用户名: 密码: 验证码:
四川蒙顶山苏云金芽胞杆菌cry基因鉴定及其新型模式cry基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽胞杆菌(Bacillus thuringiensis,简称Bt)作为一种对人畜安全、无环境污染的微生物杀虫剂,在农、林及卫生害虫的防治中发挥了重要的作用,成为国内外开发应用最成功的一种微生物农药。因此深入发掘我国丰富的Bt资源,筛选具有高效广谱杀虫活性的Bt菌株,并对其基因型进行分析,克隆新型杀虫基因,这对微生物杀虫剂的研制、构建高效广谱工程微生物和培育转基因抗虫植物都具有重要的理论及实践意义。本研究对四川雅安蒙顶山土壤中Bt资源进行了较为系统地调查研究,从中克隆到一个新的cry2型模式基因,并对其进行了初步的表达研究,研究摘要如下:
     1.根据海拔高度和生态环境的不同,从蒙顶山采集了285份土壤样本,采用醋酸钠-抗生素法对土样中Bt菌株进行分离,获得78株Bt菌株。土样中Bt菌的平均分离率为19%。显微镜观察显示,分离出的Bt菌株产生形态各异的伴胞晶体,有长菱形、短菱形、球形、方形、不定形等,充分显示了蒙顶山生态区Bt资源多样性的特点。利用PCR-RFLP鉴定体系鉴定了78株Bt菌的杀虫晶体蛋白基因类型:其中68株含有cry1型基因,28株含有cry2型基因,2株含有cry3型基因,2株含有cry9型基因,3株含有cry4/10型基因,3株含有cry30型基因。用SDS-PAGE对这些菌株的杀虫晶体蛋白进行分析,结果表明:这些菌株主要表达4种大小的晶体蛋白,分子量在40-130kDa之间。对于没有扩增产物的Bt菌株,其SDS-PAGE分析却检测到晶体蛋白,由此可推测,这些菌株中可能含有新型的杀虫基因。
     2.用cry2型基因的通用引物鉴定出28株含有cry2型基因的Bt菌株,再用DdeI内切酶分别对它们的扩增产物进行基因分型,结果发现,菌株JF19-2的扩增片段的酶切产物大小与已知的cry2型基因的酶切片段大小存在差异,说明JF19-2中可能含有一个新的cry2型模式基因。
     3.根据cry2型基因的通用引物对菌株JF19-2的扩增序列,在序列的上游和下游分别设计特异引物SP1和SP2,采用Tail-PCR技术获得两侧的未知序列,将扩增序列克隆并测序,测序结果与已知序列进行拼接,得到了3,285 bp的核苷酸序列,其中含有一个长1,905bp的开放阅读框(ORF),编码一个由635个氨基酸组成的蛋白,分子量为70.8kDa,等电点为9.18,该蛋白为弱碱性蛋白,其中异亮氨酸(Ile)、天冬酰氨(Asn)、色氨酸(Ser)和苏氨酸(Thr)四种氨基酸含量最高,分别为11.2%、10.57%、9.94%和8.36%。氨基酸同源性比较发现,其与Cry2Ab1蛋白同源性最高,为92%。该新基因已在GenBank中注册,其Accession number为ACH91610,被国际Bt杀虫晶体蛋白基因命名委员会命名为cry2Ag1。
     4.根据cry2Ag1基因ORF两端序列,设计一对特异引物P1和P2。PCR扩增获得cry2Ag1完整ORF。将获得的片段经NcoⅠ和XhoⅠ双酶切,与构建的大肠杆菌表达载体pET-22b (+)连接,构建了重组表达质粒pET-2Ag1。将该质粒导入E. coli BL21 (DE3) pLysS,经IPTG诱导能正常表达,SDS-PAGE分析表明:cry2Ag1基因在大肠杆菌中表达一个约60kDa的蛋白,比该基因推导的Cry2Ag1蛋白理论分子量小(70kDa)。生物活性测定表明表达的包涵体蛋白对鳞翅目的小菜蛾和棉铃虫,双翅目的伊蚊均具有杀虫活性,LC50分别为23.47μg/mL、9.74μg/mL、2.54μg/mL。
Bacillus thuringiensis (Bt), as a safeties to human and animals, pollution-free microbial insecticides, plays a very important role in pest prevention and cure of agriculture, forestry and sanitary insect pest. It becomes a most successful development and apply of microbial pesticide at abroad and home. So to futher dig abundant resource of Bt in our country, screen high effective and broad-spectrum insecticidal activity of Bt strain, analyse their cry gene types, isolate and clone novel pesticidal genes will have important meanings in theories and practices for developping microbial insecticides, constructing high toxicity and broadspectrum engineering strains and breeding insect resistant transgenic plants. This study described a systematic study of Bt resources from the soil in MengDing mountain of Yaan city in Sichuan province. A novel pesticidal protein genes was cloned and expressed. The concrete results are as follows:
     1. According to different altitude and environment, we collected 285 soil samples and isolated 78 Bt strains from these soil samples by using sodium acetate-antibiotics method. The average, rate was 19%. Observed by electron microscope, These Bt strains produced different patterns of parasporal crystals, such as long bipyramid, short bipyramid, cuboidal, round and abnormity, which showed the diversity of Bt resources in Mengding mountain. The cry gene-types of 78 Bt isolates were identified by using PCR-RFLP system.68 isolates harbored cry1 genes,28 isolates harbored cry2 genes,2 isolates harbored cry3 genes,2 isolates harbored cry9 genes,3 isolates harbored cry4/10 genes and 3 isolates harbored cry3 genes. Using SDS-PAGE method to analyse insecticidal crystal proteins of these Bt strains, the result showed that four different kinds of insecticidal crystal proteins were expressed, whose molecular weight were between 40 kDa and 130 kDa. Some Bt strains didn't produce any PCR products in PCR-RFLP analysis. But SDS-PAGE assay indicated that these isolates produced crystal proteins, which suggested that they may contain potentially novel Cry toxin genes.
     2.28 Bt strains which contained cry2 genes were identified by using general primers of cry2 gene. Then restriction enzyme DdeⅠwas used to digest these PCR productions for identification of cry gene-types. The results showed that the size of of the Bt strain JF19-2 amplified fragment was different from enzyme cut pieces of known cry2 genes, which indicated that JF19-2 contained a novel cry 2 holetype gene.
     3. According to amplified fragment of JF19-2 by using general primers of cry2 genes, a pair of specific primers SP1 and SP2 was designed, in upstream and downstream of amplified fragment. Unknown sequence of the novel cry2 gene was amplified by Tail-PCR method. Then amplified sequences was cloned and sequenced. Sequencing result was matched with known sequence of the novel cry2 gene. A 3,285 bp nucleotide sequence was obtained. There was a 1,905 bp ORF in the obtained sequence, which encoded a protein of 635 amino acids with a predicted molecular mass of 70.8 kDa and isoelectric point of 4.952.This protein was an alkalescent protein, which mainly contained four kinds of Amino acids:Ile, Asn, Ser and Thr, accounted for 11.2%,10.57%,9.94% and 8.36%, respectively. Compared with other known Cry2 proteins, Cry2Ag1 and Cry2Ab1 had shown as high as 92% Amino acids sequence homology. This, novel gene was registered in the GeneBank databases under accession number ACH91610. This gene was designed as cry2Agl in the Bacillus thuringiensis Toxin Nomenclature Committee.
     4. The full open reading frame sequence of the cry2Ag1 gene was amplified with a pair of PCR primers P1/P2 designed according to cry2Agl gene sequence, and inserted into the NcoⅠ/XhoⅠsite of E. coli expression vector pET-22b(+) to obtain the recombinant plasmid pET-2Ag1. The pET-2Agl was transduced into E. coli BL21 (DE3) pLysS. The analysis of SDS-PAGE showed that the cry2Agl gene produced 60kDa protein in E.coli by IPTG induction, which smaller than calculated Cry2Ag1 protein (70kDa) according to cry2Agl gene. Bioassay of the expressed product of the cry2Agl gene showed that Cry2Agl was highly toxic to both Lepidoptera P.xylostella, H.armigera and Dipteral A.aegypti with LC50 as 23.47μg/mL,9.74μg/mL and 2.54μg/mL, respectively.
