M, Yudkovsky G, Aronheim A. A novel approach for the identification of protein-protein interaction with integral membrane proteins. Nucleic Acids Res,2001,29:E18.
    [19]Ehrhard KN, Jacoby JJ, Fu XY, et al. Use of G-protein fusions to monitor integral membrane protein-protein interactions in yeast. Nat Biotechnol,2000,18:1075-1079.
    [20]Johnsson N, Varshavsky A. Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci U S A,1994,91:10340-10344.
    [21]Wittke S, Lewke N, Muller S, et al. Probing the molecular environment of membrane proteins in vivo. Mol Biol Cell,1999,10:2519-2530.
    [22]Varshavsky A. The N-end rule pathway of protein degradation. Genes Cells,1997,2:13-28.
    [23]Laser H, Bongards C, Schuller J, et al. A new screen for protein interactions reveals that the Saccharomyces cerevisiae high mobility group proteins Nhp6A/B are involved in the regulation of the GAL1 promoter. Proc Natl Acad Sci U S A,2000,97:13732-13737.
    [24]Kerkmann K, Lehming N. Genome-wide expression analysis of a Saccharomyces cerevisiae strain deleted for the Tuplp-interacting protein Cdc73p. Curr Genet,2001,39:284-290.
    [25]Eckert JH, Johnsson N. PexlOp links the ubiquitin conjugating enzyme Pex4p to the protein import machinery of the peroxisome. J Cell Sci,2003,116:3623-3634.
    [26]Stagljar I, Korostensky C, Johnsson N, et al.A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci U S A,1998,95: 5187-5192.
    [27]Hooker BS, Bigelow DJ, Lin CT. Methods for mapping of interaction networks involving membrane proteins. Biochem Biophys Res Commun,2007,363:457-461.
    [28]Thaminy S, Auerbach D, Arnoldo A, et al. Identification of novel ErbB3-interacting factors using the split-ubiquitin membrane yeast two-hybrid system. Genome Res,2003,13:1744-1753.
    [29]Wang B, Pelletier J, Massaad MJ, et al. The yeast split-ubiquitin membrane protein two-hybrid screen identifies BAP31 as a regulator of the turnover of endoplasmic reticulum-associated protein tyrosine phosphatase-like B. Mol Cell Biol,2004,24:2767-2778.
    [30]Matsuda S, Giliberto L, Matsuda Y, et al. The familial dementia BRI2 gene binds the Alzheimer gene amyloid-beta precursor protein and inhibits amyloid-beta production. J Biol Chem,2005,280: 28912-28916.
    [31]Felkl M, Leube RE. Interaction assays in yeast and cultured cells confirm known and identify novel partners of the synaptic vesicle protein synaptophysin. Neuroscience,2008,156:344-352.
    [32]Pasch JC, Nickelsen J, Schunemann D. The yeast split-ubiquitin system to study chloroplast membrane protein interactions. Appl Microbiol Biotechnol,2005,69:440-447.
    [33]Miller JP, Lo RS, Ben-Hur A, et al. Large-scale identification of yeast integral membrane protein interactions. Proc Natl Acad Sci U S A,2005,102:12123-12128.
    [34]Mockli N, Deplazes A, Hassa PO, et al. Yeast split-ubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins. Biotechniques,2007,42:725-730.
    [35]Tafelmeyer P, Johnsson N, Johnsson K. Transforming a (beta/alpha)8--barrel enzyme into a split-protein sensor through directed evolution. Chem Biol,2004,11:681-689.
    [36]Urech DM, Lichtlen P, Barberis A. Cell growth selection system to detect extracellular and transmembrane protein interactions. Biochim Biophys Acta,2003,1622:117-127.
    [37]Pollock S, Kozlov G, Pelletier MF, et al. Specific interaction of ERp57 and calnexin determined by NMR spectroscopy and an ER two-hybrid system. EMBO J,2004,23:1020-1029.
    [38]Osborne MA, Zenner G, Lubinus M, et al. The inositol 5'-phosphatase SHIP binds to immunoreceptor signaling motifs and responds to high affinity IgE receptor aggregation. J Biol Chem,1996,271:29271-29278.
    [39]Fukada M, Kawachi H, Fujikawa A, et al. Yeast substrate-trapping system for isolating substrates of protein tyrosine phosphatases:Isolation of substrates for protein tyrosine phosphatase receptor type z. Methods,2005,35:54-63.
