用户名: 密码: 验证码:
镁基生物材料的表面改性和生物相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物材料与人类身体健康水平和生活质量息息相关,已成为各国经济发展新的增长点。镁基材料有着优越的生物相容性和力学相容性,并具可腐蚀降解,有望成为可降解的金属硬组织替代材料,成为了生物材料领域新的研究热点。
     本研究以镁基材料为对象,对99.99%的纯镁(4N-Mg)以及Mg-Ca系合金在仿生体液中腐蚀降解过程和机制进行了研究。为改善其腐蚀行为和生物活性,对其进行了硬脂酸自组装膜改性处理,并对改性工艺机理和改性后的腐蚀行为进行探讨。为评价镁基材料的生物相容性和成骨行为,对镁基材料进行了溶血率、细胞毒性等体外相容性评价以及全身急性毒性和骨植入试验的体内相容性评价。
     方法:
     ①使用模拟人体生理环境的仿生体液(SBF),对铸态4N-Mg和自行熔炼的铸态Mg-Ca系合金进行体外浸泡研究。利用XRD、SEM、EDS、FTIR、原子吸收光谱、电化学分析系统等设备和手段,分析讨论其腐蚀过程、速度和机制。
     ②使用硬脂酸自组装膜(SAM)改性方法对4N-Mg以及Mg-0.88Ca进行改性处理研究。首先通过正交试验筛选了包括试样的前处理方法、硬脂酸浓度和在硬脂酸乙醇溶液中的浸泡时间等工艺参数并进行验证;然后对所选用的高浓度短时间浸泡的方法与传统的低浓度长时间浸泡方法进行对比研究,并比较了SAM改性后再进行超声清洗的改性层的抗腐蚀性能。以最优工艺对4N-Mg以及Mg-0.88Ca进行改性处理,对改性后试样的腐蚀过程进行研究。
     ③对SAM改性前后的4N-Mg和Mg-0.88Ca材料的浸提液以及未处理4N-Mg浸提液的稀释液,依照ISO 10993.4的标准进行溶血率测试,并分析pH值、溶液中的镁离子浓度与溶血率关系。
     ④以L929成纤维细胞和MC-3T3E1成骨细胞与4N-Mg和Mg-0.88Ca材料的浸提液和未处理4N-Mg浸提液的稀释液,进行MTT细胞毒性测试,并测定稀释浸提液中的镁离子浓度。再以成骨细胞与SAM改性前后的4N-Mg和Mg-0.88Ca材料共培养,讨论材料对细胞增殖和活性状态的影响。
     ⑤对SAM改性前后4N-Mg浸提液作全身急性毒性试验,以纯种小白鼠为对象施以腹腔注射,给药后7d内观察小鼠的症状和活动状况以及体重变化。
     ⑥将SAM改性前后的4N-Mg和Mg-0.88Ca材料以及Ti6Al4V对照样植入白兔股骨,植入后各组2周、6周、12周时任取1只处死。进行X线片检查,血镁浓度测试,并对标本进行扫描电镜(SEM)观察、能谱分析(EDS)以及组织切片光镜观察。
     结果:
     ①未处理4N-Mg和Mg-Ca系合金研究
     1)Mg-0.88Ca、Mg-1.42Ca、Mg-2.0Ca三种镁钙合金中,钙含量最低的Mg-0.88Ca在SBF中显示较好的耐腐蚀性,4N-Mg显示更强的腐蚀抗力; 4N-Mg及Mg-0.88Ca损伤形式主要是腐蚀坑和网状裂纹,后者在个别处有颗粒腐蚀脱落的局部不均匀腐蚀现象;试样表面被Mg(OH)2、HA、CaMg(CO3)2等白色颗粒和微小的半球状的沉积物覆盖。
     2)E-pH图分析表明,当pH值超过11.38后纯镁才进入到钝化区。SBF中HCO3-、HPO42-等阴离子也可以与镁发生反应导致其腐蚀。4N-Mg及Mg-0.88Ca材料细胞毒性满足要求,没有引起全身急性毒性反应,但溶血率不合要求。
     ②在0.5 mol/L硬脂酸乙醇溶液中浸泡1.5h所得自组装膜经过超声清洗后,对4N-Mg及Mg-0.88Ca的抗腐蚀行为有明显提高。其耐蚀性要优于在稀溶液中长时间浸泡所得膜层,并显示出更好的生物活性。其细胞毒性和溶血率均满足对生物材料的要求。对成骨细胞增殖的促进作用超过未处理试样,没有引起全身急性毒性反应。
     ③在本实验条件下,当pH值不超过10.61,Mg2+浓度不超过42mg/L时,溶液的溶血率不超过5%。Mg2+浓度小于202.5mg/L满足细胞毒性要求,而Mg2+为不超过156.2mg/L的稀释浸提液对成骨细胞增殖显示出促进作用。
     ④骨内植入试验中,动物血镁浓度均在正常值范围之内。镁基植入材料显示出较好的骨结合性和骨诱导性,新生骨组织矿化明显,新生骨层上有排列整齐的骨细胞。未改性材料降解快于改性材料,成骨活性上未见明显差别。结果表明镁基材料初步显示了较好的骨诱导性能,证实了SAM对镁基材料腐蚀降解的调控作用。
Biomaterials not only have important social effect in bettering the living quality of human beings, improving their health and saving their lives, but also become a new growth point in economic and scientific-technological areas. The potential worth of magnesium in biomaterials field has caused great interests of research, for its excellent biocompatiblity and similar mechnical properties to bone. Moreover, magnesium-based materials can become novel degradable biomaterials making use of its corrodibility.
