用户名: 密码: 验证码:
Pre-mRNA选择性剪接调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Pre-mRNA的剪接是真核生物中,基因表达在后转录过程中的最为关键的步骤之一。Pre-mRNA的剪接模式可能多种多样,因而被称为选择性剪接或可变剪接。由于Pre-mRNA选择性剪接的普遍性、复杂性和与疾病的高相关性,其背后的调控机制最近几年越来越得到生命科学领域的重视。然而,以往的研究只局限于少量的基因,不能解释选择性剪接调控的普遍机理。
     微阵列技术的深入发展和下一代高通量测序技术的出现给全转录组范围研究pre-mRNA选择性剪接调控机制带来希望。本文总结了该领域目前所遇到的若干瓶颈,基于高通量生物数据,建立数学模型或仿真算法,对这些难点进行逐一研究,主要包括以下几个方面:
     组织特异性选择性剪接被不同的组织用来生成组织特异的mRNA和蛋白质变体。然而,如何预测组织特异性选择性剪接的调控因子及其功能一直是该领域的难点。基于外显子芯片数据,论文提出一种数学模型对调控组织特异性pre-mRNA选择性剪接的顺式作用元件及其功能进行预测。在该模型中,首先,将不同组织间表达有显著差异的外显子的剪接指数考虑为该外显子周围四个调控区域中多个调控因子的综合作用,预测造成两种不同组织中外显子表达差异的顺式作用元件及其相对作用水平;然后评估顺式作用元件在各种组织中的组织特异作用水平。在对人类11种组织的外显子芯片数据分析表明该模型是一种可行的预测方法。
     顺式作用元件的精确预测有赖于反式作用因子—pre-mRNA剪接起调控作用的RNA蛋白质结合区域特性的研究。如何利用生物实验和计算模型相结合的手段在全转录组范围内准确分析RNA结合蛋白质的性质目前仍是该领域最具挑战的课题之一。针对该难点,论文设计了分析RNA结合蛋白质特性的一系列生物信息学方法。基于SFRS1蛋白质的交联免疫沉淀-高通量测序数据,成功获取SFRS1蛋白质在全基因组中的结合区域及类别和所调控的基因参与的分子生物学过程;预测出SFRS1蛋白质在整个基因组中的结合位点,并分析了SFRS1蛋白质结合位点与剪接位点的距离性质;最后研究了SFRS1蛋白质与遗传疾病之间的关系。
     CLIP实验中使用核糖核酸酶对转录物水解成小的RNA片段,但是有关RNase A/T1的具体的RNA序列特异性并不明确。论文从核糖核酸酶对RNA分解的机理出发预测RNA结合蛋白质的结合位点。提出一种统计方法评估在交联免疫沉淀实验中的核糖核酸酶的序列特异性。基于该性质构建RNase分解RNA的仿真算法,通过实验仿真与真实数据之间的相关性来得到最有可能的反式作用因子结合区域。在含有一个和含有两个结合位点的实例中,该算法都取得了较好的预测效果。
     传统预测RNA-蛋白质结合位点的算法和模型都忽略了RNA二级结构对蛋白质识别RNA的影响。论文将RNA的二级结构特征引入到RNA结合蛋白质结合位点的预测中来,提出基于统计力学理论的RNA结合蛋白质结合位点的预测模型。采用嵌套的优化算法来搜索模型参数,在外层通过评分函数、内层通过量子粒子群算法分别求出RNA结合蛋白质的最佳模体及其对应的最优参数。基于SFRS1蛋白质的CLIP-seq序列,该模型准确预测出SFRS1蛋白质与RNA结合位点的序列和最优未配对概率,预测的效果比单纯靠序列信息的模型更好。
Pre-mRNA alternative splicing is one of the most pivotal procedures during post-transcriptional gene regulation of eukaryotes. The splicing patterns of the same pre-mRNA could be different, hence the so-called "alternative splicing". Due to the universality, complexity and pathogenicity nature of alternative splicing, the underlying regulatory mechanisms are placed more and more emphasis in Life Science. However, previous studies were always limited within a handful of gene models; therefore, the universal mechanisms of alternative splicing are still unclear.
     The in-depth development of microarray technologies and the emerging of next-generation high-throughput sequencing devices make it possible to study the regulatory mechanisms of pre-mRNA alternative splicing on a transcriptome-wide scale. Here we summarize several bottle-necks in this field, and look into each problem based on high-throughput biochemical data and mathematical models or simulation algorithms. The following main topics are included in this thesis:
     In different tissues, tissue-specific alternative splicing is applied to generate tissue-specific mRNA and proteins, but how to predict the regulatory factors of tissue-specific alternative splicing and their functions is still an unsolved problem in this area. Based on exon array data, this thesis proposes a mathematical model to predict the cis-acting RNA elements regulating tissue-specific alternative splicing as well as their functions. In this model, we first consider the splicing index of differentially expressed exons between different tissues as the combinatorial effect of multiple regulators located in four nearby regulatory regions, and predict the cis-acting elements and their relative functional levels. Then we estimate the tissue-specific functional levels of predicted cis-acting elements in different tissues. It is proved by the application on exon array data of 11 human tissues that this model has great potential for tissue-specific regulator prediction.
     The precise prediction of cis-acting elements depends on the research of the features of binding regions of trans-acting elements—RNA binding proteins that are responsible for pre-mRNA splicing. It remains a challenging topic in this field that how to integrate biochemical experiments and computational models to do accurate analysis of protein-RNA binding patterns transcriptome-widely. To overcome this problem, we developed a series of methods to analyze the binding properties of RNA binding proteins. On the basis of CLIP-seq data for SFRS1 proteins, the genome-wide binding regions and classes of SFRS1 proteins as well as the significant molecular functions of SFRS1-regulated genes were obtained. The binding sites of SFRS1 proteins in the whole genome are predicted, and also the relationships between SFRS1 binding sites with splicing sites are discussed. In the end, we investigate to see if SFRS1 proteins are involved in genetic diseases.
     During CLIP experiment, RNase A/T1 is used to digest transcripts into small RNA fragments, but it is unclear whether or not RNase A/T1 has sequence specificities. Based on the digestion mechanism of RNase, we figure out how to predict binding sites of RNA binding proteins. A statistics-based method is proposed to evaluate the sequence specificities of RNase in CLIP experiment. Then a simulation algorithm is invented to retrieve the regions that are most likely bound by trans-acting elements by the correlation coefficient between simulated and real data. In the implementations on genomic regions containing one and two binding sites, the algorithm turned out to have good prediction power.
     Traditional algorithms and models for RNA-protein binding sites prediction ignored the impact of RNA secondary structure on the recognition of RNA by proteins. In this study, we bring RNA folding features into binding site prediction of RNA binding proteins, and establish a model based on statistical mechanics to predict RNA-protein binding sites. When searching parameters of the proposed model, we adopt a nested optimization algorithm, in which, the optimal reference motif and its corresponding optimal parameters are optimized at outer and inner optimization layer respectively. Implemented on CLIP-seq sequences of SFRS1 proteins, this model accurately predicted the optimal sequence consensus and the optimal unpaired probabilities of SFRS1 binding sites. The prediction power of our model was proved to perform better than the model which only considered sequence information.