    [40]Guo D, Hazbun TR, Xu XJ, et al. A tethered catalysis, two-hybrid system to identify protein-protein interactions requiring post-translational modifications. Nat Biotechnol,2004,22:888-892.
    [41]Hamilton SR, Gerngross TU. Glycosylation engineering in yeast:the advent of fully humanized yeast Curr Opin Biotechnol,2007,18:387-392.
    [42]Ito T, Chiba T, Ozawa R, et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A,2001,98:4569-4574.
    [43]von Mering C, Krause R, Snel B, et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature,2002,417:399-403.
    [44]Fetchko M, Stagljar I. Application of the split-ubiquitin membrane yeast two-hybrid system to investigate membrane protein interactions. Methods,2004,32:349-362.
    [45]Jackson M, Song W, Liu MY, et al. Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. Nature,2001,410:89-93.
    [46]Tanaka H, Katoh H, Negishi M. Pragmin, a novel effector of Rnd2 GTPase, stimulates RhoA activity. J Biol Chem,2006,281:10355-10364.
    [47]Burklen TS, Hirschy A, Wallimann T. Brain-type creatine kinase BB-CK interacts with the Golgi Matrix Protein GM130 in early prophase. Mol Cell Biochem,2007,297:53-64.
    [48]Hornemann T, Kempa S, Himmel M, et al. Muscle-type creatine kinase interacts with central domains of the M-band proteins myomesin and M-protein. J Mol Biol,2003,332:877-887.
    [49]Day RN. Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy. Mol Endocrinol,1998,12:1410-1419.
    [50]Deane CM, Salwinski L, Xenarios I, et al. Protein interactions:two methods for assessment of the reliability of high throughput observations. Mol Cell Proteomics,2002,1:349-356.
    [1]Arends JP, Zanen HC. Meningitis caused by Streptococcus suis in humans. Rev Infect Dis,1988,10: 131-137.
    [2]Chanter N, Jones PW, Alexander TJ. Meningitis in pigs caused by Streptococcus suis--a speculative review. Vet Microbiol,1993,36:39-55.
    [3]Clifton-Hadley FA, Alexander TJ. The carrier site and carrier rate of Streptococcus suis type II in pigs. Vet Rec,1980,107:40-41.
    [4]Higgins R, Gottschalk M. Distribution of Streptococcus suis capsular types in 1999. Can Vet J,2000,41:414.
    [5]Hynes WL, Walton SL. Hyaluronidases of Gram-positive bacteria. FEMS Microbiol Lett,2000,183: 201-207.
    [6]Yu H, Jing H, Chen Z, et al. Human Streptococcus suis outbreak, Sichuan, China Emerg Infect Dis,2006,12:914-920.
    [7]姚火春,陈国强,陆承平.猪链球菌1998分离株病原特性鉴定.南京农业大学学报,1999,22:67-70.
    [8]Tang J, Wang C, Feng Y, et al. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Med,2006,3:e151.
    [9]Baums CG, Da Silva LM, Goethe R, et al. Occurrence and diagnostic relevance of virulence-associated factors in Streptococcus suis. Dtsch Tierarztl Wochenschr,2003,110:378-381.
    [10]Jiang H, Fan HJ, Lu CP. Identification and distribution of putative virulent genes in strains of Streptococcus suis serotype 2. Vet Microbiol,2009,133:309-316.
    [11]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976,72:248-254.
    [12]Winterhoff N, Goethe R, Gruening P, et al. Identification and characterization of two temperature-induced surface-associated proteins of Streptococcus suis with high homologies to members of the Arginine Deiminase system of Streptococcus pyogenes. J Bacteriol,2002,184: 6768-6776.
    [13]Wu Z, Zhang W, Lu C. Immunoproteomic assay of surface proteins of Streptococcus suis serotype 9. FEMS Immunol Med Microbiol,2008,53:52-59.
    [14]Finlay BB. Cell adhesion and invasion mechanisms in microbial pathogenesis. Curr Opin Cell Biol,1990,2:815-820.
    [15]Westerlund B, Korhonen TK. Bacterial proteins binding to the mammalian extracellular matrix. Mol Microbiol,1993,9:687-694.
    [16]Patti JM, Allen BL, McGavin MJ, et al. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol,1994,48:585-617.
