用户名: 密码: 验证码:
陇西黄土高原和新疆伊犁盆地黄土有机碳同位素的变化及其古环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外学者对我国黄土高原东部地区(本文专指六盘山以东的黄土高原地区)10多个黄土剖面末次冰期以来有机质碳同位素(δ13Corg)开展了研究,基本上查明了该区域末次冰期以来黄土δ13Corg变化特征,即末次冰期黄土13Corg值相对于全新世古土壤更为偏负,指示了该区域末次冰期至全新世,陆地生态系统中C4植物相对丰度明显增加。相对于黄土高原东部地区而言,处于六盘山以西的陇西黄土高原,其末次冰期以来黄土δ13Corg变化的研究,不仅已开展研究的剖面数量较少,目前得到的结果也不如黄土高原东部地区那样一致。为了查明陇西黄土高原末次冰期以来黄土δ13Corg变化特征及其指示意义,我们对陇西黄土高原东南部的张家川剖面末次冰期以来的13Corg开展了研究。
     张家川黄土剖面是一个典型的末次冰期以来的黄土/古土壤剖面,对该剖面按照2cm/样的密度共采集黄土样品165个。对这些黄土样品进行的有机质碳同位素分析测试结果表明,该剖面δ13Corg值变化范围在-21.5‰--23.4‰之间,平均值约-22.6‰,末次冰期以来有机质碳同位素值逐渐偏正,即全新世δ13Corg值整体偏正于末次冰期,这一变化趋势与黄土高原东部地区数个剖面所得研究结果是一致的,即C4植物相对丰度由末次冰期至全新世有一定程度的增加。进一步将黄土高原东部的偃师剖面、陇西黄土高原东南部的张家川剖面及其西北部的靖远剖面末次冰期以来黄土13Corg变化情况进行对比分析,发现陇西黄土高原末次冰期以来陆地生态系统中C3/C4植物相对丰度变化情况比黄土高原东部地区更加复杂,很可能在该区域内部还存在一些地区性差异。该区域东部和南部地区末次冰期至全新世,C4植物相对丰度有一定程度的增加(但其增加的幅度明显要小于黄土高原东部地区);而该区域西北部地区则很可能末次冰期至全新世都以C3植物占绝对优势,C4植物相对生物量贡献可以忽略不计。
     来自欧洲黄土有机碳同位素的研究结果显示,该区域不但整个末次间冰期以来的黄土δ13Corg值较为偏负(绝大部分数据偏负于-24‰),且古土壤发育时期的δ13Corg值偏负于黄土堆积时期(这与前述黄土高原东部地区的结果是相反的),作者认为其黄土δ13Corg记录反映了末次间冰期以来该区域陆地生态系统中主要以C3植被占绝对优势地位。基于我们上述陇西黄土高原相关研究所获得的认识,即陇西黄土高原西北部地区,末次冰期以来的区域陆地植被同样主要以C3植被占绝对优势地位,C4植物相对生物量贡献可以忽略不计(以靖远剖面研究结果为代表)。那么,处于欧洲和我国黄土高原之间的,属于同一纬度带的中亚干旱区的黄土风成沉积物,其有机碳同位素变化如何?指示了什么样的陆地生态系统C3/C4相对丰度变化规律?其黄土δ13Corg变化是不是同样也记录了C3植被对不同气候条件的响应?目前相关的研究开展很少,需开展进一步的研究来验证。
     我们对来自新疆伊犁盆地东部的阿西克剖面的黄土样品进行了TOC含量和黄土δ13Corg值的分析测试,结合其他研究者报道的同一剖面的黄土环境磁学研究结果,发现在该剖面底部的3层弱发育土壤地层当中,对应的黄土δ13Corg值为3个明显的偏负阶段,相应的TOC含量和频率磁化率则处于高值阶段。可见,该剖面黄土δ13Corg值与古土壤发育存在“负相关”的模式,这一特征与黄土高原东部地区的研究结果是相反的,而与陇西黄土高原西北部地区和欧洲地区黄土δ13Corg变化特征非常一致。因此,我们初步认为阿西克剖面黄土δ13Corg值指示了占绝对优势地位的C3植物的碳同位素组成对不同气候条件的响应。大量现代C3植物碳同位素组成的研究结果表明,其主要受到降水量的影响,表现出其与降水量之间良好的负相关关系;因此,新疆黄土δ13Corg很可能是一个潜在的古降水量指示器。进一步开展中亚干旱区现代C3植物和/或者表土有机碳同位素与降水量之间定量关系的研究,在此基础上,利用干旱区黄土有机碳同位素开展古降水量重建是该区域进行古气候定量重建的一个可能的途径。
Scholars from both domestic and abroad have studied soil organic carbon isotopic composition (513Corg) of more than10loess profiles in the eastern Chinese Loess Plateau (CLP. refers to the part of the CLP east to the Liupan Mountains in this paper) since the Last Glacial (LG), basically found out the variation characteristics that the loess δ13Corg values of the loess accumulated during the LG is more negative than those of the paleosol developed during Holocene in this region, indicating that the relative abundance of C4plants was increased from the LG to the Holocene in the terrestrial ecosystems. Relative to the eastern CLP, while only few studies of loess813Corg have been conducted in the Longxi Loess Plateau (the western part of the CLP that west to the Liupan Mountains), and the variations of the relative abundance of C3/C4plants since the LG in the western CLP is not so consistent as the results of the eastern part of the CLP. To investigate variation characteristics and corresponding paleoclimatic significance of the loess δ13Corg in the Longxi Loess Plateau since the LG, we present the high resolution δ13Corg records from the Zhang Jiachuan loess profile located in the southeastern part of the Longxi Loess Plateau.