     In this paper, the corrosion degradation process and mechanism of 4N-Mg and Mg-Ca alloys in SBF were studied. In order to improve the corrosion behavior and biological activity of Mg-based materials, surface modification of self-assembled monolayers (SAM) using of stearic acid was studied, meanwhile the mechanism of SAM and the corrosion behavior of samples were studied. To evaluate the biocompatibility and behavior of bone healing of Mg-based materials, the biocompatibility tests in vitro such as hemolysis ratio, cytotoxicity, and systemic acute toxicity and in vivo test were taken.
     Methods:
     ①Simulated body fluid (SBF) which closed to inorganic composition of human plasma was used to immerse casting 4N-Mg alloy which contains 99.99 % magnesium and casting Mg-Ca alloys. Electronic balance, Scanning electron microscope (SEM), energy dispersive x-ray spectroscopy (EDS), X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) and digital electronic pH meter and atomic absorption spectrometry were used to analysis the corrosion process, corrosion rate and mechanism.
     ②Modification treatment was carried out for 4N-Mg and Mg-0.88Ca alloy by stearic acid alcohol solution SAM. Firstly, pre-treatment method, concentration of stearic acid, the time immersing in stearic acid solution were determined by orthogonal test. Secondly, high concentration and short time immersing method was compared with traditional low concentration and long time immersing one, and corrosion resistant property was also compared for the samples being SAM modified and by supersonic cleaned. 4N-Mg and Mg-0.88Ca alloy was modified by SAM method and the corrosion process of samples were studied.
     ③According to ISO 10993.4 standard to test the rate of hemolysis of 4N-Mg and Mg-0.88Ca alloy with and without modified by SAM, and the relationship between pH value and concentration of Mg2+ ion with hemolysis were analysis..
     ④L929 fibroblast and Osteoblast cell were employed to co-cultrue with the extracts of 4N-Mg and Mg-0.88Ca alloy, and MTT cytotoxicity tests were done and the concentration of Mg2+ ion is measured. Cytotoxicity of Mg-based materials was further evaluated by direct contact method, 4N-Mg and Mg-0.88Ca alloy SAM modified before and after were cultured with Osteoblast cell, and the effects of material on reproduction and activity of cell were discussed.
     ⑤Acute toxicity test was done by extracts of 4N-Mg with and without SAM modified. The experiment was carried out on mice, and they were injected into the abdominal cavity. Symptom, moving state and weight change of mouse were observed and recorded within 7 days after injection.
     ⑥In vivo test was carried on white rabbit’s, and the 4N-Mg and Mg-0.88Ca alloy with and without SAM modified were embedded in thigh bone. Examination by X ray method and the concerntration of Mg2+ ion in blood were done after 2, 6, and 12 weeks, respectively. The specimens were analyzed by SEM and EDS, and tissue slices were observed by optical microscope.
     Conclusions:
     ①Research on untreated 4N-Mg and Mg-Ca alloy
     1) 4N-Mg alloy had better corrosion resistance property than Mg-Ca alloy. And Mg-0.88Ca has the lowest corrosion speed among Mg-0.88Ca, Mg-1.42Ca and Mg-2.0Ca. The form of crrosion mainly exhibited the corrosion pit and the crack.
     2) Though the analyse of the E-pH chart, only when the pH is higher than 11.38 the magnesium come into the passive region.The anion such as HCO3-、HPO42- in the SBF also could induce the corrosion of magnesium.
     3) The rate of hemolysis of 4N-Mg and Mg-0.88Ca alloy was not qualified, and cytotoxicity of 4N-Mg and Mg-0.88Ca alloy meet the demand of biomaterial.
     ②The SAM which formed on 4N-Mg and Mg-0.88Ca in the 0.5 mol/L ethanol slution of stearic acid after soaked 1.5h had the best effect to the behavior of anti-corrosion to the samples. The SAM which formed in the higher concentration of stearic acid slution after little soaking time excelled in the one which formed in the lower concentration of stearic acid slution after long soaking time, and showed better bioactivity. The hemolysis and cytotoxicity of those samples treated by SAM were qulified,and had not iduced acute toxicity.