    [17]Esgleas M, Lacouture S, Gottschalk M. Streptococcus suis serotype 2 binding to extracellular matrix proteins. FEMS Microbiol Lett,2005,244:33-40.
    [18]de Greeff A, Buys H, Verhaar R, et al. Contribution of fibronectin-binding protein to pathogenesis of Streptococcus suis serotype 2. Infect Immun,2002,70:1319-1325.
    [19]Jobin MC, Brassard J, Quessy S, et al. Acquisition of host plasmin activity by the Swine pathogen Streptococcus suis serotype 2. Infect Immun,2004,72:606-610.
    [20]Quessy S, Busque P, Higgins R, et al. Description of an albumin binding activity for Streptococcus suis serotype 2. FEMS Microbiol Lett,1997,147:245-250.
    [21]Ju CX, Gu HW, Lu CP. Characterization and Functional Analysis of atl, a Novel Gene Encoding Autolysin in Streptococcus suis. J Bacteriol,2012,194:1464-1473.
    [22]Patti JM, Jonsson H, Guss B, et al. Molecular characterization and expression of a gene encoding a Staphylococcus aureus collagen adhesin. J Biol Chem,1992,267:4766-4772.
    [23]Deivanayagam CC, Rich RL, Carson M, et al. Novel fold and assembly of the repetitive B region of the Staphylococcus aureus collagen-binding surface protein. Structure,2000,8:67-78.
    [24]Kim KI, Park SC, Kang SH, et al. Selective degradation of unfolded proteins by the self-compartmentalizing HtrA protease, a periplasmic heat shock protein in Escherichia coli. J Mol Biol,1999,294:1363-1374.
    [25]Baums CG, Kaim U, Fulde M, et al. Identification of a novel virulence determinant with serum opacification activity in Streptococcus suis. Infect Immun,2006,74:6154-6162.
    [26]Li Y, Gottschalk M, Esgleas M, et al. Immunization with recombinant Sao protein confers protection against Streptococcus suis infection. Clin Vaccine Immunol,2007,14:937-943.
    [1]Staats JJ, Feder I, Okwumabua O, et al. Streptococcus suis:past and present. Vet Res Commun,1997,21:381-407.
    [2]Higgins R, Gottschalk M. Distribution of Streptococcus suis capsular types in 1999. Can Vet J,2000,41:414.
    [3]Hynes WL, Walton SL. Hyaluronidases of Gram-positive bacteria. FEMS Microbiol Lett,2000,183: 201-207.
    [4]Baums CG, Da Silva LM, Goethe R, et al. Occurrence and diagnostic relevance of virulence-associated factors in Streptococcus suis. Dtsch Tierarztl Wochenschr,2003,110:378-381.
    [5]Benga L, Friedl P, Valentin-Weigand P. Adherence of Streptococcus suis to porcine endothelial cells. J Vet Med B Infect Dis Vet Public Health5 2005,52:392-395.
    [6]Gottschalk M, Segura M. The pathogenesis of the meningitis caused by Streptococcus suis:the unresolved questions. Vet Microbiol.2000,76:259-272.
    [7]Lalonde M, Segura M, Lacouture S, et al. Interactions between Streptococcus suis serotype 2 and different epithelial cell lines. Microbiology,2000,146 (Pt 8):1913-1921.
    [8]Norton PM, Rolph C, Ward PN, et al. Epithelial invasion and cell lysis by virulent strains of Streptococcus suis is enhanced by the presence of suilysin. FEMS Immunol Med Microbiol,1999,26: 25-35.
    [9]Vanier G, Segura M, Friedl P, et al. Invasion of porcine brain microvascular endothelial cells by Streptococcus suis serotype 2. Infect Immun,2004,72:1441-1449.
    [10]Westerlund B, Korhonen TK. Bacterial proteins binding to the mammalian extracellular matrix. Mol Microbiol,1993,9:687-694.
    [11]Patti JM, Allen BL, McGavin MJ, et al. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol,1994,48:585-617.
    [12]Esgleas M, Lacouture S, Gottschalk M. Streptococcus suis serotype 2 binding to extracellular matrix proteins. FEMS Microbiol Lett,2005,244:33-40.
    [13]Takamatsu D, Osaki M, Sekizaki T. Thermosensitive suicide vectors for gene replacement in Streptococcus suis. Plasmid,2001,46:140-148.