     Zhang Jiachuan loess profile is a typical loess/paleosol profiles accumulated since the LG, we collect165loess samples from this profile with the sampling density of2cm per sample. The813Corg values of these loess samples are ranged from-21.5%o to-23.4‰with an average value of-22.6‰, and the δ13Corg values were gradually more positive since the LG, indicating that the relative abundance of C4plants was increased from the LG to the Holocene in the study site which is similar to the results from the eastern CLP. Furthermore, we compared the813Corg results of Yanshi profile located in the eastern CLP、Jingyuan profile located in the northwest part of Longxi Loess Plateau with our results of Zhang Jiachuan profile since the LG. The comparison indicates that the variations of the relative abundance of C3/C4plants in terrestrial ecosystems in the Longxi Loess Plateau since the LG is more complex than that in the eastern CLP, which suggests that there still has some internal differences in C3/C4variations between different parts in the Longxi Loess Plateau. The relative abundance of the C4plants increased from the LG to the Holocene in the eastern and southern part of the Longxi Loess Plateau with much more small magnitude than that in the eastern CLP. However, in the northwestern part of the Longxi Loess Plateau, it seems that this area was predominated by C3plants and the signal from C4could be ignored in terrestrial ecosystems since the LG.
     The loess δ13Corg values from the Western Europe are extremely negative since the last interglacial (with most data are more negative than-24‰), and even more negative in paleosols formed during the interglacial periods, which is opposite to the results of the eastern CLP. The authors suggested that the Western Europe was predominated by C3plants since the last interglacial. As above mentioned, the northwestern Longxi Loess Plateau was also predominated by C3plants since the LG, with the negligible signal from C4plants (represented by the results of the Jingyuan profile). The arid Central Asia falls into the similar latitudinal band as the Western Europe and CLP, also with lots of loess distributed in this region (for example, the Xinjiang loess). However, until now, little is known about the variations and paleoclimatic significance of the loess δ13Corg in this region.