     ③In my test, the extract which pH under 10.61 and concentration of Mg~(2+) ion not exceed 42 mg/L, the hemolysis rate was qualified, and the exacts while the concentration of Mg~(2+) ion equal to 202.5mg/L met the cytotoxicity requirement, while no more than 156.2mg/L promoted the cell proliferation.
     ④In vivo study, the magnesium concentration in blood of two groups of animal subjects were in the normal scale, Mg-based materials have good bone inducement and showed better capabilty of contact with bone. The new bone mineralizes obviously on the interface. And on the new bone, the osteoclast cells array orderly. Untreated magnesium corroded faster than SAM treated magnesium-based materials. All results indicated that Mg-based materials showed better biocompobility and the capacity of inducing new bone, proved that SAM had an effect on controlling corrsion rate of Mg-based materials.
引文
[1]崔福斋,冯庆玲.生物材料学[M].北京:科学出版社,1996.
    [2]俞耀庭,张兴栋.生物医用材料学[M].天津:天冿大学出版社,2000.
    [3]李世普.生物医用材料导论[M].武汉:武汉工业大学出版社,2000.
    [4]陈锡民.外科植入物用不锈钢工艺及性能研究[J].上海钢研,2003,2:8-18.
    [5]张恩科,李宪军,李全义.不锈钢植入物材料及其抗腐蚀性能探讨[J].医疗设备信息,2001,11:36-38.
    [6] J. A. Disegil,L. Eschbachz.stainless steel in bone surgery [J]. Injury, 2000,31(S4): D2-D6.
    [7] Mfini,N. Nicoli Aldini,et al. A new austenitic stainless steel with negligible nickel content: an in vitro and in vivo comparative investigation [J]. Biomaterials,2003,24(27): 4929-4939.
    [8]顾汉卿.生物材料的现状及发展(四)[J].中国医疗器械信息,2001,7(6):39-44.
    [9] Lucien Reclarua,Heinz Lu thyb ,et al. Corrosion behaviour of cobalt–chromium dental alloys doped with precious metals [J]. Biomaterials ,2005,26:4358–4365.
    [10]冯颖芳,康浩方,张震.钛合金医用植入物材料的研究及应用[J].稀有金属, 2001,25(5):349-354.
    [11]何宝明,王玉林,戴正宏.生物医用钛及其合金材料的开发应用进展、市场状况及问题分析[J].钛工业进展,2003,20(4-5):82.87.
    [12] Lin Chia-Wei,Ju Chien-Ping,Chern Lin,Jiin-Huey . A comparison of the fatigue behavior of cast Ti–7.5Mo with c.p. titanium Ti–6Al–4V and Ti–13Nb–13Zr alloys [J]. Biomaterials,2005,26(16):2899-2907.
    [13] Long Marc, Rack H.J. Titanium alloys in total joint replacement—a materials science perspective[J]. Biomaterials,1998,19(18):1621-1639.
    [14] Wang J, Layrolle P,et al. Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment [J]. Biomaterials,2004,25(4): 583-592.
    [15]孙奇,杨海波,Ching-Yu Tyan.植入金属和形状记忆合金[J].稀有金属材料与工程,1994,23(1):69-73.
    [16]夏亚一,陈峰,王天民.镍钛形状记忆合金性能及生物相容性研究进展[J].生物骨科材料与临床研究,2004,1(3):31-33.
    [17] Bogdanski D,Manfred K. Dietmar M. et al. Easy assessment of the biocompatibility of Ni–Ti alloys by in vitro cell culture experiments on a functionally graded Ni–NiTi–Ti material [J]. Biomaterials,2002,23: 4549-2555.
    [18] Ryhanen J,Niemi E,Serlo W,et al. Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior inhuman cell cultures [J]. J Biomed Mater Res,1997,35: 451-457.
    [19] Ryhanen J, Kallioinen M,Tuukkanen J,et al. Bone modeling and cell–material interface responses induced by nickel–titanium shape memory alloy after periosteal implantation [J]. Biomaterials,1999,20(14):1309-1317.
    [20] Takeshita F,Takata Y,Ayukawa T,Suetsugu H. Histomorphometric analysis of the response of rat tibiae to shape memory alloy (nitinol)[J].Biomaterials,1997,18(1) :21-25.
    [21] Berger-Gorbet MB,Broxup C,Rivard LH. Biocompatibility testing of NiTi screws using immunohistochcmistry on sections containing metallic implants [J]. J Biomed Mater Res,1996,32 (2) :243.
    [22]李关芳.医用贵金属材料的研究与发展[J].贵金属,2004 ,25(3):54-61.
    [23] McBride ED. Absorbable metal in bone surgery [J]. Journal of the American Medical Association,1938, 111(27): 2464-2467.
    [24] McCord CP, Chemical gas gangrene from metallic magnesium [J]. Industrial Medicine, 1942, 1(2): 71-79.
    [25]张忠诚,徐祗云,张素洁.镁与人体健康[J].微量元素与健康研究,2007,23(4):67-69.