引文
[1]Hofte, H. and Whiteley, H. R.1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev.53:242-255.
    [2]Feitelson, J. S., J. Payne, and L. Kim.1999. Bacillus thuringiensis:insects and beyond. Bio/Technology 10:271-275.
    [3]Estruch, J. J., Warren, G. W., Mullins, M. A et al. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. U. S. A,1996.93 (11):5399-5394.
    [4]Marroquin, L. D., Elyassnia, D., Griffitts, J. S., et al. Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics.2000.155:1693-1699.
    [5]李今煜,陈小旋,关雄.苏云金芽胞杆菌抗癌的研究进展.农业生物技术学报.2002.10(3):301-304.
    [6]Jung, Y. C., Mizuki, E., Akao, T., et al. Isolation and characterization of a novel Bacillus thuringiensis strain expressing a novel crystal protein with cytocidal activity against human cancer cells. J. Appl. Microbiol.2007.103:65-79.
    [7]Ishiwata, S. on a kind of severe flacherie (sotto disease). Dainihon Sanshi Kaiho,1901, 114:1-5.
    [8]Ibarra, J. E., Rincon, M. C., et al. Diversity of Bacillus thuringiensis Strains from Latin America with Insecticidal Activity against Different Mosquito Species. Appl. Environ. Microbiol.2003.69:5269-5274.
    [9]Jouzani, G. S., Abad, A. P., Seifinejad, A., Marzban. R. et al. Distribution and diversity of Dipteran-specific cry and cyt genes in native Bacillus thuringiensis strains obtained from different ecosystems of Iran. J. Ind. Microbiol. Biotechnol.2008.35:83-94.
    [10]Gao, M. Y, Li, R. S., Dai, S. Y et al. Diversity of Bacillus thuringiensis strains from soil in China and their pesticidal activities. Biol. Contr.2008.44:380-388.
    [11]Phyllis, A., Martin, W. and Russell, S. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol.1989.55:2437-2442.
    [12]戴莲韵,王学聘,杨光滢等.我国森林土壤中苏云金芽胞杆菌生态分布的研究. 微生物学报.1994.34:449-456.
    [13]王学聘,戴莲韵,杨光滢等.我国西北干旱地区森林土壤中苏云金芽胞杆菌生态分布.林业科学研究.1999.12(5):467-473.
    [14]朱军,谭芙蓉,余秀梅等.四川盆地生态区苏云金芽胞杆菌cry基因的鉴定及新型模式cry基因的克隆.微生物学报.2009.49(3):324-330.
    [15]Faust, R. M., Abe, K., Held, G. A. et al. Evidence for plasmid-associated crystal toxin production in Bacillus thuringiensis subsp. Israelensis. Plasmid.1983.9:98-103.
    [16]李荣森,陈涛.几种苏云金芽胞杆菌的毒力及形态结构.微生物学报.1981.21(3):311-317.
    [17]Donovan, W. P., GonzalezJ, M. J., Gilbert, M. P., et al. Isolation and characteriza-tion of EG2158, a new strain of Bacillus thuringiensis toxic to Coleopteran larvae, and nucleotide sequence of the toxin gene. Mol. Gen. Genet.1988.214(3):365-372.
    [18]Rodriguez-Padilla, C., Galan-Wong, L., de Barjac, H., et al. Bacillus thuringiensis subspecies neoleonensis serotype H-24, a new subspecies which produces a triangular crystal. J. Invertebr. Pathol.1990.56(2):280-282.
    [19]Calabrese, D. M., Nickerson, K. W., Lane, L. C., et al. A comparison of protein crystal subunit sizes Bacillus thuringiensis. Can. J. Microbiol.1980.26:1006-1010.
    [20]任改信,冯喜吕,冯维熊.苏云金杆菌伴胞晶体的形态及抗原特性体.微生物学报.1983.23(1):57-62.