引文
[1]W. Gilbert. WHY GENES IN PIECES. Nature,1978, Vol.271:501-501P
    [2]S. M. Berget, C. Moore, and P. A. Sharp. Spliced segments at the 5' terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci U S A,1977, Vol.74:3171-5P
    [3]L. T. Chow, J. M. Roberts, J. B. Lewis, and T. R. Broker. A map of cytoplasmic RNA transcripts from lytic adenovirus type 2, determined by electron microscopy of RNA:DNA hybrids. Cell,1977, Vol.11:819-36P
    [4]G. Beadle and E. Tatum. Genetic control of biochemical reactions in Neurospora. Proceedings of the National Academy of Sciences, 1941, Vol.27:499-506P
    [5]E. S. Lander, L. M. Linton, B. Birren, et. al.. Initial sequencing and analysis of the human genome. Nature,2001, Vol.409:860-921P
    [6]J. M. Johnson, J. Castle, P. Garrett-Engele, Z. Kan, P. M. Loerch, C. D. Armour, R. Santos, E. E. Schadt, R. Stoughton, and D. D. Shoemaker. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science,2003, Vol.302:2141-4P
    [7]A. J. Matlin, F. Clark, and C. W. Smith. Understanding alternative splicing:towards a cellular code. Nat Rev Mol Cell Biol,2005, Vol.6:386-98P
    [8]E. T. Wang, R. Sandberg, S. Luo, I. Khrebtukova, L. Zhang, C. Mayr, S. F. Kingsmore, G. P. Schroth, and C. B. Burge. Alternative isoform regulation in human tissue transcriptomes. Nature,2008, Vol.456:470-6P
    [9]L. Collins and D. Penny. Complex spliceosomal organization ancestral to extant eukaryotes. Mol Biol Evol,2005, Vol.22:1053-66P
    [10]G. S. Wang and T. A. Cooper. Splicing in disease:disruption of the splicing code and the decoding machinery. Nat Rev Genet,2007, Vol.8:749-61P
    [11]J. P. Venables. Unbalanced alternative splicing and its significance in cancer. Bioessays,2006, Vol.28:378-86P
    [12]R. I. Skotheim and M. Nees. Alternative splicing in cancer:noise, functional, or systematic? Int J Biochem Cell Biol,2007, Vol.39:1432-49P
    [13]A. Srebrow and A. R. Kornblihtt. The connection between splicing and cancer. J Cell Sci,2006, Vol.119:2635-41P
    [14]P. Stenson, M. Mort, E. Ball, K. Howells, A. Phillips, N. Thomas, and D. Cooper. The Human Gene Mutation Database:2008 update. Genome Medicine,2009, Vol.1:13P
    [15]M. R. Lerner and J. A. Steitz. Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A,1979, Vol.76:5495-9P
    [16]M. R. Lerner, J. A. Boyle, S. M. Mount, S. L. Wolin, and J. A. Steitz. Are snRNPs involved in splicing? Nature,1980, Vol.283:220-4P
    [17]C. L. Will and R. Luhrmann. Splicing of a rare class of introns by the U12-dependent spliceosome. Biol Chem,2005, Vol.386:713-24P
    [18]J. R. Sanford and J. F. Caceres. Pre-mRNA splicing:life at the centre of the central dogma. J Cell Sci,2004, Vol.117:6261-3P
    [19]M. B. Shapiro and P. Senapathy. RNA splice junctions of different classes of eukaryotes:sequence statistics and functional implications in gene expression. Nucleic Acids Res,1987, Vol.15:7155-74P
    [20]L. T. Chow and T. R. Broker. The spliced structures of adenovirus 2 fiber message and the other late mRNAs. Cell,1978, Vol.15:497-510P
    [21]J. R. Nevins.and J. E. Darnell, Jr. Steps in the processing of Ad2 mRNA:poly(A)+ nuclear sequences are conserved and poly(A) addition precedes splicing. Cell,1978, Vol.15:1477-93P
    [22]S. E. Leff, M. G. Rosenfeld, and R. M. Evans. Complex transcriptional units:diversity in gene expression by alternative RNA processing. Annu Rev Biochem,1986, Vol.55:1091-117P
    [23]R. Maki, W. Roeder, A. Traunecker, C. Sidman, M. Wabl, W. Raschke, and S. Tonegawa. The role of DNA rearrangement and alternative RNA processing.in the expression of immunoglobulin delta genes. Cell,1981, Vol.24:353-65P
    [24]D. L. Black. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem,2003, Vol.72:291-336P
    [25]D. Schmucker, J. C. Clemens, H. Shu, C. A. Worby, J. Xiao, M. Muda, J. E. Dixon, and S. L. Zipursky. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell,2000, Vol.101:671-84P
    [26]J. Hanke, D. Brett, I. Zastrow, A. Aydin, S. Delbruck, G. Lehmann, F. Luft, J. Reich, and P. Bork. Alternative splicing of human genes:more the rule than the exception? Trends Genet,1999, Vol.15:389-90P
    [27]D. Brett, J. Hanke, G. Lehmann, S. Haase, S. Delbruck, S. Krueger, J. Reich, and P. Bork. EST comparison indicates 38% of human mRNAs contain possible alternative splice forms. FEBS Lett,2000, Vol.474:83-6P
    [28]A. A. Mironov, J. W. Fickett, and M. S. Gelfand. Frequent alternative splicing of human genes. Genome Res,1999, Vol.9:1288-93P
    [29]B. Modrek, A. Resch, C. Grasso, and C. Lee. Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res,2001, Vol.29:2850-9P
    [30]Z. Kan, D. States, and W. Gish. Selecting for functional alternative splices in ESTs. Genome Res,2002, Vol.12:1837-45P
    [31]L. Hui, X. Zhang, X. Wu, Z. Lin, Q. Wang, Y. Li, and G. Hu. Identification of alternatively spliced mRNA variants related to cancers by genome-wide ESTs alignment. Oncogene,2004, Vol.23:3013-23P
    [32]NCBI. An overview of how ESTs are generated. http://www.ncbi.nlm.nih.gov/About/primer/est.html,2004
    [33]E. Dias Neto, R. G. Correa, S. Verjovski-Almeida, M. R. Briones, M. A. Nagai, W. da Silva, Jr., M. A. Zago, S. Bordin, F. F. Costa, G. H. Goldman, A. F. Carvalho, A. Matsukuma, G. S. Baia, D. H. Simpson, A. Brunstein, P. S. de Oliveira, P. Bucher, C. V. Jongeneel, M. J.O'Hare, F. Soares, R. R. Brentani, L. F. Reis, S. J. de Souza, and A. J. Simpson. Shotgun sequencing of the human transcriptome with ORF expressed sequence tags. Proc Natl Acad Sci U S A,2000, Vol.97:3491-6P
    [34]D. A. Kulesh, D. R. Clive, D. S. Zarlenga, and J. J. Greene. Identification of interferon-modulated proliferation-related cDNA sequences. Proc Natl Acad Sci U S A,1987, Vol.84:8453-7P
    [35]M. Schena, D. Shalon, R. W. Davis, and P.0. Brown. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science,1995, Vol.270:467-70P
    [36]B. Modrek and C. Lee. A genomic view of alternative splicing. Nat Genet,2002, Vol.30:13-9P
    [37]T. A. Clark, C. W. Sugnet, and M. Ares, Jr. Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science,2002, Vol.296:907-10P
    [38]J. M. Yeakley, J. B. Fan, D. Doucet, L. Luo, E. Wickham, Z. Ye, M. S. Chee, and X. D. Fu. Profiling alternative splicing on fiber-optic arrays. Nat Biotechnol,2002, Vol.20:353-8P
    [39]T. A. Clark, A. C. Schweitzer, T. X. Chen, M. K. Staples, G. Lu, H. Wang, A. Williams, and J. E. Blume. Discovery of tissue-specific exons using comprehensive human exon microarrays. Genome Biol,2007, Vol.8:R64P
    [40]R. S. Huang, S. Duan, W. K. Bleibel, E.0. Kistner, W. Zhang, T. A. Clark, T. X. Chen, A. C. Schweitzer, J. E. Blume, N. J. Cox, and M. E. Dolan. A genome-wide approach to identify genetic variants that contribute to etoposide-induced cytotoxicity. Proc Natl Acad Sci U S A,2007, Vol.104:9758-63P
    [41]R. S. Huang, S. Duan, S. J. Shukla, E.0. Kistner, T. A. Clark, T. X. Chen, A. C. Schweitzer, J. E. Blume, and M. E. Dolan. Identification of genetic variants contributing to cisplatin-induced cytotoxicity by use of a genomewide approach. Am J Hum Genet,2007, Vol.81:427-37P