    [26]黄琴,梁惠,杜凤沛.镁的生理与临床应用[J].微量元素与健康研究,2005,22(2):61-63.
    [27] Vormann J. Magnesium: nutrition and metabolism[J]. Mol Aspects Med 2003,24:27–37.
    [28] Okuma T. Magnesium and bone strength [J].Nutrition 2001,17:679–80.
    [29] Robert M. McLean M.D. Magnesium and its therapeutic uses: A review [J]. The American Journal of Medicine, 1994, 96(1): 63-76.
    [30] Mark P. Staigera, Alexis M. et al, Pietak. Magnesium and its alloys as orthopedic biomaterials: A review [J]. Biomaterials,2006, 27: 1728–1734.
    [31] Lambotte A. L’utilisation du magnesium comme materiel perdu dans l’osteosynthe` se. [J] Bull Mem Soc Nat Chir, 1932, 28: 1325-1334.
    [32] McBride ED. Absorbable metal in bone surgery. [J]. J Am Med Assoc, 1938, 111:2464-2467.
    [33] Troitskii VV, Tsitrin DN. The resorbing metallic alloy‘Osteosinthezit’as material for fastening broken bone. [J]. Khirurgiia, 1944, 8: 41-44.
    [34] Znamenskii MS. Metallic osteosynthesis by means of an apparatus made of resorbing metal. [J].Khirurgiia, 1945, 12:60-63.
    [35] Kuwahara H., et al., Surface reaction of magnesium in Hank's solutions [J]. Materials Science Forum, 2000, 350:349-358.
    [36]高家诚,伍沙,乔丽英,等.镁及镁合金在仿生体液中的腐蚀降解行为[J].中国组织工程研究与临床康复,2007,11(18):3584-3586.
    [37] Muller, Wolf Dieter. et al. Magnesium and its alloys as degradable biomaterials.Corrosion studies using potentiodynamic and EIS electrochemical techniques[J]. Materials Research, 2007,10(1):5-10.
    [38]任伊宾,黄晶晶,等.纯镁的生物腐蚀研究[J].金属学报,2005,41(11):1228-1232.
    [39] Ren, Yibin. et al., Study of biodegradation of pure magnesium[J]. Key Engineering Materials, 2007, 342.343: 601-604.
    [40] Guangling Song,Control of biodegradation of biocompatible magnesium alloys[J]. Corrosion Science, 2007, 49: 1696–1701.
    [41] Kuwahara H., et al., Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank's solution [J]. Materials Transactions, 2001, 42(7): 1317-1321.
    [42] Al-Abdullat Y., et al., Surface modification of magnesium by NaHCO3 and corrosion behavior in Hank's solution for new biomaterial applications [J]. Materials Transactions, 2001, 42(8): 1777-1780.
    [43] Longchuan Li, Jiacheng Gao, Evaluation of cyto-toxicity and corrosion behavior of alkali-treated magnesium in simulated body fluid [J]. Surface and coating technology, 2004, 185(1):92-98.
    [44] GAO Jia-cheng,QIAO Li-ying, et al,Hemolysis effect and calcium-phosphate precipitation of heat-organic-film treated magnesium[J].Trans. Nonferrous Met. SOC. China,2006,16(3):539-544.
    [45] Jiacheng Gao, et al. Surface Modification of Magnesium with Rare Earth Conversion Films for Biomedical Protection [J]. Materials Science Forum, 2007, 546-549:601-604.
    [46] Erlin Zhang , Liping Xu, Ke Yang. Formation by ion plating of Ti-coating on pure Mg for biomedical applications [J]. Scripta Materialia,2005,53:523–527.
    [47] Liu, Chenglong, et al., Corrosion resistance of titanium ion implanted AZ91 magnesium alloy.Journal of Vacuum Science and Technology A: Vacuum [J]. Surfaces and Films, 2007, 25(2):334-339.
    [48] Chenglong Liu a, Yunchang Xin. Corrosion behavior of AZ91 magnesium alloy treated by plasma immersion ion implantation and deposition in artificial physiological fluids [J]. Thin Solid Films, 2007, 516(2.4): 422–427.
    [49] Witte F. et al., In vivo corrosion of four magnesium alloy and the associated bone response [J]. Biomaterials, 2005, 26(17):3557-3563.
    [50] Witte F. et al., In vitro and in vivo corrosion measurements of magnesium alloys [J]. Biomaterials, 2006, 27:1013–1018.
    [51] Duygulu, O. et al., Investigation on the potential of magnesium alloy AZ31 as a bone implant[J]. Materials Science Forum, 2007, 546-549(1 ): 421-424.
    [52]徐丽萍,张二林,杨柯.医用可降解镁合金体外体内的降解[C].中国材料研究学会2006年会,北京,2006.
    [53] Liying Qiao, Jiacheng Gao, Yong Wang et al. Biocompatibility Evaluation of Magnesium-based Materials [J]. Materials Science Forum, 2007, 546-549:459-462.