    [14]Takamatsu D, Osaki M, Sekizaki T. Construction and characterization of Streptococcus suis-Escherichia coli shuttle cloning vectors. Plasmid,2001,45:101-113.
    [15]Smith HE, Wisselink HJ, Vecht U, et al. High-efficiency transformation and gene inactivation in Streptococcus suis type 2. Microbiology,1995,141 (Pt 1):181-188.
    [16]Throup JP, Koretke KK, Bryant AP, et al. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol Microbiol,2000,35:566-576.
    [17]Bonifait L, Grignon L, Grenier D. Fibrinogen induces biofilm formation by Streptococcus suis and enhances its antibiotic resistance. Appl Environ Microbiol,2008,74:4969-4972.
    [18]Grenier D, Grignon L, Gottschalk M. Characterisation of biofilm formation by a Streptococcus suis meningitis isolate. Vet J,2009,179:292-295.
    [19]Waterhouse JC, Russell RR. Dispensable genes and foreign DNA in Streptococcus mutans. Microbiology,2006,152:1777-1788.
    [20]Reed LJ, Muench, H. A simple method of estimating fifty percent endpoints. American Journal of Hygeine,1938,27:493-497.
    [21]Tamura GS, Kuypers JM, Smith S, et al. Adherence of group B streptococci to cultured epithelial cells:roles of environmental factors and bacterial surface components. Infect Immun,1994,62: 2450-2458.
    [22]Finlay BB. Cell adhesion and invasion mechanisms in microbial pathogenesis. Curr Opin Cell Biol,1990,2:815-820.
    [23]de Greeff A, Buys H, Verhaar R, et al. Contribution of fibronectin-binding protein to pathogenesis of Streptococcus suis serotype 2. Infect Immun,2002,70:1319-1325.
    [24]Jobin MC, Brassard J, Quessy S, et al. Acquisition of host plasmin activity by the Swine pathogen Streptococcus suis serotype 2. Infect Immun,2004,72:606-610.
    [25]Quessy S, Busque P, Higgins R, et al. Description of an albumin binding activity for Streptococcus suis serotype 2. FEMS Microbiol Lett,1997,147:245-250.
    [26]Ju CX, Gu HW, Lu CP. Characterization and Functional Analysis of atl, a Novel Gene Encoding Autolysin in Streptococcus suis. J Bacteriol,2012,194:1464-1473.
    [27]Abranches J, Miller JH, Martinez AR, et al. The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. Infect Immun,2011,79:2277-2284.
    [28]Kreikemeyer B, Nakata M, Oehmcke S, et al. Streptococcus pyogenes collagen type I-binding Cpa surface protein. Expression profile, binding characteristics, biological functions, and potential clinical impact. J Biol Chem,2005,280:33228-33239.
    [29]Oliver-Kozup HA, Elliott M, Bachert BA, et al. The streptococcal collagen-like protein-1 (Sell) is a significant determinant for biofilm formation by group A Streptococcus. BMC Microbiol,2011,11: 262.
    [30]Wang Y, Zhang W, Wu Z, et al. Functional analysis of luxS in Streptococcus suis reveals a key role in biofilm formation and virulence. Vet Microbiol,2011,152:151-160.
    [31]Nakano K, Hokamura K, Taniguchi N, et al. The collagen-binding protein of Streptococcus mutans is involved in haemorrhagic stroke. Nat Commun,2011,2:485.
    [32]Banerjee A, Kim BJ, Carmona EM, et al. Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration. Nat Commun,2011,2:462.
    [33]Patti JM, Bremell T, Krajewska-Pietrasik D, et al. The Staphylococcvs aureus collagen adhesin is a virulence determinant in experimental septic arthritis. Infect Immun,1994,62:152-161.
    [1]Arends JP, Zanen HC. Meningitis caused by Streptococcus suis in humans. Rev Infect Dis,1998,10: 131-137.
    [2]Chanter N, Jones PW, Alexander TJ. Meningitis in pigs caused by Streptococcus suis-a speculative review. Vet Microbiol,1993,36:39-55.
    [3]Clifton-Hadley FA, Alexander TJ. The carrier site and carrier rate of Streptococcus suis type II in pigs. Vet Rec,1980,107:40-41.
    [4]Gottschalk MG, Lacouture S, Dubreuil JD. Characterization of Streptococcus suis capsular type 2 haemolysin. Microbiology,1995,141 (Pt 1):189-195.