    [42]M. Cuperlovic-Culf, N. Belacel, A. S. Culf, and R. J. Ouellette. Data analysis of alternative splicing microarrays. Drug Discov Today,2006, Vol. 11:983-90P
    [43]D. D. Licatalosi, A. Mele, J. J. Fak, J. Ule, M. Kayikci, S. W. Chi, T. A. Clark, A. C. Schweitzer, J. E. Blume, X. Wang, J. C. Darnell, and R. B. Darnell. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature,2008, Vol.456:464-9P
    [44]J. C. Marioni, C. E. Mason, S. M. Mane, M. Stephens, and Y. Gilad. RNA-seq:an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res,2008, Vol.18:1509-17P
    [45]A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods,2008, Vol.5:621-8P
    [46]M. Sultan, M. H. Schulz, H. Richard, A. Magen, A. Klingenhoff, M. Scherf, M. Seifert, T. Borodina, A. Soldatov, D. Parkhomchuk, D. Schmidt, S.0'Keeffe, S. Haas, M. Vingron, H. Lehrach, and M. L. Yaspo. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science, 2008, Vol.321:956-60P
    [47]J. Ule, G. Stefani, A. Mele, M. Ruggiu, X. Wang, B. Taneri, T. Gaasterland, B. J. Blencowe, and R. B. Darnell. An RNA map predicting Nova-dependent splicing regulation. Nature,2006, Vol.444:580-6P
    [48]J. R. Sanford, X. Wang, M. Mort, N. Vanduyn, D. N. Cooper, S. D. Mooney, H. J. Edenberg, and Y. Liu. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res,2009, Vol.19:381-94P
    [49]G. Yeo, N. Coufal, T. Liang, G. Peng, X. Fu, and F. Gage. An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nature Structural & Molecular Biology,2009, Vol.16:130-137P
    [50]K. Le, K. Mitsouras, M. Roy, Q. Wang, Q. Xu, S. F. Nelson, and C. Lee. Detecting tissue-specific regulation of alternative splicing as a qualitative change, in microarray data. Nucleic Acids Res,2004, Vol.32:e180P
    [51]K. Srinivasan, L. Shiue, J. D. Hayes, R. Centers, S. Fitzwater, R. Loewen, L. R. Edmondson, J. Bryant, M. Smith, C. Rommelfanger, V. Welch, T. A. Clark, C. W. Sugnet, K. J. Howe, Y. Mandel-Gutfreund, and M. Ares, Jr. Detection and measurement of alternative splicing using splicing-sensitive microarrays. Methods,2005, Vol.37:345-59P
    [52]G. K. Hu, S. J. Madore, B. Moldover, T. Jatkoe, D. Balaban, J. Thomas, and Y. Wang. Predicting splice variant from DNA chip expression data. Genome Res,2001, Vol.11:1237-45P
    [53]'M. S. Cline, J. Blume, S. Cawley, T. A. Clark, J. S. Hu, G. Lu, N. Salomonis, H. Wang, and A. Williams. ANOSVA:a statistical method for detecting splice variation from expression data. Bioinformatics,2005, Vol.21 Suppl 1:i107-15P
    [54]H. Wang, E. Hubbell, J. S. Hu, G. Mei, M. Cline, G. Lu, T. Clark, M. A. Siani-Rose, M. Ares, D. C. Kulp, and D. Haussler. Gene structure-based splice variant deconvolution using a microarray platform. Bioinformatics,2003, Vol.19 Suppl 1:i315-22P
    [55]0. Shai, Q. D. Morris, B. J. Blencowe, and B. J. Frey. Inferring global levels of alternative splicing, isoforms using a generative model of microarray data. Bioinformatics,2006, Vol.22:606-13P
    [56]H. Zheng, X. Hang, J. Zhu, M. Qian, W. Qu, C. Zhang, and M. Deng. REMAS:a new regression model to identify alternative splicing events from exon array data. BMC Bioinformatics,2009, Vol.10 Suppl 1:S18P
    [57]W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, and D. Haussler. The human genome browser at UCSC. Genome Res,2002, Vol.12:996-1006P
    [58]T. A. Thanaraj, S. Stamm, F. Clark, J. J. Riethoven, V. Le Texier, and J. Muilu. ASD:the Alternative Splicing Database. Nucleic Acids Res,2004, Vol.32:D64-9P
    [59]C. L. Zheng, Y. S. Kwon, H. R. Li, K. Zhang, G. Coutinho-Mansf ield, C. Yang, T. M. Nair, M. Gribskov, and X. D. Fu. MAASE:an alternative splicing database designed for supporting splicing microarray applications. RNA,2005, Vol.11:1767-76P
    [60]G. Koscielny, V. Le Texier, C. Gopalakrishnan, V. Kumanduri, J. J. Riethoven, F. Nardone, E. Stanley, C. Fallsehr,0. Hofmann, M. Kull, E. Harrington, S. Boue, E. Eyras, M. Plass, F. Lopez, W. Ritchie, V. Moucadel, T. Ara, H. Pospisil, A. Herrmann, G. R. J, R. Guigo, P. Bork, M. K. Doeberitz, J. Vilo, W. Hide, R. Apweiler, T. A. Thanaraj, and D. Gautheret. ASTD:The Alternative Splicing and Transcript Diversity database. Genomics,2009, Vol.93:213-20P
    [61]T. Castrignano, M. D'Antonio, A. Anselmo, D. Carrabino, A. D'Onorio De Meo, A. D'Erchia, F. Licciulli, M. Mangiulli, F. Mignone, and G. Pavesi. ASPicDB:A database resource for alternative splicing analysis. Bioinformatics,2008, Vol.24:1300P
    [62]K. W. Lynch and T. Maniatis. Synergistic interactions between two distinct elements of a regulated splicing enhancer. Genes Dev,1995, Vol.9:284-93P
    [63]K. W. Lynch and T. Maniatis. Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer. Genes Dev,1996, Vol.10:2089-101P
    [64]M. Tian and T. Maniatis. A splicing enhancer exhibits both constitutive and regulated activities. Genes Dev,1994, Vol.8:1703-12P
    [65]Y. Li and B. J. Blencowe. Distinct factor requirements for exonic splicing enhancer function and binding of U2AF to the polypyrimidine tract. J Biol Chem,1999, Vol.274:35074-9P
    [66]A. G. Eldridge, Y. Li, P. A. Sharp, and B. J. Blencowe. The SRm160/300 splicing coactivator is required for exon-enhancer function. Proc Natl Acad Sci U S A,1999, Vol.96:6125-30P
    [67]B. J. Blencowe, G. Bauren, A. G. Eldridge, R. Issner, J. A. Nickerson, E. Rosonina, and P. A. Sharp. The SRm160/300 splicing coactivator subunits. RNA,2000, Vol.6:111-20P
    [68]V. Heinrichs, L. C. Ryner, and B. S. Baker. Regulation of sex-specific selection of fruitless 5'splice sites by transformer and transformer-2. Mol Cell Biol,1998, Vol.18:450-8P
    [69]B. J. Lam, A. Bakshi, F. Y. Ekinci, J. Webb, B. R. Graveley, and K. J. Hertel. Enhancer-dependent 5'-splice site control of fruitless pre-mRNA splicing. J Biol Chem,2003, Vol.278:22740-7P
    [70]J. Y. Wu and T. Maniatis. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell,1993, Vol.75:1061-70P
    [71]H. Shen and M. R. Green. A pathway of sequential arginine-serine-rich domain-splicing signal interactions during mammalian spliceosome assembly. Mol Cell,2004, Vol.16:363-73P
    [72]H. Shen, J. L. Kan, and M. R. Green. Arginine-serine-rich domains bound at splicing enhancers contact the branchpoint to promote prespliceosome assembly. Mol Cell,2004, Vol.13:367-76P
    [73]J. Hui, K. Stangl, W. S. Lane, and A. Bindereif. HnRNP L stimulates splicing of the eNOS gene by binding to variable-length CA repeats. Nat Struct Biol,2003, Vol.10:33-7P
    [74]C. Le Guiner, F. Lejeune, D. Galiana, L. Kister, R. Breathnach, J. Stevenin, and F. Del Gatto-Konczak. TIA-1 and TIAR activate splicing of alternative exons with weak 5' splice sites followed by a.U-rich stretch on their own pre-mRNAs. J Biol Chem,2001, Vol.276:40638-46P
    [75]P. Forch,0. Puig, C. Martinez, B. Seraphin, and J. Valcarcel. The splicing regulator TIA-1 interacts with Ul-C to promote U1 snRNP recruitment to 5' splice sites. EMBO J,2002, ol.21:6882-92P
    [76]P. Forch,0. Puig, N. Kedersha, C. Martinez, S. Granneman, B. Seraphin, P. Anderson, and J. Valcarcel. The apoptosis-promoting factor TIA-1 is a regulator of alternative pre-mRNA splicing. Mol Cell,2000, Vol.6:1089-98P