    [21]苏旭东,张伟,袁耀武等.河北省部分地区苏云金芽胞杆菌菌株多样性的研究.安徽农业科学.2007.35(18):5540-5541.
    [22]Wang, J., Boets, A., Van, R. J. et al. Characterization of cryl, cry2, and cry9 genes in Bacillus thuringiensis isolates from China. J. Invertebr. Pathol.2003.82 (1):63-71.
    [23]Schnepf, H. E., Wong, H. C., Whiteley, H. R., et al. The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence. J. biol. chem.1985.260:6264-6272.
    [24]Hofte, H., Whiteley, H. R., Insecticidal crystal protein of Bacillus thuringiensis. Microbiol. Rev.1989.53:242-255.
    [25]Crickmore, N., Zeigler, D. R., Feitelson, J. et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Mol. Boil. Rev.1998.62:807-813.
    [26]Crickmore, N., Zeigler, D. R., Schnepf, H. E. et al. Bacillus thuringiensis toxin nomenclature (2001.5).
    [27]Ramirez, A. R., Ibarra, J. E. Plasmid Patterns of Bacillus thuringiensis type strains. Appl. Environ. Microbiol.2008.74:125-129.
    [28]Gonzalez, J. M., Dulmage, H. T., and Carlton, B. C. Correlation between specific plasmids and d- endotoxin in production in Bacillus thuringiensis. Plasmid.1981.5: 351-365.
    [29]Kronstad, J. W., Schnepf, H. E. and Whiteley, H. R. Diversity of locations for Bacillus thuringiensis crystal protein genes. J. Bacteriol.1983.154(1):419-428.
    [30]Srinivas, G., Vennison, S. J., Sudha, S. N., et al. Unique regulation of crystal protein production in Bacillus thuringiensis subsp. yunnanensis is mediated by the cry protein-encoding 103-Megadalton plasmid. Appl. Environ. Microbiol.1997.63 (7): 2792-2797.
    [31]Sekar, V. Location of the crystal toxin gene of Bacillus thuringiensis var. aizawai. Curr. Microbiol.1987.14(6):301-304.
    [32]浅野真一郎,等.PCR法(?) よ ゐ Bacillus thuringiensis cry Ⅱ遗传子の增幅と同定.日蚕杂.1993.62(3):223-227.
    [33]Kuo, W. S. and Chak, K. F. Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA. Appl. Environ. Microbiol.1996.62(4):1369-1377.
    [34]张杰,宋福平.PCR技术与ICP基因的鉴定.植物保护21世纪展望.中国科学技术出版社.1998.118-120.
    [35]苏旭东.苏云金芽孢杆菌菌株的分离和cry基因的鉴定[硕士学位论文].河北农业大学.2005.
    [36]Ben-Dov, E., Wang, Q., Zaritsky, A. et al. Multiplex PCR screening to detect cry9 genes in Bacillus thuringiensis strains. Appl. Environ. Microbiol.1999.65 (8):3714-3716.
    [37]Beron, C. M., Curatti, L. and Salerno, G. L. New strategy for identification of novel cry-type genes from Bacillus thuringiensis strains. Appl. Environ. Microbiol.2005. 71(2):761-765.
    [38]Masson, L., Erlandson, M., Puzstai-Carey, M. et al. A holistic approach for determining the entomopathogenic potential of Bacillus thuringiensis strains. Appl. Environ. Microbiol.1998.64 (2):4782-4788.
    [39]Beard, C. E., Ranasingle, C., Akhurst, R. J. Screen for novel cry genes by hybridization. Let. Appl. Microbiol.2001.33:241-245.
    [40]陈中义,吴限,张杰等.PCR-RFLP筛选DNA文库克隆Bt cry基因的研究.中国农业科学.2003.36(4):398-402.
    [41]Guo, S. X., Liu, M., Peng, D. H. et al. New strategy for isolating novel nematicidal crystal protein genes from Bacillus thuringiensis strain YBT-1518. Appl. Environ. Microbiol.2008.74 (22):6997-7001.