    [5]de Greeff A, Buys H, Verhaar R, et al. Contribution of fibronectin-binding protein to pathogenesis of Streptococcus suis serotype 2. Infect Immun,2002,70:1319-1325.
    [6]Brassard J, Gottschalk M, Quessy S. Cloning and purification of the Streptococcus suis serotype 2 glyceraldehyde-3-phosphate dehydrogenase and its involvement as an adhesin. Vet Microbiol,2004,102:87-94.
    [7]Jobin MC, Grenier D. Identification and characterization of four proteases produced by Streptococcus suis. FEMS Microbiol Lett,2003,220:113-119.
    [8]Vecht U, Wisselink HJ, Jellema ML, et al. Identification of two proteins associated with virulence of Streptococcus suis type 2. Infect Immun,1991,59:3156-3162.
    [9]Valentin-Weigand P. Intracellular invasion and persistence:survival strategies of Streptococcus suis and Mycobacterium avium ssp. paratuberculosis. Berl Munch Tierarztl Wochenschr,2004,117: 459-463.
    [10]Charland N, Harel J, Kobisch M, et al. Streptococcus suis serotype 2 mutants deficient in capsular expression. Microbiology,1998,144 (Pt 2):325-332.
    [11]Smith HE, Damman M, van der Velde J, et al. Identification and characterization of the cps locus of Streptococcus suis serotype 2:the capsule protects against phagocytosis and is an important virulence factor. Infect Immun,1999,67:1750-1756.
    [12]Jiang H, Fan HJ, Lu CP. Identification and distribution of putative virulent genes in strains of Streptococcus suis serotype 2. Vet Microbiol,2009,133:309-316.
    [13]Gottschalk M, Higgins R, Quessy S. Dilemma of the virulence of Strptococcus suis strains. J Clin Microbiol,1999,37:4202-4203.
    [14]Gottschalk M, Segura M. The pathogenesis of the meningitis caused by Streptococcus suis:the unresolved questions. Vet Microbiol,2000,76:259-272.
    [15]Bowman PD, Ennis SR, Rarey KE, et al. Brain microvessel endothelial cells in tissue culture:a model for study of blood-brain barrier permeability. Ann Neurol,1983,14:396-402.
    [16]Kniesel U, Wolburg H. Tight junctions of the blood-brain barrier. Cell Mol Neurobiol,2000,20: 57-76.
    [17]Guo Y, Guo H, Zhang L, et al. Genomic analysis of anti-hepatitis B virus (HBV) activity by small interfering RNA and lamivudine in stable HBV-producing cells. J Virol,2005,79:14392-14403.
    [18]Banerjee A, Kim BJ, Carmona EM, et al. Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration. Nat Commun,2011,2:462.
    [19]Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun,2000,68:7010-7017.
    [20]Hausmann M, Kiessling S, Mestermann S, et al. Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation. Gastroenterology,2002,122:1987-2000.
    [21]Nagata M, Sedgwick JB, Busse WW. Differential effects of granulocyte-macrophage colony-stimulating factor on eosinophil and neutrophil superoxide anion generation. J Immunol,1995,55:4948-4954.
    [22]Vliagoftis H, Befus AD, Hollenberg MD, et al. Airway epithelial cells release eosinophil survival-promoting factors (GM-CSF) after stimulation of proteinase-activated receptor 2. J Allergy Clin Immunol,2001,107:679-685.
    [23]Bischof RJ, Zafiropoulos D, Hamilton JA, et al. Exacerbation of acute inflammatory arthritis by the colony-stimulating factors CSF-1 and granulocyte macrophage (GM)-CSF:evidence of macrophage infiltration and local proliferation. Clin Exp Immunol,2000,119:361-367.
    [24]Yamashita N, Tashimo H, Ishida H, et al. Attenuation of airway hyperresponsiveness in a murine asthma model by neutralization of granulocyte-macrophage colony-stimulating factor (GM-CSF). Cell Immunol,2002,219:92-97.
    [1]Arends JP, Zanen HC. Meningitis caused by Streptococcus suis in humans. Rev Infect Dis,1998,10: 131-137.
    [2]Chanter N, Jones PW, Alexander TJ. Meningitis in pigs caused by Streptococcus suis--a speculative review. VetMicrobiol.1993,36:39-55.