    [77]F. Del Gatto-Konczak, C. F. Bourgeois, C. Le Guiner, L. Kister, M. C. Gesnel, J. Stevenin, and R. Breathnach. The RNA-binding protein TIA-1 is a novel mammalian splicing regulator acting through intron sequences adjacent to a 5' splice site. Mol Cell Biol,2000, Vol.20:6287-99P
    [78]H. Zhu, R. A. Hasman, K. M. Young, N. L. Kedersha, and H. Lou. U1 snRNP-dependent function of TIAR in the regulation of alternative RNA processing of the human calcitonin/CGRP pre-mRNA. Mol Cell Biol,2003, Vol.23:5959-71P
    [79]L. Cartegni, S. L. Chew, and A. R. Krainer. Listening to silence and understanding nonsense:exonic mutations that affect splicing. Nat Rev Genet,2002, Vol.3:285-98P
    [80]E. J. Wagner and M. A. Garcia-Blanco. Polypyrimidine tract binding protein antagonizes exon definition. Mol Cell Biol,2001, Vol.21:3281-8P
    [81]J. Valcarcel, R. Singh, P. D. Zamore, and M. R. Green. The protein Sex-lethal antagonizes the splicing factor U2AF to regulate alternative splicing of transformer pre-mRNA. Nature,1993, Vol.362:171-5P
    [82]C. H. Lin and J. G. Patton. Regulation of alternative 3' splice site selection by constitutive splicing factors. RNA,1995, Vol.1:234-45P
    [83]R. Singh, J. Valcarcel, and M. R. Green. Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science,1995, Vol.268:1173-6P
    [84]L. Zhang, W.Liu, and P. J. Grabowski. Coordinate repression of a trio of neuron-specific splicing events by the splicing regulator PTB. RNA,1999, Vol.5:117-30P
    [85]J. Southby, C. Gooding, and C. W. Smith. Polypyrimidine tract binding protein functions as a repressor to regulate alternative splicing of alpha-actinin mutally exclusive exons. Mol Cell Biol, 1999, Vol.19:2699-711P
    [86]M. Y. Chou, J. G. Underwood, J. Nikolic, M. H. Luu, and D. L. Black. Multisite RNA binding and release of polypyrimidine tract binding protein during the regulation of c-src neural-specific splicing. Mol Cell,2000, Vol.5:949-57P
    [87]E. J. Wagner and M. A. Garcia-Blanco. RNAi-mediated PTB depletion leads to enhanced exon definition. Mol Cell,2002, Vol.10:943-9P
    [88]A. Mayeda and A. R. Krainer. Regulation of alternative pre-mRNA splicing by hnRNP Al and splicing factor SF2. Cell,1992, Vol.68:365-75P
    [89]I. C. Eperon,0. V. Makarova, A. Mayeda, S. H. Munroe, J. F. Caceres, D. G. Hayward, and A. R. Krainer. Selection of alternative 5'splice sites:role of Ul snRNP and models for the antagonistic effects of SF2/ASF and hnRNP A1. Mol Cell Biol,2000, Vol.20:8303-18P
    [90]J. F. Caceres, S.Stamm, D. M. Helfman, and A. R. Krainer. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science,1994, Vol.265:1706-9P
    [91]J. Zhu, A. Mayeda, and A. R. Krainer. Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP Al and enhancer-bound SR proteins. Mol Cell, 2001, Vol.8:1351-61P
    [92]F. Del Gatto-Konczak, M. Olive, M. C. Gesnel, and R. Breathnach. hnRNP A1 recruited to an exon in vivo can function as an exon splicing silencer. Mol Cell Biol,1999, Vol.19:251-60P
    [93]M. Blanchette and B. Chabot. Modulation of exon skipping by high-affinity hnRNP Al-binding sites and by intron elements that repress splice site utilization. EMBO J,1999, Vol.18:1939-52P
    [94]T.0. Tange, C. K. Damgaard, S. Guth, J. Valcarcel, and J. Kjems. The hnRNP Al protein regulates HIV-1 tat splicing via a novel intron silencer element. EMBO J,2001, Vol.20:5748-58P
    [95]J. Villemaire, I. Dion, S. A. Elela, and B. Chabot. Reprogramming alternative pre-messenger RNA splicing through the use of protein-binding antisense oligonucleotides. J Biol Chem,2003, Vol.278:50031-9P
    [96]A. P. Baraniak, E. L. Lasda, E. J. Wagner, and M. A. Garcia-Blanco. A stem structure in fibroblast growth factor receptor 2 transcripts mediates cell-type-specific splicing by approximating intronic control elements. Mol Cell Biol,2003, Vol.23:9327-37P
    [97]A. Kanopka,O. Muhlemann, S. Petersen-Mahrt, C. Estmer, C. Ohrmalm, and G. Akusjarvi. Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Nature,1998, Vol.393:185-7P
    [98]V. Dauksaite and G. Akusjarvi. Human splicing factor ASF/SF2 encodes for a repressor domain required for its inhibitory activity on pre-mRNA splicing. J Biol Chem,2002, Vol.277:12579-86P
    [99]C. Estmer Nilsson, S. Petersen-Mahrt, C. Durot, R. Shtrichman, A. R. Krainer, T. Kleinberger, and G. Akusjarvi. The adenovirus E4-ORF4 splicing enhancer protein interacts with a subset of phosphorylated SR proteins. EMBO J,2001, Vol.20:864-71P
    [100]H. Shen, J. L. Kan, C. Ghigna, G. Biamonti, and M. R. Green. A single polypyrimidine tract binding protein (PTB) binding site mediates splicing inhibition at mouse IgM exons M1 and M2. RNA, 2004, Vol.10:787-94P
    [101]H. Jumaa and P. J. Nielsen. The splicing factor SRp20 modifies splicing of its own mRNA and ASF/SF2 antagonizes this regulation. EMBO J,1997, Vol.16:5077-85P
    [102]E. Labourier, H. M. Bourbon, I. E. Gallouzi, M. Fostier, E. Allemand, and J. Tazi. Antagonism between RSF1 and SR proteins for both splice-site recognition in vitro and Drosophila development. Genes Dev,1999, Vol.13:740-53P
    [103]E. Labourier, E. Allemand, S. Brand, M. Fostier, J. Tazi, and H. M. Bourbon. Recognition of exonic splicing enhancer sequences by the Drosophila splicing repressor RSF1. Nucleic Acids Res, 1999, Vol.27:2377-86P
    [104]D. C. Barnard and J. G. Patton. Identification and characterization of a novel serine-arginine-rich splicing regulatory protein. Mol Cell Biol,2000, Vol.20:3049-57P
    [105]J. Li, I. C. Hawkins, C. D. Harvey, J. L. Jennings, A. J. Link, and J. G. Patton. Regulation of alternative splicing by SRrp86 and its interacting proteins. Mol Cell Biol,2003, Vol.23:7437-47P
    [106]W. Zhang, H. Liu, K. Han, and P. J. Grabowski. Region-specific alternative splicing in the nervous system:implications for regulation by the RNA-binding protein NAPOR. RNA,2002, Vol.8:671-85P
    [107]H. Suzuki, Y. Jin, H. Otani, K. Yasuda, and K. Inoue. Regulation of alternative splicing of alpha-actinin transcript by Bruno-like proteins. Genes Cells,2002, Vol.7:133-41P
    [108]B. N. Charlet, P. Logan, G. Singh, and T. A. Cooper. Dynamic antagonism between ETR-3 and PTB regulates cell type-specific alternative splicing. Mol Cell,2002, Vol.9:649-58P
    [109]N. Gromak, A. J. Matlin, T. A. Cooper, and C. W. Smith. Antagonistic regulation of alpha-actinin alternative splicing by CELF proteins and polypyrimidine tract binding protein. RNA, 2003, Vol.9:443-56P
    [110]R. Tacke and J. L. Manley. Determinants of SR protein specificity. Curr Opin Cell Biol,1999, Vol.11:358-62P
    [111]C. G. Burd and G. Dreyfuss. RNA binding specificity of hnRNP Al: significance of hnRNP Al high-affinity binding sites in pre-mRNA splicing. EMBO J,1994, Vol.13:1197-204P
    [112]I. Perez, C. H. Lin, J. G. McAfee, and J. G. Patton. Mutation of PTB binding sites causes misregulation of alternative 3' splice site selection in vivo. RNA,1997, Vol.3:764-78P