    [42]刘旭光,宋福平,张杰等.苏云金芽胞杆菌cry基因芯片检测方法的研究.中国农业科学.2004.37(7):987-992.
    [43]胡晓婷,宋福平,冯书亮等.Bt分子生物学研究进展.华北农学报.2007.22:6-9.
    [44]Guo, S. Y., Ye, S., Liu, Y. F. et al. Crystal structure of Bacillus thuringiensis Cry8Ea1: an insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela. J. Struct. Biol.2009.
    [45]Angsuthanasombat, C., Uawithya, P., Leetachewa, S. et al. Bacillus thurigiensis Cry4A and Cry4B mosquito-larvicidal proteins:homology-based 3D model and implications for toxin activity. J. Biochem. Mol. Biol.2004.37 (3):304-313.
    [46]Grochulski, P., Masson, L., Borisova, S., et al. Bacillus thuringiensis CryIA(a) insecticidaltoxin:crystal structure and channel formation. J. Mol. Biol.1995.254: 447-464.
    [47]Corp, M., Diego, S. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev.1998.62 (3):775-806.
    [48]Grochulski, P., Masson, S., Borisova, M., et al. Bacillus thuringiensis Cry1A(a) insecticidal toxin:crystal sturcture and channel formation. J. Mol. Biol.1995.254: 447-464.
    [49]Li, J., Carroll, J. and Ellar, D. J. Crystal stucture of insecticide d-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature.1991.353:815-821.
    [50]Chen, X.. J., Lee, M. K. and Dean, D. H.. Site-directed mutations in a highly conserved region of Bacillus thuringiensis d-endotoxin affect inhibition of short circuit current across Bombyx Mori midguts. Proc. Natl. Acad. Sci. USA.1993.90:9041-9045.
    [51]Schwartz, J. L., Juteau, M., Grochulski, P. et al. Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through diulfide bond engineering. FEBS. Lett.1997.410:397-402.
    [52]Wolfersberger, M. G., Chen, X. J. and Dean, D. H. Site-directed mutations in the third domain of Bacillus thuringiensis d-endotoxin CrylAa affect its ability to increase the permeability of Bombyx mori midgut brush border membrane vesicles. Appl. Environ. Microbiol.1996.62:279-282.
    [53]沙槎云,白成.pH对苏云金杆菌晶体致病性的影响.昆虫知识.1994.31(2):103-107.
    [54]Choma, C. T., Kaplan, H. Folding and Unfolding of the protoxin from Bacillus thuringiensis:evidence that the toxic moiety is present in an active confirmation. Biochem. 1990.29:971-977.
    [55]Dai, S. M., Gill, M. G. In vitro proteolysis of Bacillus thuringensis subsp. Israelensis Cry IVD protein by Culex quinquefasciatus larval midgut proteases. Insec. Biochem. Mol. Biol.1993.23:273-283.
    [56]Donovan, W. P., Dankoesik, C. and Gilbert, M. P. Molecular chaarcterization of a gene encoding a 72-kilodalton mosquito-toxic crystal portein from Bacillus thuringiensis subsp. israelensis. J. Bacteriol.1988.170:4732-4738.
    [57]Chang, C., Yu, Y. M., Dal, S. M. et al. High level cry IVD and cytA gene expression in Bacillus thuringiensis does not require the 20-kilodalton protein, and the coexpressed gene products are synergistic in their toxicity to mosquitoes. Appl. Enviorn. Microbial. 1993.59:815-821.
    [58]Chilcot, C. N., and Ellar, D. J. Comparative study of Bacillus thuringiensis var. israelensis crystal protein in vivo and in vitro. J. Gen. Micor-biol.1988.134:2551-2558.
    [59]MacKinnon, R. and Miller, C. Mutant potassium channels with altered binding of charybdot-oxin, a pore-blocking peptide inhibitor. Science.1989.245:1382-1385.
    [60]English, L., Slatin, S. L. Mode of action of delta-endotoxins from Bacillus thuringiensis. a comparison with other bacterial toxins. Insect Biol.1992.22 (1):1-7.