     Total organic carbon (TOC) concentrations and δ13Corg of the loess samples from Axike (AXK) loess/paleosol profile located in eastern Ili basin, eastern Central Asia, have been measured. Three stages with peak negative δ13Corg data occurs in the three paleosol layers observed in the field in lower part of the AXK profile, broadly corresponding to the stages with higher TOC concentrations, as well as MSfd values reported recently by other researchers. Therefore, loess δ13Corg data from AXK profile show a "negative correlation model" with the paleosol layers with strong pedogenesis intensity, which is opposite with the results from the eastern CLP, while consistent with previous reported data from the Western Europe and northwestern CLP. Which means the loess δ13Corg data from AXK profile recorded the responses of δ13C of local predominate C3plants to paleoclimatic variations. Numerous studys indicate that δ13C of modern C3plants mainly responded to the variations of local precipitation, and there is a negative correlation between δ13C of modern C3plants and local mean annual precipitation. Therefore, loess δ13Corg data from Xinjiang loess area may be a potential indicator for paleoprecipitation. Further investigation about the quantitative correlation between the δ13C of modern C3plants or/and surface soils in arid Central Asia and the corresponding precipitations needs to promote. After that, paleoprecipitation reconstruction based on the loess δ13Corg in this area is a feasible way for the quantitative paleoclimate reconstruction.
引文
1 An A S, Huang Y S, Liu W G et al. Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation. Geology,2005,33:705-708
    2 An Z S, Stephen C P, Zhou W J et al. Episode of strengthened summer monsoon climate of Younger Dryas age on the Loess Plateau of Central China. Quaternary Research,1993,39(1): 45-54
    3 Aucour A-M, Bonnefille R, Hillaire-Marcel C. Sources and accumulation rates of organic carbon in an equatorial peat bog (Burundi, East Africa) during the Holocene:Carbon isotope constraints. Palaeogeography Palaeoclimatology Palaeoecology,1999,150:179-189
    4 Balesdent J, Mariotti A, Guillet B. Measurement of soil organic matter turnover using 813C natural abundances. In:Boutton T W, Yamasaki S I, eds. Mass Spectrometry in Soils,1996, 83-113
    5 Balesdent J, Wanger G H et al. Soil science society American Journal [J],1988,52:118-124
    6 Boom A, Marchant R, Hooghiemstra H et al. CO2 and temperature-controlled altitudinal shifts of C4 and C3 dominated grasslands allow reconstruction of palaeoatmospheric pCO2. Palaeogeography Palaeoclimatology Palaeoecology,2002,177:151-168
    7 Castaneda I S, Werne J P, Johnson T C et al. Late Quaternary vegetation history of southeast Africa:The molecular isotopic record fromLake Malawi. Palaeogeography Palaeoclimatology Palaeoecology,2009,275:100-112
    8 Cerling T E, Ehleringer J R, Harris J M. Carbon dioxide starvation, the development of C4 ecosystems, and mammalian evolution. The royal society,1998,353:159-171
    9 Cerling T E, Harris J M, MacFadden B J, et al. Global vegetation change through the Miocene/Pliocene boundary. Nature,1997,389(6647):153-158
    10 Cerling T E, Wang Y, Quade J et al. Expansion of C4 ecosystems as in indicator of global ecological change in the late Miocene. Nature,1993,361:344-345
    11 Chen F H, Rao Z G, Zhang J W et al. Variations of organic carbon isotopic composition and its environmental significance during the last glacial period on western Chinese Loess Plateau. Chinese Science Bulletin,2006,51:1593-1602
    12 Chen T H, Xu H F, Xie Q Q et al. Characteristics and genesis of maghemite in Chinese loess and paleosols:Mechanism for magnetic susceptibility enhancement in paleosols[J]. Earth and Planetary Science Letters.2005,240:790-802