    [113]M. Brudno, M. S. Gelfand, S. Spengler, M. Zorn, I. Dubchak, and J. G. Conboy. Computational analysis of candidate intron regulatory elements for tissue-specific alternative pre-mRNA splicing. Nucleic Acids Res,2001, Vol.29:2338-48P
    [114]L. R. Coulter, M. A. Landree, and T. A. Cooper. Identification of a new class of exonic splicing enhancers by in vivo selection. Mol Cell Biol,1997, Vol.17:2143-50P
    [115]E. Stickeler, S. D. Fraser, A. Honig, A. L. Chen, S. M. Berget, and T. A. Cooper. The RNA binding protein YB-1 binds A/C-rich exon enhancers and stimulates splicing of the CD44 alternative exon v4. EMBO J,2001, Vol.20:3821-30P
    [116]Z. Wang, M. E. Rolish, G. Yeo, V. Tung, M. Mawson, and C. B. Burge. Systematic identification and analysis of exonic splicing silencers. Cell,2004, Vol.119:831-45P
    [117]X. H. Zhang and L. A. Chasin. Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev, 2004, Vol.18:1241-50P
    [118]A. Fedorov, S. Saxonov, L. Fedorova, and I. Daizadeh. Comparison of intron-containing and intron-lacking human genes elucidates putative exonic splicing enhancers. Nucleic Acids Res,2001, Vol.29:1464-9P
    [119]W. G. Fairbrother, R. F. Yeh, P. A. Sharp, and C. B. Burge. Predictive identification of exonic splicing enhancers in human genes. Science,2002, Vol.297:1007-13P
    [120]G. Yeo, S. Hoon, B. Venkatesh, and C. B. Burge. Variation in sequence and organization of splicing regulatory elements in vertebrate genes. Proc Natl Acad Sci U S A,2004, Vol.101:15700-5P
    [121]Y. Jin, H. Suzuki, S. Maegawa, H. Endo, S. Sugano, K. Hashimoto, K. Yasuda, and K. Inoue. A vertebrate RNA-binding protein Fox-1 regulates tissue-specific splicing via the pentanucleotide GCAUG. EMBO J,2003, Vol.22:905-12P
    [122]E. Miriami, H. Margalit, and R. Sperling. Conserved sequence elements associated with exon skipping. Nucleic Acids Res,2003, Vol.31:1974-83P
    [123]S. A. Tenenbaum, C. C. Carson, P. J. Lager, and J. D. Keene. Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc Natl Acad Sci U S A,2000, Vol.97:14085-90P
    [124]J. Ule, K. B. Jensen, M. Ruggiu, A. Mele, A. Ule, and R. B. Darnell. CLIP identifies Nova-regulated RNA networks in the brain. Science,2003, Vol.302:1212-5P
    [125]R. J. Buckanovich and R. B. Darnell. The neuronal RNA binding protein Nova-1 recognizes specific RNA targets in vitro and in vivo. Mol Cell Biol,1997, Vol.17:3194-201P
    [126]S. Kim, H. Shi, D. K. Lee, and J. T. Lis. Specific SR protein-dependent splicing substrates identified through genomic SELEX. Nucleic Acids Res,2003, Vol.31:1955-61P
    [127]H. Hieronymus and P. A. Silver. A systems view of mRNP biology. Genes Dev,2004, Vol.18:2845-60P
    [128]K. M. Kotovic, D. Lockshon, L. Boric, and K. M. Neugebauer. Cotranscriptional recruitment of the U1 snRNP to intron-containing genes in yeast. Mol Cell Biol,2003, Vol.23:5768-79P
    [129]R. M. Evans, S. G. Amara, and M.G. Rosenfeld. RNA processing regulation of neuroendorcrine gene expression. DNA,1982, Vol.1:323-8P
    [130]H. Nawa, H. Kotani, and S. Nakanishi. Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. Nature,1984, Vol.312:729-34P
    [131]Y. Nabeshima, Y. Nonomura, and Y. Fujii-Kuriyama. Nonmuscle and smooth muscle myosin light chain mRNAs are generated from a single gene by the tissue-specific alternative RNA splicing. J Biol Chem,1987, Vol.262:10608-12P
    [132]Q. Xu, B. Modrek, and C. Lee. Genome-wide detection of tissue-specific alternative splicing in the human transcriptome. Nucleic Acids Res,2002, Vol.30:3754-66P
    [133]K. Srinivasan, L. Shiue, J. Hayes, R. Centers, S. Fitzwater, R. Loewen, L. Edmondson, J. Bryant, M. Smith, and C. Rommelfanger. Detection and measurement of alternative splicing using splicing-sensitive microarrays. Methods,2005, Vol.37:345-359P
    [134]M. Krawczak, J. Reiss, and D. N. Cooper. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes:causes and consequences. Hum Genet,1992, Vol.90:41-54P
    [135]N. Lopez-Bigas, B. Audit, C. Ouzounis, G. Parra, and R. Guigo. Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett,2005, Vol.579:1900-3P
    [136]M. S. Jurica and M. J. Moore. Pre-mRNA splicing:awash in a sea of proteins. Mol Cell,2003, Vol.12:5-14P
    [137]M. Briese, B. Esmaeili, and D. B. Sattelle. Is spinal muscular atrophy the result of defects in motor neuron processes? Bioessays,2005, Vol.27:946-57P
    [138]D. Mordes, X. Luo, A. Kar, D. Kuo, L. Xu, K. Fushimi, G. Yu, P. Sternberg, Jr., and J. Y. Wu. Pre-mRNA splicing and retinitis pigmentosa. Mol Vis,2006, Vol.12:1259-71P
    [139]C. Winkler, C. Eggert, D. Gradl, G. Meister, M. Giegerich, D. Wedlich, B. Laggerbauer, and U. Fischer. Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy. Genes Dev,2005, Vol.19:2320-30P
    [140]A. P. Goldstone. Prader-Willi syndrome:advances in genetics, pathophysiology and treatment. Trends Endocrinol Metab,2004, Vol.15:12-20P
    [141]J. Cavaille, K. Buiting, M. Kiefmann, M. Lalande, C. I. Brannan, B. Horsthemke, J. P. Bachellerie, J. Brosius, and A. Huttenhofer. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci U S A,2000, Vol.97:14311-6P
    [142]S. Kishore and S. Stamm. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science,2006, Vol.311:230-2P
    [143]R. Karni, E. de Stanchina, S. W. Lowe, R. Sinha, D.Mu, and A. R. Krainer. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol,2007, Vol.14:185-93P
    [144]C. Ghigna, S. Giordano, H. Shen, F. Benvenuto, F. Castiglioni, P. M. Comoglio, M. R. Green, S. Riva, and G. Biamonti. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol Cell,2005, Vol.20:881-90P
    [145]J. D. Hoheisel. Microarray technology:beyond transcript profiling and genotype analysis. Nat Rev Genet,2006, Vol.7:200-10P
    [146]Q. Pan, M. A. Bakowski, Q. Morris, W. Zhang, B. J. Frey, T. R. Hughes, and B. J. Blencowe. Alternative splicing of conserved exons is frequently species-specific in human and mouse. Trends Genet,2005, Vol.21:73-7P
    [147]Q. Pan, A. L. Saltzman, Y. K. Kim, C. Misquitta,O. Shai, L. E. Maquat, B. J. Frey, and B. J. Blencowe. Quantitative microarray profiling provides evidence against widespread coupling of alternative splicing with nonsense-mediated mRNA decay to control gene expression. Genes Dev,2006, Vol.20:153-8P
    [148]J. Castle, P. Garrett-Engele, C. D. Armour, S. J. Duenwald, P. M. Loerch, M. R. Meyer, E. E. Schadt, R. Stoughton, M. L. Parrish, D. D. Shoemaker, and J. M. Johnson. Optimization of oligonucleotide arrays and RNA amplification protocols for analysis of transcript structure and alternative splicing. Genome Biol,2003, Vol.4:R66P
    [149]C. A. Davis, L. Grate, M. Spingola, and M. Ares, Jr. Test of intron predictions reveals novel splice sites, alternatively spliced mRNAs and new introns in meiotically regulated genes of yeast. Nucleic Acids Res,2000, Vol.28:1700-6P
    [150]M. Spingola, L. Grate, D. Haussler, and M. Ares, Jr. Genome-wide bioinf ormatic and molecular analysis of introns in Saccharomyces cerevisiae. RNA,1999, Vol.5:221-34P