    [54]黄晶晶,任伊宾等.镁及镁合金的生物相容性研究[J].稀有金属材料与工程, 2007, 36(6): 1102-1105.
    [55] Serre CM, Papillard M, Chavassieux P, Voegel JC, Boivin G.Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts[J]. J Biomed Mater Res,1998,42:626–33.
    [56] LIU Xi-qin,LIU Zi-li. Preparation and characterization of porous magnesium materials[J].中国有色金属学会会刊(英文版),2006 ,16(23):1859-1863.
    [57] Wen,C.E.Porous bioresorbable magnesium as bone substitute[J]. Materials Science Forum, 2003, 419-422(II): 1001-1006.
    [58] WenCE, YamadaY, ShimojimaK, et al. Compressibility of porous magnesium foam: dependency on porosity and pore size [J]. Mater Lett, 2004, 58:357.
    [59]沈剑,凤仪,等.多孔生物镁的制备与力学性能研究[J].金属功能材料,2006,13(3):9-13.
    [60] Witte.F, et al. Biodegradable magnesium scaffolds: Part I: Appropriate inflammatory response [J]. Journal of Biomedical Materials Research - Part A, 2007, 81 (3):748-756.
    [61] Witte.F, et al.Biodegradable magnesium scaffolds: Part II: Peri-implant bone remodeling [J]. Journal of Biomedical Materials Research Part A: 757-765.
    [62] Frank Witte. etal Biodegradable magnesium–hydroxyapatite metal matrix composites[J]. Biomaterials, 2007, 28 : 2163–2174.
    [63] Masayuki Okazaki, New type seaffold biomaterials with magnesium accelerating osteoblast adhesion and bone formation [J]. J Oreal Tissue Engin, 2004, 1(1): 31-40.
    [64] Zreiqat,H. et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants [J]. Journal of Biomedical Materials Research, 2002, 62,(2): 175-184.
    [65] Zreiqat,H. et al. Zinc/magnesium incorporation into titanium implants triggers signal transduction and bone formation in primary human osteoblast[C]. Transactions - 7th World Biomaterials Congress, 2004, p 611.
    [66] C. R. Howlett, H. Zreioat. etal. The effect of magnesium ion implantation into alumina upon the adhesion of human bone derived cells [J]. Journal of Materials Science: Materials in Medicine, 1994, 5: 715-722.
    [67] Y.Z. Wan. Effect of Mg ion implantation on calcium phosphate formation on titanium[J]. Surface & Coatings Technology 201 (2006) 2904–2909.
    [68] H. Liang Bioactivity of Mg-ion-implanted zirconia and titanium [J]. Applied Surface Science, 2007, 253:3326–3333.
    [69] Hinton R B W. Corrosion inhibition with rare earth metal salts [J]. J of Alloys and Compounds, 1992, 180:15-25.
    [70] Rudd A L,Breslin C B,MansfeldF. The corrosion protection afforded by rare earth conversion coatings applied to magnesium [J]. Corrosion Science, 2000, 42:275-288.
    [71] M. Dabala, K. Brunelli, E. Napolitani, M. Magrini, Cerium-based chemical onversion coating on AZ63 magnesium alloy [J]. Surface & Coatings Technology, 2003,172 (2.3) 227–232.
    [72]许越,陈湘,吕祖舜,等.AZ91镁合金表面稀土转化膜的制备及耐蚀性能研究[J].中国稀土学报,2005,23(1):40-43.
    [73] K. Brunelli, M. Dabala,I. Calliari, et al. Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys [J]. Corrosion Science,2005,47 (4):989–1000.
    [74] Zhang Yong-jun,Yan Chuan-wei, wang Fu hui,et al. Study on the enviromentally friendly anodizing ofAZ91D magnesium alloy [J]. Surface and Coating Technology 2002, 161: 36-43.
    [75] Portinha A,Teixeira V, Cameiro J,et al. Residual stresses and elastic modulus of thermal barrier coatings graded in porosity [J].Surface and Coatings Technology,2004,188/189:120-128.
    [76]张先锋,蒋百灵.能量参数对镁合金微弧氧化陶瓷层耐蚀性的影响[J].腐蚀科学与防护技术,2005,17(3):141-143.
    [77]王立世,蔡启舟,魏伯康,等.硅酸盐和磷酸盐电解液中AZ91D镁合金微弧氧化的成膜特性[J].金属热处理,2005,30(4):17-20.
    [78] Terleeva O P, Belevantsev V I, Slonova A I. Types of Discharges in Electrochemical Microplasma Processes [J]. Protection of Metals,2003,39(1): 50-54.
    [79]高引慧,李文芳,杜军,等.镁合金微弧氧化黄色陶瓷膜的制备和结构研究[J].材料科学与工程学报,2005,23(4):542-545.
    [80] Jun Liang, Baogang Guo, Jun Tian,Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy[J]. Applied Surface Science,2005,252:345–351.