    [61]倪万潮,黄骏麒,郭三堆.转Bt杀虫蛋白基因的抗棉铃虫棉花新品质.江苏农业 学报.1996.12(1):1-6.
    [62]Klier, A., Bourgouin, C., Rapoport, F. et al. Mating between Bacillus subtilis and Bacillus thuringiensis and transfer of cloned crystal genes. [J]. Mol Gen Genet.1983.191: 156-262.
    [63]乐超银,刘子铎,曾小慧等.苏云金芽孢杆菌cry3A在鳞翅目特异菌株中的表达及杀虫特性.微生物学报.2000.40(2):139-142.
    [64]张蓓华,刘海洲,刘铭等.球形芽孢杆菌Mtxl杀蚊毒素在苏云金杆菌以色列亚种中的表达.微生物学通报.2003.30(1):49-52.
    [65]张杰,彭于发,陈彩层等.运用接合转移技术构建杀虫防病工程菌.中国农业科学.1993.26(3):89-90.
    [66]吕颂雅,刘子铎,戴经元等.苏云金芽孢杆菌杀虫基因在鱼腥藻中克隆和表达的初步研究.水生生物学报.1999.23(2):174-178.
    [67]Ben-Dov, E., Zaritsky, A., Dahan, E. et al. Extended screening by PCR for seven cry-groups genes from field-collected strains of Bacillus thuringiensis. Appl. Enviorn. Microbial.1997.63:4883-4890.
    [68]Bernhard, K., Jarrett, P., Meadows, M. et al. Natural isolates of Bacillus thuringiensis: worldwide distribution, characterization, and activity against insect pests. J. Invertebr. Pathol.1997.70:59-68
    [69]Bobrowski, V. L., Pasquali, G., Bodanese-Zanettini, M. H. et al. Characterization of two Bacillus thuringiensis isolates from South Brazil and their toxicity against Anticarsia gemmatalis (Lepidoptera:Noctuidae). Biol. Contr.2002.25:129-135.
    [69]Damgaard, P. H., Hansen, B. M., Pedersen, J. C. et al. Natural occurrence of Bacillus thuringiensis on cabbage foliage and in insects associated with cabbage crops. J. Appl. Microbiol.1997.82:253-258.
    [70]Ichimatsu, T., Mizuki, E., Nishimura, K. et al. Occurrence of Bacillus thuringiensis in fresh water of Japan. Curr. Microbiol.2000.40:212-217.
    [71]Uribe, D., Martinez, W., Ceron, J. Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia. J. Invertebr. Pathol.2003.82:119-127.
    [72]Vilas-Boas, G. T., Lemos, M. V. F. Diversity of cry genes and genetic characterization of Bacillus thuringiensis isolated from Brazil. Can. J. Microbiol.2004.50: 605-613.
    [73]Song, F. P, Huang, D., Zhang, J. et al. Identification of cry gene from Bacillus thuringiensis by PCR-RFLP system.30th Annual society for invertebrate pathology,1997.
    [74]宋福平,张杰,黄大防等.苏云金芽抱杆菌cry基因PCR-RFLP鉴定体系的建立.中国农业科学,1998,31(3):13-18.
    [75]Ruiz de Esudero, I., Sujatha,. K., Estela, A., et al. Molecular and insecticidal characterization of a Cry 1Ⅰ protein toxic to insects of the families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae. Appl. Environ. Microbiol.2006.72(7):4796-4804.
    [76]Tounsi, S. and Jaoua, S. Charaterization of a novel cry2Aa-type gene from Bacillus thuringiensis subsp. Kurstaki. Biotechnol. Lett.2003.25:1219-1223.
    [77]Swiecicka, I., Bideshi, D. K. and Federici.,B. A. Novel isolate of Bacillus thuringiensis subsp. Thuringiensis that produces a Quasicuboidal crystal of Cry1Ab21 toxic to larvae of Trichoplusia ni. Appl. Environ. Microbiol.2008.74(4):923-930.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700