    [151]T. C. Mockler, S. Chan, A. Sundaresan, H. Chen, S. E. Jacobsen, and J. R. Ecker. Applications of DNA tiling arrays for whole-genome analysis. Genomics,2005, Vol.85:1-15P
    [152]Affymetrix. GeneChip(?) Exon Array System for Human, Mouse, and Rat. Affymetrix Technotes,2005
    [153]K. Kapur, Y. Xing, Z. Ouyang, and W. H. Wong. Exon arrays provide accurate assessments of gene expression. Genome Biol,2007, Vol.8:R82P
    [154]W. M. Liu, R. Mei, X. Di, T. B. Ryder, E. Hubbell, S. Dee, T. A. Webster, C. A. Harrington, M. H. Ho, J. Baid, and S. P. Smeekens. Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics,2002, Vol.18:1593-9P
    [155]R. A. Irizarry, B. M. Bolstad, F. Collin, L. M. Cope, B. Hobbs, and T.P. Speed. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res,2003, Vol.31:e15P
    [156]Affymetrix. Guide to Probe Logarithmic Intensity Error(PLIER) Estimation.2005
    [157]Q. Pan,0. Shai, C. Misquitta, W. Zhang, A. L. Saltzman, N. Mohammad, T. Babak, H. Siu, T. R. Hughes, Q. D. Morris, B. J. Frey, and B. J. Blencowe. Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform. Mol Cell,2004, Vol.16:929-41P
    [158]P. J. Grabowski. Genetic evidence for a Nova regulator of alternative splicing in the brain. Neuron,2000, Vol.25:254-6P
    [159]B. R. Graveley. Alternative splicing:increasing diversity in the proteomic world. Trends Genet,2001, Vol.17:100-7P
    [160]A. J. Lopez. Alternative splicing of pre-mRNA:developmental consequences and mechanisms of regulation. Annu Rev Genet,1998, Vol.32:279-305P
    [161]A. R. Grosso, A. Q. Gomes, N. L. Barbosa-Morais, S. Caldeira, N. P. Thorne, G. Grech, M. von Lindern, and M. Carmo-Fonseca. Tissue-specific splicing factor gene expression signatures. Nucleic Acids Res,2008, Vol.36:4823-32P
    [162]C. He, Z. Zuo, H. Chen, L. Zhang, F. Zhou, H. Cheng, and R. Zhou. Genome-wide detection of testis- and testicular cancer-specific alternative splicing. Carcinogenesis,2007, Vol.28:2484-90P
    [163]S. J. Noh, K. Lee, H. Paik, and C. G. Hur. TISA:tissue-specific alternative splicing in human and mouse genes. DNA Res,2006, Vol.13:229-43P
    [164]G. Yeo, D. Holste, G. Kreiman, and C. B. Burge. Variation in alternative splicing across human tissues. Genome Biol,2004, Vol.5:R74P
    [165]C. Shin and J. L. Manley. Cell signalling and the control of pre-mRNA splicing. Nat Rev Mol Cell Biol,2004, Vol.5:727-38P
    [166]R. Singh and J. Valcarcel. Building specificity with nonspecific RNA-binding proteins. Nat Struct Mol Biol,2005, Vol.12:645-53P
    [167]Y. Bai, D. Lee, T. Yu, and L. A. Chasin. Control of 3' splice site choice in vivo by ASF/SF2 and hnRNP A1. Nucleic Acids Res, 1999, Vol.27:1126-34P
    [168]A. Mayeda, D. M. Helfman, and A. R. Krainer. Modulation of exon skipping and inclusion by heterogeneous nuclear ribonucleoprotein A1 and pre-mRNA splicing factor SF2/ASF. Mol Cell Biol,1993, Vol.13:2993-3001P
    [169]M. Blanchette, R. E. Green, S. E. Brenner, and D. C. Rio. Global analysis of positive and negative pre-mRNA splicing regulators in Drosophila. Genes Dev,2005, Vol.19:1306-14P
    [170]J. Ule, A. Ule, J. Spencer, A. Williams, J. S. Hu, M. Cline, H. Wang, T. Clark, C. Fraser, M. Ruggiu, B. R. Zeeberg, D. Kane, J. N. Weinstein, J. Blume, and R. B. Darnell. Nova regulates brain-specific splicing to shape the synapse. Nat Genet,2005, Vol.37:844-52P
    [171]X. Wang, K. Wang, G. Wang, J. Sanford, and Y. Liu. Model-based prediction of cis-acting RNA elements regulating tissue-specific alternative splicing.8th IEEE International Conference on BioInformatics and BioEngineering,2008,1-6P
    [172]王鑫.RNA前体选择性剪接建模与预报.哈尔滨工程大学硕士论文,2008
    [173]A. Lavigueur, H. La Branche, A. Kornblihtt, and B. Chabot. A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes & development,1993, Vol.7:2405-2417P
    [174]M. Tian and T. Maniatis. A splicing enhancer exhibits both constitutive and regulated activities. Genes & development,1994, Vol.8:1703-1712P
    [175]B. Graveley, K. Hertel, and T. Maniatis. A systematic analysis of the factors that determine the strength of pre-mRNA splicing enhancers. The EMBO journal,1998, Vol.17:6747P
    [176]A. Goren,O. Ram, M. Amit, H. Keren, G. Lev-Maor, I. Vig, T. Pupko, and G. Ast. Comparative analysis identifies exonic splicing regulatory sequences--The complex definition of enhancers and silencers. Mol Cell,2006, Vol.22:769-81P
    [177]G. Warnes, B. Bolker, and T. Lumley. gplots:Various R programming tools for plotting data. Included R source code and/or documentation contributed by Ben Bolker and Thomas Lumley. R package version,2006, Vol.230
    [178]S. Minovitsky, S. L. Gee, S. Schokrpur, I. Dubchak, and J. G. Conboy. The splicing regulatory element, UGCAUG, is phylogenetically and spatially conserved in introns that flank tissue-specific alternative exons. Nucleic Acids Res,2005, Vol.33:714-24P
    [179]C. W. Sugnet, K. Srinivasan, T. A. Clark, G.O'Brien, M. S. Cline, H. Wang, A. Williams, D. Kulp, J. E. Blume, D. Haussler, and M. Ares, Jr. Unusual intron conservation near tissue-regulated exons found by splicing microarrays. PLoS Comput Biol,2006, Vol.2:e4P
    [180]B. J. Blencowe. Alternative splicing:new insights from global analyses. Cell,2006, Vol.126:37-47P
    [181]S. Lin and X. D. Fu. SR proteins and related factors in alternative splicing. Adv Exp Med Biol,2007, Vol.623:107-22P
    [182]J. F. Caceres, G. R. Screaton, and A. R. Krainer. A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes Dev,1998, Vol.12:55-66P
    [183]Y. Huang and J. A. Steitz. Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol Cell,2001, Vol.7:899-905P
    [184]R. Lemaire, J. Prasad, T. Kashima, J. Gustafson, J. L. Manley, and R. Lafyatis. Stability of a PKCI-1-related mRNA is controlled by the splicing factor ASF/SF2:a novel function for SR proteins. Genes Dev,2002, Vol.16:594-607P
    [185]J. R. Sanford, N. K. Gray, K. Beckmann, and J. F. Caceres. A novel role for shuttling SR proteins in mRNA translation. Genes Dev, 2004, Vol.18:755-68P
    [186]Z. Zhang and A. R. Krainer. Involvement of SR proteins in mRNA surveillance. Mol Cell,2004, Vol.16:597-607P
    [187]X. Li and J. L. Manley. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell,2005, Vol.122:365-78P
    [188]D. Longman, I. L. Johnstone, and J. F. Caceres. Functional characterization of SR and SR-related genes in Caenorhabditis elegans. EMBO J,2000, Vol.19:1625-37P
    [189]J. Wang, Y. Takagaki, and J. L. Manley. Targeted disruption of an essential vertebrate gene:ASF/SF2 is required for cell viability. Genes Dev,1996, Vol.10:2588-99P
    [190]X. Xu, D. Yang, J. H. Ding, W. Wang, P. H. Chu, N. D. Dalton, H. Y. Wang, J. R. Bermingham, Jr., Z. Ye, F. Liu, M. G. Rosenfeld, J. L. Manley, J. Ross, Jr., J. Chen, R. P. Xiao, H. Cheng, and X. D. Fu. ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell,2005, Vol.120:59-72P
    [191]Z. Wang and C. B. Burge. Splicing regulation:from a parts list of regulatory elements to an integrated splicing code. RNA,2008, Vol.14:802-13P
    [192]Z. Wang, X. Xiao, E. Van Nostrand, and C. B. Burge. General and specific functions of exonic splicing silencers in splicing control. Mol Cell,2006, Vol.23:61-70P