    [81]张文毓.耐蚀镁合金研究与应用[J].轻金属. 2007(8):40-43.
    [82] G ray J E, LuanB. Protective coationgs on magnesium and its alloys一a critical review[J] Journal of Alloys and Compounds, 2002,336: 88-113.
    [83]韦春贝,张春霞,田修波,等.镁合金表面耐蚀改性技术[J]轻合金加工技术,2004,32(6):6-11.
    [84] AHWang, TMYue. YAG Lase Cladding of an Al-Si Alloy onto an Mg/SiC Composite for the Improvement Corrosion Resistance[J].Composites Science and Technology, 2001, 61: 1549-1554.
    [85] BrucknerJ, GunzelR, RichterE, MollerW. Metal Plasma Immersion Ion Implantation and Deposition (MPIIID): Chromium on Magnesium [J].Surface and Coatings Technology, 1998, 103/104:227-230.
    [86] Ulman A. An Introduction to Organic Ultra Thin Films [M]. Boston: Academic Press, 1991:237-238.
    [87] Ulman A.Chem .Rev. Formation and structure of self-assembled monolayers [J]. 1996, 96:1533-1554.
    [88] Poirier G. E.,Pylant E. D. The Self-Assembly Mechanism of Alkanethiols on Au (111) [J]. Science, 1996, 272:1145-1148.
    [89] Sung M M, Sung K, Kim C G, et al.Self-assembled monolayers of alKanethiols on oxidized copper surfaces [J].J Phys Chem B, 2000, 104:2273-2277.
    [90] Kim H K,Lee J P,Park C R,et al. Thermal decomposition of alkylsi Loxane self-assembled monolayers in Air[J].J Phys Chem B,2003,107:4348-4351.
    [91] Nakagawa T,Soga M.Contact Angle and Atomic Force Microscopy Study of Reactions of n-Alkyltrichlorosilanes with Muscovite Micas Exposed to Water Vapor Plasmas with Various Power Densities[J].Japnese Journal of Applled.Physics,1997,36:6915-6921.
    [92] Gauthier S., AimeJ. P.,Bouhacina T. et al.. Gauthier S,Aime J P,Bouhacina T,et al.Study of Grafted Silane Molecules on Silica Surface with an Atomic Force Microscope [J] .Langmuir,1996,12:5126-5137.
    [93]徐国华, Higashitani Ko. OTS自组装单分子膜在玻璃表面形成过程的AFM研究[J].高等学校化学学报,2000, 21(8):1257-1260.
    [94] Gauthier S, Aime J P, Bouhacina T,et al. Study of grafted silane molecules on silica surface with an atomic force microscope [J].Langmuir, 1996, 1 2: 5126-5137.
    [95] Allara D. L., Nuzzo R. G.. Spontaneously Organized Molecular Assemblies. 1. Formation, Dynamics, and Physical Properties of Alkanoic Acids Adsorbed from Solution on an Oxidized Aluminum Surface [J]. Langmuir, 1985, 1: 45-52.
    [96] Chen P. J., Wallace R. M. Thermal properties of perfluorinated n-alkanoic acids self-assembled on native aluminum oxide surfaces [J]. .J. Vac. Sci. Technol .A. 1998, 16: 700-706.
    [97]吴进明,早川.钛金属表面生物陶瓷涂层研究的现状[J].硅酸盐学报,2003, 31( 7):692-697.
    [98]杨俊,综述,李志安,等.钛基羟基磷灰石涂层制备方法[J].临床口腔医学杂志,2004, 20(6):382-383.
    [99] Tao S, Ji H, Ding C. Effect of vapor-flame treatment on plasma sprayed hydroxyapatite coatings [J]. J Biomed Mater Res, 2000,52 : 572-575.
    [100] Zheng Xuebin , Huang Minhui , Ding Chuanxian. Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings [J]. Biomaterials,2000,21(8):841-849.
    [101] Choi Jae-Man,Kim Hyoun-Ee,Lee In-Seop. Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate[J].Biomaterials,2000,21(5):469-473.
    [102] Qing Liu,The role of surface functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique[J].Biomaterials,2002,23:3103-3111.
    [103] WeiQi Yan.eta1.Apatite layer-coated titanium for use as bone bonding implants [J]. Biomaterials,1997,18:l185-l190.
    [104] Tanahashi M,Matsuda T.Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid[J].J Biomed Mater Res,1997,34(3):305-315.
    [105] Campell A A,Fryxell GE,Linehan JC,et al. Surface-induced mineralization: A new method for producing calcium phosphate coatings [J]. J Biomed Mater Res,1996,32(1):111-118.
    [106] C.L. Ma, H.B. Lu, R.Z. Wang, et a1.Comparison of controlled crystallization of calcium phosphates under three kinds of monolayers [J]. Journal of Crystal Growth,1997,173 :141-149.