    [3]Clifton-Hadley FA, Alexander TJ. The carrier site and carrier rate of Streptococcus suis type II in pigs. Vet Rec,1980,107:40-41.
    [4]Higgins R, Gottschalk M. Distribution of Streptococcus suis capsular types in 1999. Can Vet J,2000,41:414.
    [5]Hynes WL, Walton SL. Hyaluronidases of Gram-positive bacteria. FEMS Microbiol Lett.2000,183: 201-207.
    [6]Yu H, Jing H, Chen Z, et al. Human Streptococcus suis outbreak, Sichuan, China. Emerg Infect Dis,2006,12:914-920.
    [7]姚火春,陈国强,陆承平.猪链球菌1998分离株病原特性鉴定.南京农业大学学报,1999,22:67-70.
    [8]Tang J, Wang C, Feng Y, et al. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Med,2006,3:e151.
    [9]Finlay BB. Cell adhesion and invasion mechanisms in microbial pathogenesis. Curr Opin Cell Biol,1990,2:815-820.
    [10]Westerlund B, Korhonen TK. Bacterial proteins binding to the mammalian extracellular matrix. Mol Microbiol,1993,9:687-694.
    [11]Patti JM, Allen BL, McGavin MJ, et al. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol,1994,48:585-617.
    [12]Esgleas M, Lacouture S, Gottschalk M. Streptococcus suis serotype 2 binding to extracellular matrix proteins. FEMS Microbiol Lett,2005,244:33-40.
    [13]de Greeff A, Buys H, Verhaar R, et al. Contribution of fibronectin-binding protein to pathogenesis of Streptococcus suis serotype 2. Infect Immun,2002,70:1319-1325.
    [14]Jobin MC, Brassard J, Quessy S, et al. Acquisition of host plasmin activity by the Swine pathogen Streptococcus suis serotype 2. Infect Immun,2004,72:606-610.
    [15]Quessy S, Busque P, Higgins R, et al. Description of an albumin binding activity for Streptococcus suis serotype 2. FEMS Microbiol Lett)1997,147:245-250.
    [16]Ju CX, Gu HW, Lu CP. Characterization and Functional Analysis of atl, a Novel Gene Encoding Autolysin in Streptococcus suis. J Bacteriol,2012,194:1464-1473.
    [17]Zhang W, Lu CP. Immunoproteomics of extracellular proteins of Chinese virulent strains of Streptococcus suis type 2. Proteomics,2007,7:4468-4476.
    [18]Gottschalk M, Segura M. The pathogenesis of the meningitis caused by Streptococcus suis:the unresolved questions. Vet Microbiol,2000,76:259-272.
    [19]Ables GP, Takamatsu D, Noma H, et al. The roles of Nrampl and Tnfa genes in nitric oxide production and their effect on the growth of Salmonella typhimurium in macrophages from Nramp1 congenic and tumor necrosis factor-alpha-/- mice. J Interferon Cytokine Res,2001,21:53-62.
    [20]Abranches J, Miller JH, Martinez AR, et al. The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. Infect Immun,2011,79:2277-2284.
    [21]Smith HE, Vecht U, Gielkens AL, et al. Cloning and nucleotide sequence of the gene encoding the 136-kilodalton surface protein (muramidase-released protein) of Streptococcus suis type 2. Infect Immun,1992,60:2361-2367.
    [22]Fenno JC, Tamura M, Hannam PM, et al. Identification of a Treponema denticola OppA homologue that binds host proteins present in the subgingival environment. Infect Immun,2000,68:1884-1892.
    [23]Zhang A, Chen B, Mu X, et al. Identification and characterization of a novel protective antigen, Enolase of Streptococcus suis serotype 2. Vaccine,2009,27:1348-1353.
    [24]Bini L, Sanchez-Campillo M, Santucci A, et al. Mapping of Chlamydia trachomatis proteins by immobiline-polyacrylamide two-dimensional electrophoresis:spot identification by N-terminal sequencing and immunoblotting. Electrophoresis,1996,17:185-190.
    [25]Goldstein BM, Colby TD. IMP dehydrogenase:structural aspects of inhibitor binding. Curr Med Chem,1999,6:519-536.
    [26]Yamashita Y, Bowen WH, Burne RA, et al. Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun,1993,61:3811-3817.
    [27]Garsin DA, Sifri CD, Mylonakis E, et al. A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci U S A,2001,98:10892-10897.