    [193]X. Xiao, Z. Wang, M. Jang, and C. B. Burge. Coevolutionary networks of splicing cis-regulatory elements. Proc Natl Acad Sci USA,2007, Vol.104:18583-8P
    [194]X. H. Zhang, C. S. Leslie, and L. A. Chasin. Dichotomous splicing signals in exon flanks. Genome Res,2005, Vol.15:768-79P
    [195]B. A. Friedman, M. B. Stadler, N. Shomron, Y. Ding, and C. B. Burge. Ab initio identification of functionally interacting pairs of cis-regulatory elements. Genome Res,2008, Vol.18:1643-51P
    [196]Y. Cavaloc, C. F. Bourgeois, L. Kister, and J. Stevenin. The splicing factors 9G8 and SRp20 transactivate splicing through different and specific enhancers. RNA,1999, Vol.5:468-83P
    [197]H. X. Liu, M. Zhang, and A. R. Krainer. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev,1998, Vol.12:1998-2012P
    [198]R. Tacke and J. L. Manley. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J,1995, Vol.14:3540-51P
    [199]C. Tuerk and L. Gold. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase. Science,1990, Vol.249:505-10P
    [200]P. J. Smith, C. Zhang, J. Wang, S. L. Chew, M. Q. Zhang, and A. R. Krainer. An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet,2006, Vol.15:2490-508P
    [201]S. A. Tenenbaum, P. J. Lager, C. C. Carson, and J. D. Keene. Ribonomics:identifying mRNA subsets in mRNP complexes using antibodies to RNA-binding proteins and genomic arrays. Methods, 2002, Vol.26:191-8P
    [202]P. Sanchez-Diaz and L.0. Penalva. Post-transcription meets post-genomic:the saga of RNA binding proteins in a new era. RNA Biol,2006, Vol.3:101-9P
    [203]S. Mili and J. A. Steitz. Evidence for reassociation of RNA-binding proteins after cell lysis:implications for the interpretation of immunoprecipitation analyses. RNA,2004, Vol.10:1692-4P
    [204]V. Brown, P. Jin, S. Ceman, J. C. Darnell, W. T.0'Donnell, S. A. Tenenbaum, X. Jin, Y. Feng, K. D. Wilkinson, J. D. Keene, R. B. Darnell, and S. T. Warren. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell,2001, Vol.107:477-87P
    [205]M. Gama-Carvalho, N. L. Barbosa-Morais, A. S. Brodsky, P. A. Silver, and M. Carmo-Fonseca. Genome-wide identification of functionally distinct subsets of cellular mRNAs associated with two nucleocytoplasmic-shuttling mammalian splicing factors. Genome Biol,2006, Vol.7:R113P
    [206]A. P. Gerber, D. Herschlag, and P.0. Brown. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol,2004, Vol.2:E79P
    [207]H. Hieronymus and P. A. Silver. Genome-wide analysis of RNA-protein interactions illustrates specificity of the mRNA export machinery. Nat Genet,2003, Vol.33:155-61P
    [208]S. Olson, M. Blanchette, J. Park, Y. Savva, G. W. Yeo, J. M. Yeakley, D. C. Rio, and B. R. Graveley. A regulator of Dscam mutually exclusive splicing fidelity. Nat Struct Mol Biol,2007,
    [209]J. Ule, K. Jensen, A. Mele, and R. B. Darnell. CLIP:a method for identifying protein-RNA interaction sites in living cells. Methods,2005, Vol.37:376-86P
    [210]J. Ule and R. B. Darnell. RNA binding proteins and the regulation of neuronal synaptic plasticity. Curr Opin Neurobiol,2006, Vol.16:102-10P
    [211]F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A,1977, Vol.74:5463-7P
    [212]A. M. Maxam and W. Gilbert. A new method for sequencing DNA. Proc Natl Acad Sci U S A,1977, Vol.74:560-4P
    [213]W. J. Ansorge. Next-generation DNA sequencing techniques. N Biotechnol,2009, Vol.25:195-203P
    [214]T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. J Mol Biol,1981, Vol.147:195-7P
    [215]S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search tool. J Mol Biol,1990, Vol.215:403-10P
    [216]W. J. Kent. BLAT--the BLAST-like alignment tool. Genome Res,2002, Vol.12:656-64P
    [217]D. Karolchik, R. M. Kuhn, R. Baertsch, G. P. Barber, H. Clawson, M. Diekhans, B. Giardine, R. A. Harte, A. S. Hinrichs, F.. Hsu, K. M. Kober, W. Miller, J. S. Pedersen, A. Pohl, B. J. Raney, B. Rhead, K. R. Rosenbloom, K. E. Smith, M. Stanke, A. Thakkapallayil, H. Trumbower, T. Wang, A. S. Zweig, D. Haussler, and W. J. Kent. The UCSC Genome Browser Database:2008 update. Nucleic Acids Res,2008, Vol.36:D773-9P
    [218]X. Wang, G. Wang, C. Shen, L. Li, S. Mooney, H. Edenberg, J. Sanford, and Y. Liu. Using RNase sequence specificity to refine the identification of RNA-protein binding regions. BMC Genomics, 2008, Vol.9:S17P
    [219]J. Felsenstein and G. A. Churchill. A Hidden Markov Model approach to variation among sites in rate of evolution.'Mol Biol Evol,1996, Vol.13:93-104P
    [220]A. Siepel, G.Bejerano, J. S. Pedersen, A.S.Hinrichs, M. Hou, K. Rosenbloom, H. Clawson, J. Spieth, L. W. Hillier, S. Richards, G. M. Weinstock, R. K. Wilson, R. A. Gibbs, W. J. Kent, W. Miller, and D. Haussler. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res,2005, Vol.15:1034-50P
    [221]The Gene Ontology project in 2008. Nucleic Acids Res,2008, Vol.36:D440-4P
    [222]J. D. Keene. RNA regulons:coordination of post-transcriptional events. Nat Rev Genet,2007, Vol.8:533-43P
    [223]D. A. Hosack, G. Dennis, Jr., B. T. Sherman, H. C. Lane, and R. A. Lempicki. Identifying biological themes within lists of genes with EASE. Genome Biol,2003, Vol.4:R70P
    [224]S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics,1979,65-70P
    [225]T. Glisovic, J. L. Bachorik, J. Yong, and G. Dreyfuss. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett,2008, Vol.582:1977-86P
    [226]M. Hiller, Z. Zhang, R. Backofen, and S. Stamm. Pre-mRNA secondary structures influence exon recognition. PLoS Genet, 2007, Vol.3:e204P
    [227]M. K. Das and H. K. Dai. A survey of DNA motif finding algorithms. BMC Bioinformatics,2007, Vol.8 Suppl 7:S21P
    [228]T. L. Bailey, N. Williams, C. Misleh, and W. W. Li. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res,2006, Vol.34:W369-73P
    [229]G. E. Crooks, G. Hon, J. M. Chandonia, and S. E. Brenner. WebLogo: a sequence logo generator. Genome Res,2004, Vol.14:1188-90P
    [230]M. Caputi, G. Casari, S. Guenzi, R. Tagliabue, A. Sidoli, C. A. Melo, and F. E. Baralle. A novel bipartite splicing enhancer modulates the differential processing of the human fibronectin EDA exon. Nucleic Acids Res,1994, Vol.22:1018-22P
    [231]J. Ramchatesingh, A. M. Zahler, K. M. Neugebauer, M. B. Roth, and T. A. Cooper. A subset of SR proteins activates splicing of the cardiac troponin T alternative exon by direct interactions with an exonic enhancer. Mol Cell Biol,1995, Vol.15:4898-907P
    [232]X. D. Fu. Specific commitment of different pre-mRNAs to splicing by single SR proteins. Nature,1993, Vol.365:82-5P
    [233]B. R. Graveley, K. J. Hertel, and T. Maniatis. The role of U2AF35 and U2AF65 in enhancer-dependent splicing. RNA,2001, Vol.7:806-18P
    [234]J. D. Kohtz, S. F. Jamison, C. L. Will, P. Zuo, R. Luhrmann, M. A. Garcia-Blanco, and J. L. Manley. Protein-protein interactions and 5'-splice-site recognition in mammalian mRNA precursors. Nature,1994, Vol.368:119-24P
    [235]B. R. Graveley and T. Maniatis. Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing. Mol Cell,1998, Vol.1:765-71P