    13 Connin S L. Isotopic discrimination during long-term decomposition in an arid land ecosystem. Soil Biology & Biogeochemistry,2001,33(1):41-51
    14 Damste J S S, Verschuren D, Ossebaar J et al. A 25000-year record of climate-induced changes in lowland vegetation of eastern equatorial Africa revealed by the stable carbon-isotopic composition of fossil plant leaf waxes. Earth and Planetary Science Letters, 2011,302:236-246
    15 Deines P. The isotopic composition of reduced organic carbon. In:Fritz P, Fontes J C. eds. Handbook of Environmental Isotope Geochemistry. Volume 1, The Terrestrial Environment. Amsterdam:Elsevier,1980,329-406
    16 Diefendorf A F, Mueller K E, Wing S L et al. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences of the United States,2010,107(13):5738-5743
    17 Driese S G, Li Z H, Horn S P. Late Pleistocene and Holocene climate and geomorphic histories as interpreted from a 23,000 14C yr B.P. paleosol and floodplain soils, southeastern West Virginia, USA. Quaternary Research,2005,63(2):136-149
    18 E C Y, Lai Z P, Sun Y J et al. A luminescence dating study of loess deposits from the Yili River basin in western China. Quaternary Geochronology,2012, doi:10.1016/j.quageo.2012.04.022
    19 Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology,1989, 40(1):503-537
    20 Feng Z D, Ran M, Yang Q L et al. Stratigraphies and chronologies of late Quaternary loess-paleosol sequences in the core area of the central Asian arid zone. Quaternary International,2011,240:156-166
    21 Feng Z D, Ran M, Yang Q L et al. Stratigraphies and chronologies of late Quaternary loess-paleosol sequences in the core area of the central Asian arid zone. Quaternary International,2011,240:156-166
    22 Feng Z D, Wang L X, Ji Y H et al. Climatic dependency of soil organic carbon isotopic composition along the S-N Transect from 34°N to 52°N in central-east Asia. Palaeogeography Palaeoclimatology Palaeoecology,2008,257:335-343
    23 Feng X and Epstein S. Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO2 concentration. Geochimica et Cosmochimica Acta,1995, 59(12):2599-2608
    24 Ficken K J, Street-Perrott F A, Perrott R A et al. Glacial/interglacial variations in carbon cycling revealed by molecular and isotope stratigraphy of Lake Nkunga, Mt. Kenya, East Africa. Organic Geochemistry,1998,29:1701-1719
    25 Ficken K J, Woller M J, Swain D L et al. Reconstruction of a subalpine grass-dominated ecosystem, Lake Rutundu, Mt. Kenya:A novel multi-proxy approach. Palaeogeography Palaeoclimatology Palaeoecology,2002,177:137-149
    26 Gu Z Y, Liu Q, Xu B et al. Climate as the dominant control on C3 and C4 plant abundance in the Loess Plateau:Organic carbon isotope evidence from the last glacial-interglacial loess-soil sequences. Chinese Science Bulletin,2003,48(12):1271-1276
    27 Hatte C, Antoine P, Fontugne M et al. New chronology and organic matter δ13C paleoclimatic significance of Nuβloch loess sequence (Rhine Valley, Germany). Quaternary International,1999,62(1):85-91
    28 Hatte C, Antoine P, Fontugne M et al.δ13C of loess organic matter as a potential proxy for paleoprecipitation. Quaternary Research,2001,55(1):33-38
    29 Hatte C, Fontugne M, Rousseau D D et al.δ13C variations of loess organic matter as a record of the vegetation response to climatic changes during the Weichselian. Geology,1998,26(7): 583-586
    30 Heller F, Evans M E. Loess magnetism[J]. Review Geophysics.1995,33:211-240
    31 Heller F, Liu T S. Magnetism of Chinese loess deposits[J]. Geophysical Journal of the Royal Astronomical Society.1984,77:125-141
    32 Heller F, Liu T S. Magnetostratigraphical dating of loess deposits in China[J]. Nature,1982, 300:431-433
    33 Heller F, Liu T S. Paleoclimatic and sedimentary history from magnetic susceptibility of loess in China[J]. Geophysical Research Letters.1986,13(11):1169-1172.