    [28]Baumler AJ, Kusters JG, Stojiljkovic I, et al. Salmonella typhimurium loci involved in survival within macrophages. Infect Immun,1994,62:1623-1630.
    [29]Pitarch A, Sanchez M, Nombela C, et al. Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome. Mol Cell Proteomics,2002,1:967-982.
    [30]Cole JN, Ramirez RD, Currie BJ, et al. Surface analyses and immune reactivities of major cell wall-associated proteins of group a streptococcus. Infect Immun,2005,73:3137-3146.
    [31]Germond JE, Lapierre L, Delley M, et al. Evolution of the bacterial species Lactobacillus delbrueckii:a partial genomic study with reflections on prokaryotic species concept. Mol Biol Evol,2003,20:93-104.
    [32]Paliwal PK, Bansal A, Sagi SS, et al. Cloning, expression and characterization of heat shock protein 60 (groEL) of Salmonella enterica serovar Typhi and its role in protective immunity against lethal Salmonella infection in mice. Clin Immunol,2008,126:89-96.
    [1]Arends JP, Zanen HC. Meningitis caused by Streptococcus suis in humans. Rev Infect Dis,1988,10: 131-137.
    [2]Chanter N, Jones PW, Alexander TJ. Meningitis in pigs caused by Streptococcus suis--a speculative review. Vet Microbiol.1993,36:39-55.
    [3]Clifton-Hadley FA, Alexander TJ. The carrier site and carrier rate of Streptococcus suis type II in pigs. VetRec,1980,107:40-41.
    [4]Higgins R, Gottschalk M. Distribution of Streptococcus suis capsular types in 1999. Can Vet J,2000,41:414.
    [5]Hynes WL, Walton SL. Hyaluronidases of Gram-positive bacteria. FEMS Microbiol Lett,2000,183: 201-207.
    [6]Yu H, Jing H, Chen Z, et al. Human Streptococcus suis outbreak, Sichuan, China. Emerg Infect Dis,2006,12:914-920.
    [7]姚火春,陈国强,陆承平.猪链球菌1998分离株病原特性鉴定.南京农业大学学报,1999,22:67-70.
    [8]Tang J, Wang C, Feng Y, et al. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Med,2006,3:el51.
    [9]Gottschalk MG, Lacouture S, Dubreuil JD. Characterization of Streptococcus suis capsular type 2 haemolysin. Microbiology,1995,141 (Pt 1):189-195.
    [10]de Greeff A, Buys H, Verhaar R, et al. Contribution of fibronectin-binding protein to pathogenesis of Streptococcus suis serotype 2. Infect Immun,2002,70:1319-1325.
    [11]Brassard J, Gottschalk M, Quessy S. Cloning and purification of the Streptococcus suis serotype 2 glyceraldehyde-3-phosphate dehydrogenase and its involvement as an adhesin. Vet Microbiol,2004,102:87-94.
    [12]Jobin MC, Grenier D. Identification and characterization of four proteases produced by Streptococcus suis. FEMS Microbiol Lett,2003,220:113-119.
    [13]Vecht U, Wisselink HJ, Jellema ML, et al. Identification of two proteins associated with virulence of Streptococcus suis type 2. Infect Immun,1991,59:3156-3162.
    [14]Valentin-Weigand P. Intracellular invasion and persistence:survival strategies of Streptococcus suis and Mycobacterium avium ssp. paratuberculosis. Berl Munch Tierarztl Wochenschr,2004,117: 459-463.
    [15]Charland N, Harel J, Kobisch M, et al. Streptococcus suis serotype 2 mutants deficient in capsular expression. Microbiology,1998,144 (Pt 2):325-332.
    [16]Smith HE, Damman M, van der Velde J, et al. Identification and characterization of the cps locus of Streptococcus suis serotype 2:the capsule protects against phagocytosis and is an important virulence factor. Infect Immun,1999,67:1750-1756.
    [17]Gottschalk M, Higgins R, Quessy S. Dilemma of the virulence of Strptococcus suis strains. J Clin Microbiol,1999,37:4202-4203.
    [18]Gottschalk M, Segura M. The pathogenesis of the meningitis caused by Streptococcus suis:the unresolved questions. Vet Microbiol,2000,76:259-272.
    [19]Bowman PD, Ennis SR, Rarey KE, et al. Brain microvessel endothelial cells in tissue culture:a model for study of blood-brain barrier permeability. Ann Neurol,1983,14:396-402.