    [107] Zamborimi Francis P, Crooks Richard M.Corrosion Passivation of Gold by n-Alkanethiol Self-assembled Monolayers: Effect of Chain Length and End Group [J].Langmuir, 1998, 14:3279-3286.
    [108] Miki Itoh, Hiroshi Nishihara, Kunitsugu Aramki. The Protection Ability of 11-Mercapto-1-undecanol Self-assembled Monolayer Modified with Alkyltrichlorosilanes Against Corrosion of Copper [J].J.Electrochem.Soc, 1995, 142(6):1839-1846.
    [109] Sung M M,Carlo Carraro, Yauw O W,et al. Reversible liquid-liquid rransitions in the early stages of monolayer self-assembly [J].J Phys Chem B, 2000, 104:1556-1559.
    [110] Aramaki Kunisugu, Shimura Tadashi. Self-assembled monolayers of carboxylate ions on passivated iron for preventing passive film break-down [J].Corrosion Science, 2004, 46:313-328.
    [111]王宁,丁克强,童汝亭,等.希夫碱自组装单分子膜的电化学行为[J].物理化学学报,2002,18(9):846-849.
    [112]全贞兰,陈慎豪,华兰,等.希夫碱在铜表面上的自组装膜的STM和XPS研究[J].科学通报,2001,46(19):1618-1621.
    [113]孔德生,万立骏,陈慎豪,等.金属表面缓蚀剂自组装单分子膜的STM研究进展[J].腐蚀与防护,2003,24(10):415-420.
    [114] Elwards A, Osborne C, Webster S, et al. Mechanistic studies of the corrosion inhibitor oleic imidazoline [J]. Corros. Sci., 1994, 36: 315-325.
    [115] Seal S, Sapre K, Kale A, et al. Effect of multiphase flow on corrosion of C-steel in presence of inhibitor: a surface morphological and chemical study [J]. Corros. Sci., 2000, 42:1623-1634.
    [116] San-Miguel M A, Rodger P M. The effect of corrosion inhibitor films on deposition of wax to metal oxide surfaces [J] .Journal of Molecular Structure: Theochem, 2000, 506: 263-272.
    [117] Melissa J, David K. A second-harmonic generation study of a corrosion inhibitor on a mild steel electrode [J]. Journal of Electroanalytical Chemistry, 1992, 340:301-313.
    [118]李久青,杜翠薇.腐蚀试验方法及监测技术[M].北京:中国石化出版社,2007.
    [119]陆树荪,顾开道,郑来苏.有色铸造合金及熔炼[M].北京:国防工业出版社,1983.
    [120]宋光铃,镁合金腐蚀与防护[M].北京:.化学工业出版社,2006.
    [121]王正烈,周亚平等.物理化学[M].北京:..高等教育出版社,2001.
    [122]李荻.电化学原理[M].北京:京航空航天大学出版社,1999.
    [123] Mayumi Iijima, Hideo Kamemizu, etc. Effects of Ca addition on the formation of octacalcium phosphate and apatite in solution at pH 7.4 and at 37℃[J] Journal of Crystal Growth 1998, 193: 182-188.
    [124] Y. Doi, T. Shibutani, Y. Moriwaki, T. Kajimoto, Y. Iwayama. Sintered carbonate apatites as bioresorbable bone substitutes [J]. J Biomed Mater Res, 1998, 39:603–610.
    [125] W. Kibalczyc, J. Christoffersen, M. R. Christoffersen, A. Zielenkiewicz and W. Zielenkiewicz. The effect of magnesium ions on the precipitation of calcium phosphates [J]. Journal of Crystal Growth,1990, 106:355-366.
    [126] Barrere F, Layrolle P, vanBlitterswijk CA, deGroot K. Biomimetic calcium phosphate coatings on ti6al4v: a crystal growth study of octacalcium phosphate and inhibition by Mg2+ and HCO3-.[J]. Bone, 1999, 25(2): 107S-111S.
    [127] Abbona F, Baronnet A. A XRD and TEM study on the transformation of amorphous calcium phosphate in the presence of magnesium [J]. Journal of Crystal Growth, 1996, 165(1-2): 98-105.
    [128] TenHuisen KS, Brown PW. Effects of magnesium on the formation of calcium-deficient hydroxyapatite from CaHPO4·2H2O and Ca4(PO4)2O [J]. Journal of Biomedical Materials Research, 1997, 36(3): 306-314.
    [129] F. Barrere, C.A van Blitterswijk, K. de Groot, P. Layrolle, Nucleation of biomimetic Ca-Pcoatings on Ti6Al4V from a SBF_5 solution: influence of magnesium [J]. Biomaterial, 2002, 23:2211–2220.
    [130] J.G. Kim and Y.-W. Kim. Advanced Mg-Mn-Ca sacrificial anode materials for cathodic protection [J]. Materials and Corrosion, 2001, 52: 137-139.