    34 Huang Y S, Freeman K H, Eglinton T I et al.δ13C analyses of individual lignin phenols in Quaternary lake sediments:A novel proxy for deciphering past terrestrial vegetation changes. Geology,1999,27:471-474
    35 Huang Y S, Street-Perrott F A, Perrott R A et al. Glacial-interglacial environmental changes inferred from molecular and compound-specific.813C analyses of sediments from Sacred Lake, Mt. Kenya. Geochim Cosmochim Acta,1999,63:1383-1404
    36 Jia J, Xia D S, Wang B et al. Magnetic investigation of Late Quaternary loess deposition, Ili area, China. Quaternary International,2012a,250:84-92
    37 Jia J, Xia D S, Wang B et al. The investigation of magnetic susceptibility variation mechanism of Tien Mountains modern loess:Pedogenic or wind intensity model? Quaternary International,2012b, http://dx.doi.org/10.1016/j.quai nt.2012.10.029
    38 Johnson W C, Willey K L. Isotopic and rock magnetic expression of environmental change at the Pleistocene-Holocene transition in the central Great Plains. Quaternary International, 2000,67(1):89-106
    39 Kelly E F, Amundson R G, Marino B D et al. Stable isotope ratios of carbon in phytoliths as a quantitative method of monitoring vegetation and climate change. Quaternary Research,1991, 35:222-233
    40 Kletetschka G, Banerjee S K. Magnetic stratigraphy of Chinese loess as a record of natural fires. Geophysical Research Letters,1995,22:1341-1343.
    41 Krishnamurthy R V, Epstein S. Glacial-interglacial excursion in the concentration of atmospheric CO2:Effect in the 13C/12C ratio in wood cellulose. Tellus,1990,42(5):423-434
    42 Kukla G, Heller F, Liu XM, et al. Pleistocene climates in China dated by magnetic susceptibility[J]. Geology.1988,16:811-814.
    43 Lin B H, Liu R M and An Z S. Preliminary research on stable isotopic compositions of Chinese Loess. In:Liu T S, eds. Loess, Environment and Global change. Beijing:Science Press,1991,124-131
    44 Liu W G, Feng X H, Ning Y F et al.δ13C variation of C3 and C4 plants across an Asian monsoon rainfall gradient in arid northwestern China. Global Change Biology,2005,11(7): 1094-1100
    45 Liu W G, Huang Y S, An Z S et al. Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau:Carbon isotope evidence from bulk organic matter and individual leaf waxes. Palaeogeography, Palaeoclimatology, Palaeoecology,2005b,220(3-4):243-254
    46 Liu W G, Yang H, Ning Y F el al. Contribution of inherent organic carbon to the bulk δ13C signal in loess deposits from the arid western Chinese Loess Plateau. Organic Geochemistry, 2007,38(9):1571-1579
    47 Liu W G, Yang H, Sun Y B et al. δ13C Values of loess total carbonate:A sensitive proxy for Asian summer monsoon in arid northwestern margin of the Chinese loess plateau. Chemical Geology,2011,284(3-4):317-322
    48 Liu X M, Liu T S, Xu T C et al. A study on magnetostratigraphy of a loess profile in Xifeng area[J]. In:Aspects of loess research (Liu Tungsheng, ed.), China Ocean Press. 1987.164-174.
    49 Liu Q S, Deng C L, Torrent J et al. Review of recent developments in mineral magnetism of the Chinese loess[J]. Quaternary Science Reviews.2007,26:368-385.
    50 Liu Q S, Jackson M J, Banerjee S K et al. Machanism of the magnetic susceptibility enhancements of the Chinese loess [J]. Journal of Geophysical Research.2004,109 (B12107): 1-16.
    51 Liu X M, Shaw J, Liu T S et al. Magnetic mineralogy of Chinese loess and its significance[J]. Geophysical Journal International.1992,108 (1):301-308.
    52 Liu X M, Liu T S, Xu T C et al. The Chinese loess in Xifeng, I. The primary study on magnetostratigraphy of a loess profile in Xifeng area, Gansu province[J]. Geophysical Journal.1988,92 (2):345-348.