    [20]Kniesel U, Wolburg H. Tight junctions of the blood-brain barrier. Cell Mol Neurobiol,2000,20: 57-76.
    [21]Teifel M, Friedl P. Establishment of the permanent microvascular endothelial cell line PBMEC/C1-2 from porcine brains. Exp Cell Res,1996,228:50-57.
    [22]Mogollon JD, Pijoan C, Murtaugh MP, et al. Testing meningeal strains of Streptococcus suis to detect M protein genes. Res Vet Sci,1992,53:244-246.
    [23]曾巧英陆承平.猪链球菌2型溶菌酶释放蛋白诱导上皮细胞融合和凋亡.微生物学报,2003,43:407-412.
    [24]Clepet C, Le Clainche I, Caboche M. Improved full-length cDNA production based on RNA tagging by T4 DNA ligase. Nucleic Acids Res,2004,32:e6.
    [25]Bracken CP, Whitelaw ML, Peet DJ. Activity of hypoxia-inducible factor 2alpha is regulated by association with the NF-kappaB essential modulator. J Biol Chem,2005,280:14240-14251.
    [26]Poon E, Howman EV, Newey SE, et al. Association of syncoilin and desmin:linking intermediate filament proteins to the dystrophin-associated protein complex. J Biol Chem,2002,277:3433-3439.
    [27]Gilmore PM, McCabe N, Quinn JE, et al. BRCA1 interacts with and is required for paclitaxel-induced activation of mitogen-activated protein kinase kinase kinase 3. Cancer Res,2004,64:4148-4154.
    [28]Vanier G, Fittipaldi N, Slater JD, et al. New putative virulence factors of Streptococcus suis involved in invasion of porcine brain microvascular endothelial cells. Microb Pathog,2009,6:13-20.
    [29]Vanier G, Segura M, Friedl P, et al. Invasion of porcine brain microvascular endothelial cells by Streptococcus suis serotype 2. Infect Immun,2004,72:1441-1449.
    [30]Johnsson N, Varshavsky A. Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci U S A,1994,91:10340-10344.
    [31]Morita K, Furuse M, Fujimoto K, et al. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci U S A,1999,96:511-516.
    [32]Satoh H, Zhong Y, Isomura H, et al. Localization of 7H6 tight junction-associated antigen along the cell border of vascular endothelial cells correlates with paracellular barrier function against ions, large molecules, and cancer cells. Exp Cell Res,1996,222:269-274.
    [33]Miyamori H, Takino T, Kobayashi Y, et al. Claudin promotes activation of pro-matrix metalloproteinase-2 mediated by membrane-type matrix metalloproteinases. J Biol Chem,2001,276: 28204-28211.
    [34]Ishizaki T, Chiba H, Kojima T, et al. Cyclic AMP induces phosphorylation of claudin-5 immunoprecipitates and expression of claudin-5 gene in blood-brain-barrier endothelial cells via protein kinase A-dependent and-independent pathways. Exp Cell Res,2003,290:275-288.
    [35]Custer KL, Austin NS, Sullivan JM, et al. Synaptic vesicle protein 2 enhances release probability at quiescent synapses. J Neurosci,2006,26:1303-1313.
    [36]Xu T, Bajjalieh SM. SV2 modulates the size of the readily releasable pool of secretory vesicles. Nat Cell Biol,2001,3:691-698.
    [37]Reigada D, Diez-Perez I, Gorostiza P, et al. Control of neurotransmitter release by an internal gel matrix in synaptic vesicles. Proc Natl Acad Sci U S A,2003,100:3485-3490.
    [38]Parpura V, Fernandez JM. Atomic force microscopy study of the secretory granule lumen. Biophys J,1996,71:2356-2366.
    [39]Lazzell DR, Belizaire R, Thakur P, et al. SV2B regulates synaptotagmin 1 by direct interaction. J Biol Chem,2004,279:52124-52131.
    [40]Scranton TW, Iwata M, Carlson SS. The SV2 protein of synaptic vesicles is a keratan sulfate proteoglycan. J Neurochem,1993,61:29-44.
    [41]Son YJ, Scranton TW, Sunderland WJ, et al. The synaptic vesicle protein SV2 is complexed with an alpha5-containing laminin on the nerve terminal surface. J Biol Chem,2000,275:451-460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700