    [131] Lj.M. Vra car, D.M. Dra zi .Adsorption and corrosion inhibitive properties of some organic molecules on iron electrode in sulfuric acid [J]. Corrosion Science,2002,44:1669–1680
    [132] Longchuan Li, Jiacheng Gao. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid [J]. Surf Coat Tech. 85 (2004) 92-98.
    [133] Kjell Oberg, Per Persson, Andrei Shchukarev, Bertil Eliasson. Comparison of monolayer films of stearic acid and methyl stearate on an Al2O3 surface [J]. Thin Solid Films, 2001, 397:102-108.
    [134]杨林马晓明,等.有机分子在基底上的自组装及其在仿生材料合成中的应用[J].化学通报, 2002,2:101-106.
    [135] Aramaki Kunisugu, Shimura Tadashi. Self-assembled monolayers of carboxylate ions on passivated iron for preventing passive film break-down [J].Corrosion Science, 2004, 46:313-328.
    [136] Xiuyu Liu, Shenhao Chen.etc. Protection of iron corrosion by stearic acid and stearic imidazoline self-assembled monolayers [J]. Applied Surface Science,2006,253:814–820.
    [137] Kunitsugu Aramaki, Tadashi Shimura.Preparation of a two-dimensional polymer film on passivated iron by modification of a carboxylate ion self-assembled monolayer with alkyltriethoxysilanes for preventing passive film breakdown [J]. Corrosion Science,2005,47: 1582–1597.
    [138] Yu-Tai Tao, Geoffrey D. Hietpas, David L. Allara. HCl Vapor-Induced Structural Rearrangements of n-Alkanoate Self-Assembled Monolayers on Ambient Silver, Copper, and Aluminum Surfaces [J]. J. Am. Chem. Soc., 1996, 118 (28): 6724 -6735.
    [139] E.E. Oguzie, C. Unaegbu. etc. Inhibition of mild steel corrosion in sulphuric acid using indigo dye and synergistic halide additives [J]. Materials Chemistry and Physics, 2004, 84: 363–368.
    [140] S.S. Abd El Rehim, Magdy A.M. Ibrahim, K.F. Khalid. The inhibition of 4-(2’-amino-5’-methylphenylazo) antipyrine on corrosion of mild steel in HCl solution. [J] Materials Chemistry and Physics, 2001, 70: 268–273.
    [141] Tanahashi M, Matsuda, T. Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid [J]. J Biomed Mater Res, 1997, 34:305-315.
    [142] Qing Liu,The role of surface functional groups in calcium phosphate nucleation on titaniumfoil: a self-assembled monolayer technique[J].Biomaterials,2002,23:3103-3111
    [143]郝和平.医疗器械生物学评价标准实施指南[M].北京:中国标准出版社.2000..
    [144]中华人民共和国国家标准[S].GB/T 16886.4-2003/ISO 10993.4:2002.
    [145]中华人民共和国国家标准[S].GB/T 16886.5-2003/ISO 10993.5:1999.
    [146] Richardson RR, Miller JA, Reichert WM. Polyimides as biomaterials: preliminary biocompatibility testing [J]. Biomaterials. 1993, 14(8):627-35.
    [147] Itakura Y,Kosugi A, Sudo H, et al. Development of a new system for the biocompatibility of implant materials using an osteogenic cell line (MC3T3.E1) [J]. J Biomed Mater Res. 1988,2(7):613-622.
    [148] Evangelos Tziampazis, Joachim Kohn, Prabhas V. Moghe. PEG-variant biomaterials as selectively adhesive protein templates: model surfaces for controlled cell adhesion and migration [J]. Biomaterials, 2000, 21(5): 511-520.
    [149] Masayuki Okazaki, New type seaffold biomaterials with magnesium accelerating osteoblast adhesion and bone formation [J] J Oreal Tissue Engin., 2004, 1(1): 31-40.
    [150] Frank Witte. etal Biodegradable magnesium–hydroxyapatite metal matrix composites[J]. Biomaterials, 2007, 28: 2163–2174.
    [151] YY/T 0244-1996口腔材料生物试验方法:短期全身毒性试验,经口途径[S].
    [152] ISO 10993.11生物材料和医疗器械生物学评价标准:全身毒性试验[S].
    [153] Hooper KA, Macon ND, Kohn J. Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation [J].J Biomed Mater Res 1998, 41(3):443-54.
    [154] ASTM F750-87(2002)e1:Standard Practice for Evaluating Material Extracts by Systemic Injection in the Mouse[S].
    [155] GB/T 16886.5-2003/ISO 10993.5:1999医疗器械生物学评价第部分:体外细胞毒性试验[S].
    [156]张忠诚,徐祗云,张素洁.镁与人体健康[J].微量元素与健康研究,2007,23(4):67-69.
    [157]邵美贞.镁的基础与临床[M].四川:四川出版集团/四川科学技术出版社,2005
    [158]唐晓军.天然羟基磷灰石/壳聚糖复合材料生物学特性的实验研究[D],博士学位论文,中国协和医科大学中国医学科学院.2006,85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700