    53 Liu W G, Yang H, Cao Y N et al. Did an extensive forest ever develop on the Chinese Loess Plateau during the past 130 ka?:A test using soil carbon isotopic signatures [J]. Applied Geochemistry,2005a,20(3):519-527
    54 Maher B A, Thompson R. Mineral magnetic record of the Chinese loess and paleosols[J]. Geology.1991,19 (1),3-6.
    55 Melillo J M, Aber J D, Linkins A E et al. Carbon and nitrogen dynamics along the decay continuum:Plant litter to soil organic matter. Plant and Soil,1989,115(2):189-198
    56 Mohr H, Schopfer P. Plant Physiology. Berlin Herdelberg:Springer-Verlag,1995:256-257
    57 Mora G, Pratt L M. Carbon isotopic evidence from paleosols for mixed C3/C4 vegetation in the Bogota Basin, Colombia. Quaternary Science Reviews,2002,21:985-995
    58 Natasa J V, Isabel P M. Climatically driven glacial-interglacial variations in C3 and C4 plant proportions on the Chinese Loess Plateau. Geology,2004,32(4):337-340
    59 O'Leary M H. Carbon isotope fractionation in plants. Phytochemistry,1981,20(4):533-567
    60 O'Leary M H. Carbon isotope in photosynthesis. Bioscience,1988,38(5):328-336
    61 Olago D O, Street-Perrott F A, Perrott R A et al. Late Quaternary glacial-interglacial cycle of climatic and environmental change on Mount Kenya, Kenya. Journal of African Earth Science,1999,29:593-618
    62 Olson C G, Porter D A. Isotopic and Geomorphic evidence for Holocene Climate, Southwestern Kansas. Quaternary Research,2002,87(1):29-44
    63 Pasquier-Cardin A et al. Magma-derived CO2 emissions recorded in 14C and 13C content of plants growing in Furnas Caldera, Azores. Journal of Volcanology and Geothermal Research, 1999,92:195-207
    64 Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature,1989,342:163-166
    65 Rao Z G, Zhu Z Y, Chen F H ef al. Does δ13Ccarb of the Chinese loess indicate past C3/C4 abundance?A review of research on stable carbon isotopes of the Chinese loess. Quaternary Science Reviews,2006,25:2251-2257
    66 Rao Z G, Zhu Z Y, Zhang J W et al. Different climatic controls of soil δ13Corg in three mid-latitude regions of the Northern Hemisphere since the Last Glacial period. Chinese Science Bulletin,2007,52:259-266
    67 Rao Z G, Chen F H, Zhang X et al. Spatial and temporal variation of C3/C4 relative abundance in global terrestrial ecosystem since the Last Glacial and its possible driving mechanisms. Chinese Science Bulletin,2012, doi:10.1007/s11434-012-5233-9
    68 Rolph T C, Shaw J, Derbyshire E, et al. The magnetic mineralogy of a loess section near Lanzhou, China[J]. In:Pye, K. (Eds.), The dynamics and environmental context of Aeolian sedimetary systems. London:Geological Society Special Publication.1993.311-323
    69 Sage R F, Wedin D A, Li M R. The biogeography of C4 photosynthesis:patterns and controlling factors. In:Sage R F, Monson R K, C4 Plant Biology, Academic Press, San Diego, California,1999,313-373
    70 Salzmann U, Hoelzmann P, Morczinek I. Late quaternary climate and vegetation of the Sudanian Zone of Northeast Nigeria. Quaternary Research,2002,58:73-83
    71 Stewart G R, Turnbull M H, Schmidt S et al.δ13C natural abundance in plant communities along a rainfall gradient:A biological integrator of water availability. Australian Journal of Plant Physiology,1995,22(1):51-55
    72 Street-Perrott F A, Huang Y S, Perrott R A et al. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science,1997,278:1422-1426.