    [236]L. Cartegni and A. R. Krainer. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet,2002, Vol.30:377-84P
    [237]T. Kashima and J. L. Manley. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet,2003, Vol.34:460-3P
    [238]H. X. Liu, L. Cartegni, M. Q. Zhang, and A. R. Krainer. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes. Nat Genet,2001, Vol.27:55-8P
    [239]C. T. Moseley, P. E. Mullis, M. A. Prince, and J. A. Phillips, 3rd. An exon splice enhancer mutation causes autosomal dominant GH deficiency. J Clin Endocrinol Metab,2002, Vol.87:847-52P
    [240]S. N. Teraoka, M. Telatar, S. Becker-Catania, T. Liang, S. Onengut, A. Tolun, L. Chessa,O. Sanal, E. Bernatowska, R. A. Gatti, and P. Concannon. Splicing defects in the ataxia-telangiectasia gene, ATM:underlying mutations and consequences. Am J Hum Genet,1999, Vol.64:1617-31P
    [241]F. Pagani, E. Buratti, C. Stuani, and F. E. Baralle. Missense, nonsense, and neutral mutations define juxtaposed regulatory elements of splicing in cystic fibrosis transmembrane regulator exon 9. J Biol Chem,2003, Vol.278:26580-8P
    [242]R. Betz, C. Rensing, E. Otto, A. Mincheva, D. Zehnder, P. Lichter, and F. Hildebrandt. Children with ocular motor apraxia type Cogan carry deletions in the gene (NPHP1) for juvenile nephronophthisis. J Pediatr,2000, Vol.136:828-31P
    [243]E. Buratti and F. E. Baralle. Influence of RNA secondary structure on the pre-mRNA splicing process. Mol Cell Biol,2004, Vol.24:10505-14P
    [244]M. Hiller, R. Pudimat, A. Busch, and R. Backofen. Using RNA secondary structures to guide sequence motif finding towards single-stranded regions. Nucleic Acids Res,2006, Vol.34:e117P
    [245]I. Tinoco, Jr. and C. Bustamante. How RNA folds. J Mol Biol,1999, Vol.293:271-81P
    [246]D. H. Mathews. Revolutions in RNA secondary structure prediction. J Mol Biol,2006, Vol.359:526-32P
    [247]I. Tinoco, Jr.,0. C. Uhlenbeck, and M. D. Levine. Estimation of secondary structure in ribonucleic acids. Nature,1971, Vol.230:362-7P
    [248]J. A. Jaeger, D. H. Turner, and M. Zuker. Improved predictions of secondary structures for RNA. Proc Natl Acad Sci U S A,1989, Vol.86:7706-10P
    [249]D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol,1999, Vol.288:911-40P
    [250]I. Hofacker, W. Fontana, P. Stadler, L. Bonhoeffer, M. Tacker, and P. Schuster. Fast folding and comparison of RNA secondary structures. Monatshefte fur Chemie/Chemical Monthly,1994, Vol.125:167-188P
    [251]D. Mathews, M. Disney, J. Childs, S. Schroeder, M. Zuker, and D. Turner. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proceedings of the National Academy of Sciences,2004, Vol.101:7287-7292P
    [252]Y. Ding, C. Y. Chan, and C. E. Lawrence. RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA, 2005, Vol.11:1157-66P
    [253]R. Giegerich, B. Voss, and M. Rehmsmeier. Abstract shapes of RNA. Nucleic Acids Res,2004, Vol.32:4843-51P
    [254]C. B. Do, D. A. Woods, and S. Batzoglou. CONTRAfold:RNA secondary structure prediction without physics-based models. Bioinformatics,2006, Vol.22:e90-8P
    [255]A. Xayaphoummine, T. Bucher, F. Thalmann, and H. Isambert. Prediction and statistics of pseudoknots in RNA structures using exactly clustered stochastic simulations. Proc Natl Acad Sci U S A,2003, Vol.100:15310-5P
    [256]B. Shapiro and J. Navetta. A massively parallel genetic algorithm for RNA secondary structure prediction. The Journal of Supercomputing,1994, Vol.8:195-207P
    [257]E. Bindewald and B. A. Shapiro. RNA secondary structure prediction from sequence alignments using a network of k-nearest neighbor classifiers. RNA,2006, Vol.12:342-52P
    [258]I. L. Hofacker, M. Fekete, and P. F. Stadler. Secondary structure prediction for aligned RNA sequences. J Mol Biol,2002, Vol.319:1059-66P
    [259]E. Freyhult, V. Moulton, and P. Gardner. Predicting RNA Structure Using Mutual Information. Applied Bioinformatics,2005, Vol.4:53P
    [260]B. Knudsen and J. Hein. Using stochastic context free grammars and molecular evolution to predict RNA secondary structure. Bioinformatics,1999, Vol.15:446-454P
    [261]I. Hofacker. Vienna RNA secondary structure server. Nucleic Acids Research,2003, Vol.31:3429P
    [262]S. Siebert and R. Backofen. MARNA:multiple alignment and consensus structure prediction of RNAs based on sequence structure comparisons. Bioinformatics,2005, Vol.21:3352-9P
    [263]J. McCaskill. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 1990, Vol.29
    [264]S. D. Auweter, F. C. Oberstrass, and F. H. Allain. Sequence-specific binding of single-stranded RNA:is there a code for recognition? Nucleic Acids Res,2006, Vol.34:4943-59P
    [265]L. Skrisovska, C. F. Bourgeois, R. Stefl, S. N. Grellscheid, L. Kister, P. Wenter, D. J. Elliott, J. Stevenin, and F. H. Allain. The testis-specific human protein RBMY recognizes RNA through a novel mode of interaction. EMBO Rep,2007, Vol.8:372-9P
    [266]E. Buratti, A. F. Muro, M. Giombi, D. Gherbassi, A. Iaconcig, and F. E. Baralle. RNA folding affects the recruitment of SR proteins by mouse and human polypurinic enhancer elements in the fibronectin EDA exon. Mol Cell Biol,2004, Vol.24:1387-400P
    [267]N. N. Singh, R. N. Singh, and E. J. Androphy. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res,2007, Vol.35:371-89P
    [268]B. R. Grave ley. Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. Cell,2005, Vol.123:65-73P
    [269]S. J. Muh, R. H. Hovhannisyan, and R. P. Carstens. A Non-sequence-specific double-stranded RNA structural element regulates splicing of two mutually exclusive exons of fibroblast growth factor receptor 2 (FGFR2). J Biol Chem,2002, Vol.277:50143-54P
    [270]J. S. McCaskill. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 1990, Vol.29:1105-19P
    [271]B. C. Foat, A. V. Morozov, and H. J. Bussemaker. Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE. Bioinformatics,2006, Vol.22:e141-9P
    [272]J. Kennedy and R. Eberhart. Particle swarm optimization.1995,
    [273]J. Sun, W. Xu, and B. Feng. A global search strategy of quantum-behaved particle swarm optimization.2004
    [274]P. Shannon, A. Markiel,0. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker. Cytoscape:a software environment for integrated models of biomolecular interaction networks. Genome Res,2003, Vol.13:2498-504P
    [275]T. D. Schneider and R. M. Stephens. Sequence logos:a new way to display consensus sequences. Nucleic Acids Res,1990, Vol.18:6097-100P
    [276]J. Ngo, K. Giang, S. Chakrabarti, C. Ma, N. Huynh, J. Hagopian, P. Dorrestein, X. Fu, J. Adams, and G. Ghosh. A sliding docking interaction is essential for sequential and processive phosphorylation of an SR protein by SRPK1. Molecular Cell,2008, Vol.29:563-576P
    [277]J. Hagopian, C. Ma, B. Meade, C. Albuquerque, J. Ngo, G. Ghosh, P. Jennings, X. Fu, and J. Adams. Adaptable Molecular Interactions Guide Phosphorylation of the SR Protein ASF/SF2 by SRPK1. Journal of Molecular Biology,2008, Vol.382:894-909P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700