    73 Van de Water P K, Leavitt S W, Betancourt J L. Trends in stomatal density and 13C/14C ratios of pinus flexilis needles during the last glacial-interglacial cyle. Science,1994,264:239-243
    74 Verosub K L, Fine P, Singer M J et al. Pedogenesis and paleoclimate:interpretation of the magnetic susceptibility record of Chinese Loess-paleosol sequences[J]. Geology.1993,21: 1011-1014
    75 Walden J, Oldfield F, Smith J. Environmental magnetism:a practical guide. In:Walden J, Oldfield F, Smith J P, eds. Technical Guide series. London:Quaternary Research Association, 1999,35-62
    76 Wang G A, Feng X, Han J M et al. Paleovegetation reconstruction using δ13C of Soil Organic Matter. Biogeosciences,2008,5(2):1795-1823
    77 Yang S L, Ding Z L. Winter-spring precipitation as the principal control on predominance of C3 plants in Central Asia over the past 1.77 Myr:Evidence from δ13C of loess organic matter in Tajikistan. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,235:330-339
    78 Zhang Z H, Zhao M X, Lu H Y et al. Lower temperature as the main cause of C4 plant declines during the glacial periods on the Chinese Loess Plateau. Earth and Planetary Science Letters,2003,214(3-4):467-481
    79 Zheng S X, Shangguan Z P. Spatial patterns of foliar stable carbon isotope compositions of C3 plant species in the Loess Plateau of China. Ecology Research,2007,22(2):342-353
    80 Zhou L P, Oldfield F, Wintle A G et al. Partly pedogenic origin of magnetic variations in Chinese loess[J]. Nature.1990,346:737-739.
    81 安芷生Porter S. Kukla G等.最近13万年黄土高原季风变迁的磁化率证据.科学通报,1990.7:529-535
    82曹艳峰,黄春长,韩军青等.黄土高原东西部全新世剖面炭屑记录的火环境变化.地理与地理信息科学,2007,23(1):92-96
    83陈拓,马健,冯虎元等.阜康典型荒漠C3植物稳定碳同位素值的环境分析,干旱区地理,2002,25(4):342-345
    84陈拓,杨梅学,冯虎元等.青藏高原北部植物叶片碳同位素组成的空间特征.冰川冻土,2003,25(1):83-87
    85陈发虎,饶志国,张家武等.陇西黄土高原末次冰期有机碳同位素变化及其意义.科学通报,2006,51(11):1310-1317
    86丁仲礼,孙继敏,杨石岭等.灵台黄土-红粘土序列的磁性地层及粒度记录.第四纪研究,1998,1:86-94
    87冯虎元,安黎哲,陈拓等.马先蒿属(Pedicularis L.)植物稳定碳同位素组成与环境因子之间的关系.冰川冻土,2003,25(1):88-93
    88 冯虎元,安黎哲,王勋陵.环境条件对植物稳定碳同位素组成的影响.植物学通报,2000,17(4):312-318
    89甘肃省地图集编纂办公室编制.中华人民共和国甘肃省地图集.上海:上海中华印刷厂1977
    90顾兆炎,韩家懋,刘东生.中国第四纪黄土地球化学研究进展.第四纪研究,2000,20(1):41-55
    91 顾兆炎,刘强,许冰等.气候变化对黄土高原末次盛冰期以来的C3/C4植物相对丰度的控制.科学通报,2003,48(13):1458-1464
    92郭正堂,魏兰英,吕厚远等.晚第四纪风尘物质成分的变化及其环境意义[J].第四纪研究,1999,(1):41-48.
    93韩家懋,Hus J J,刘东生等.马兰黄土和离石黄土的磁学性质.第四纪研究,1991,(4):310-325.
    94何勇,秦大河,任贾文.塬堡全新世黄土剖面有机质碳同位素的气候记录.地球化学,2004a,33(2):178-184
    95何勇,秦大河,任贾文等.兰州不同时期黄土有机质碳同位素与气候的关系.2004b,9(2):369-377
    96何勇,秦大河,任贾文等.临夏塬堡全新世黄土剖面古土壤有机质碳同位素的气候记录.冰川冻土,2002b,24(5):512-516
    97何勇,秦大河,任贾文等.塬堡黄土剖面末次间冰期古土壤有机质碳同位素记录的夏季风演化历史.科学通报,2002a,47(12):943-945
    98贾佳,夏敦胜,魏海涛等.阿西克黄土剖面记录的西天山黄土磁学特征及其古气候意义.中国沙漠,2011,31(6):1-10
    99李德洙,吴仕民等.张家川回民自治县概况.北京:民族出版社.2008
    100李相博,陈践发,张平忠等.青藏高原(东北部)现代植物碳同位素组成特征及其气候信息.沉积学报,1999,17(2):325-329
    101李相博,陈践发.植物碳同位素分馏作用与环境变化研究进展.地球科学进展,1998,13(3):285-290
    102李相博.青藏高原现代植物碳同位素组成特征及其环境意义[硕士论文].兰州:中国科学院兰州地质研究所.1996
    103林本海,安芷生,刘荣谟.最近60万年中国黄土高原季风变迁的稳定同位素证据.见: 刘东生,安芷生主编.黄土·第四纪地质·全球变化(第三集).北京:科学出版社,1992,51-54
    104林本海,刘荣谟.最近800ka黄土高原夏季风变迁的稳定同位素证据.科学通报,1992,18:1691-1693
    105刘恋,周鑫,于言言等.黄土高原自然植被的土壤有机碳同位素证据.第四纪研究,2011,31(3):506-513
    106刘卫国,宁有丰,安芷生等.黄土高原现代土壤和古土壤有机碳同位素对植被的响应.中国科学(D辑),2002,32(10):830-836
    107吕厚远.磁化率和植物化石记录对第四纪沉积环境的古气候量化研究.北京:中国科学院地质研究所.1998
    108马剑英,陈发虎,夏敦胜等.荒漠植物红砂稳定碳同位素组成的空间分布特征.第四纪研究,2006,26(6):946-954
    109饶志国,陈发虎,曹洁等.黄土高原西部地区末次冰期和全新世有机碳同位素变化与C3/C4植被类型转换研究.第四纪研究,2005,25(1):107-114
    110饶志国,陈发虎,汪海斌等.九州台古土壤S1记录的末次间冰期东亚季风变化.海洋地质与第四纪地质,2006,26(2):103-111
    111饶志国.中国黄土高原地区风成沉积物稳定碳同位素研究新进展.兰州大学,博士后研究工作报告.
    112王国安,韩家懋,刘东生.中国北方黄土区C3草本植物碳同位素组成研究.中国科学(D辑),2003,33(6):550-556
    113王国安,韩家懋,周力平.中国北方C3植物碳同位素组成与年均温度关系.中国地质,2002,29(1):55-57
    114王国安,韩家懋,周力平等.中国北方黄土区C4植物稳定碳同位素组成的研究.中国科学,地球科学D辑,2005,35(12):1174-1179
    115王国安,韩家懋.C3植物碳同位素在旱季和雨季中的变化.海洋地质与第四纪地质,2001,21(4):43-47
    116王国安,韩家懋.中国西北C3植物的碳同位素组成与年降雨量关系初探.地质科学,2001,36(4):494-499
    117王国安.稳定碳同位素在第四纪古环境研究中的应用.第四纪研究,2003,23(5):471-484
    118王丽霞,李心清,郭兰兰.中东亚干旱半干旱区C3植物δ13C值的分布及其对气候的响应.第四纪研究,2006,26(6):955-961
    119旺罗,刘东生,韩家懋等.中国第四纪黄土环境磁学研究进展.地球科学进展,2006,]5(3):335-341
    120魏明建,董军社等.黄土高原现代表层黄土植物残体稳定同位素组成特征.现代地质,1998,12(4):582-585
    121杨桂芳,彭红霞,黄长生等.黄土高原西缘末次盛冰期以来古气候演化的有机碳同位素记录.华中师范大学学报(自然科学版),2005,39(1):126-130
    122叶玮.新疆西风区黄土沉积特征与古气候[M].海洋出版社,2001a,108-124
    123叶玮.新疆西风区黄土与古土壤磁化率变化特点.中国沙漠,2001b,21(4):380-386
    124叶玮.新疆伊犁地区黄土与黄土状土粒度对比.干旱区地理,2000,23(4):310-314
    125叶玮.新疆伊犁地区自然环境特点与黄土形成条件.干旱区地理,1999,22(3):9-16
    126殷丽娟,李美荣.中国C4植物的地理分布与生态学研究,I.中国C4植物及其与气候环境 的关系.生态学报,1997,17(4):350-363
    127中国气象局等.1971-2000中国地面气候标准值.北京:中国气象局气象信息中心气象资料室编.2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700