用户名: 密码: 验证码:
清洗技术和平滑层对极紫外多层膜基底粗糙度的影响及表面表征技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多层膜反射镜不仅广泛应用于极紫外太空观察、等离子体诊断和同步辐射应用等领域,而且是下一代极紫外光刻系统中的关键元件,其反射率的高低是多层膜研究水平的重要标志之一。在极紫外波段,由于多层膜表界面粗糙度大小要比波长小很多,同时膜层界面又一定程度上是基底表面的再现,因此,基底表面粗糙度直接影响多层膜反射镜的光学性能。目前,具有极小粗糙度的超光滑光学表面的研究已成为国内外多层膜领域研究的重点与难点,与此同时,光学基底表面粗糙度的表征和评价也是研究中的重要组成部分,这些工作的开展对改善光学薄膜的制备工艺,提高薄膜的光学性能有着非常积极的意义。
     本文介绍了超光滑基底清洗理论和方法,采用擦拭法和超声波清洗方法对硅片和玻璃基底进行清洗,设计了正交实验方法,讨论了溶液温度、清洗时间、超声功率等因素对于超声清洗效果的影响。结果表明,脱脂棉中某些纤维不可避免地与污染物相互作用导致样品表面擦伤或残留,虽然可以去除一些污染物,但是也随之带来了一些负面影响。而超声清洗后的表面,其粗糙度小于0.2nm,并且表面无污染物。正交实验方法优化了超声清洗工艺,从实验结果看,超声温度对清洗效果有很明显的影响,温度35℃、45℃清洗效果明显优于25℃;而超声时间(10分钟、20分钟)的改变对基底清洗效果没有很明显的影响;在经优化的超声清洗工艺处理后的硅片上制备的周期为6.9nm的Mo/Si多层膜反射率达到54.8%(N=20)。
     为减小基底表面粗糙度,在制备多层膜前,可以在基底上先镀制平滑层。本文研究了在制备Mo/Si多层膜前镀制碳平滑层对基底粗糙度的改善情况。利用原子力显微镜(AFM)对镀膜前后的表面进行表面粗糙度测量,为进一步分析碳平滑层对于镀膜前后基底形貌的影响,在原子力显微镜测试过程中,采用了定域测试方法,通过对同一个区域镀膜前后表面数据的数值处理,可以定量地分析碳平滑层对表面粗糙度的影响。实验结果表明,在两个基底上,分别沉积厚度为30nm和50nm的碳单层膜后,在不同扫描范围测试的表面粗糙度均增
Multilayer reflective mirrors are widely used in the extreme ultraviolet (EUV) space observation, plasma diagnostic and synchrotron radiation, particularly as a key component in the next EUV lithography. The reflectivity of multilayer marks its research level. In EUV wavelength range, because of the short wavelength in tens nanometer scale, substrate roughness significantly degrades the reflectivity of the multilayer mirrors. It is required to obtain the super-smooth surface substrate with low roughness. And it is an important research subject for high reflectivity multilayer mirrors. On the other hand, the characterization and evaluation of substrate surface is also required for the fabrication of the super-smooth substrate.
    In the thesis, cleaning theory and methods of super-smooth for silicon and glass substrate were introduced, including swabbing and ultrasonic cleaning technologies. The orthogonal experiment method was designed, and some main factors affected the quality of substrate cleaning were investigated, such as the temperature of clean solution, cleaning time and ultrasonic power and so on. For the swabbing cleaning method, although some contaminant can be removed, some side effect was followed. It is can be found that the cotton fiber results in the abrasive or residual, and the new contaminant was introduced. For the ultrasonic cleaning method, the contaminant was avoided, and the surface roughness reduced to less than 0.2nm. Therefore, the orthogonal experiment method was used to optimize ultrasonic cleaning technology. The experimental results suggest that the ultrasonic temperature has remarkable effect and the results of 35°C and 45°C are better than that of 25°C, however, the ultrasonic time (10min and 20min) has not effect obviously.
    In order to characterize the surface morphology of the cleaning substrates, direct (AFM) and indirect (X-ray diffraction and Synchrotron Radiation Scattering measurements) techniques were used. However, each of these instruments is sensitive to a specific, finite range of spatial frequencies. Therefore, in order to provide the exact information of the surface, some of these methods should be combined and power spectral density theory was used.
    After cleaning the substrate using different methods, the Mo/Si multilayers
引文
[1]. Jewell T. E .. Effect of amplitude and phase dispersion on images in multilayer coated soft x-ray projection systems. Proc OSA Topical Meeting on Soft-X-Ray Lithography. Montery.1991
    [2]. Stearns D. G., et al.. Multilayer mirror technology for soft x-ray projection lithography. Appl. Opt.. 1993, 32(34): 6952-6959
    [3]. Spiller E.. Soft X-ray Optics. Bellingham, Wash.: SPIE Optical Engeering Press. 1994. 175-185 Kortright J.B..Multilayer reflectors for the extreme ultraviolet spectral region. Nucl.Instrum.Meth.. 1986,A246:344~347
    [4]. Slaughter J. M., Schlze D. W., Hills C. R., et al.. Structure and performance of Si/Mo multilayer mirrors for the extreme ultraviolet. J. Appl. Phys.. 1994, 76(4): 2144-2156
    [5]. Barbee T. W., Jr., Mrowka S., Hettrick M. C. Molybdenum-Silicon multilayer mirrors for the extreme ultraviolet. Appl. Opt.. 1985,24(6): 883-892
    [6]. Eastman J. M.. Advances in Research and Development. In: edited by G. Hass and M. H. Francombe. Physics of Thin Films. New York: Academic. 1978, 10: 167-172
    [7]. Louis E, Yakshin A E, Goerts P C, et al.Progress in Mo/Si multilayer coating technology for EUVL optics SPIE 2000, Vol 3997:406-411
    [8]. Portens J. O. Relation between the height distribution of a rough surface and the reflectance at normal incidence. J. Opt. Soc. Am.. 1963, 53(12): 1394-1402
    [9]. Stearns D. G., Rosen R. S., Vernon S. P.. Fabrication of high-reflectance Mo-Si multilayer mirrors by planar magnetron sputtering. J. Vac. Sci. Technol.. 1991, A9: 2662-2669
    [10]. Kern, W, Handbook of Semiconductor Wafer Cleaning Technology: Science Technology and Application Noyes Publication, New Jersey, 1993
    
    [11]. Shiramizu Y, Watanabe K, Tanaka M et al., J.Electrochem, Soc, 1996, 143 (5), 1632
    [12]. Loewenstein L M, Mertens P W, ibid., 1998, 145 (8),2841
    [13]. Morinaga H, Sugana M, Ohmi T, ibid., 1994, 141(10), 2834
    [14]. Baker G L, Hess D W, J., Electrochem. Soc, 1998,145 (1), 184
    [15]. Barbara Kanegsberg and Edward Kanegsberg, Handbook for critical cleaning, Publisher Boca Raton, CRC Press, c2001, London
    [16]. F.Podczeck, The Estimation of the Area Contact between Microscopic particles and a flat surface in adhesion contact, J.Appl.Phys.79(3),1,1996
    [17]. Werner Kern, Handbook of semiconductor wafer cleaning technology: science technology, and applications, Publisher park Ridge, N.J.:Noyes Pub., cl993
    [18]. Zhang, F., Busnaina, A.A., Ahmadi, G., J. Electrochemical Society, vl46,n7(1999)
    [19]. Gale, G., Busnaina, A. and Kashkoush, I., Proceedings, Precision Cleaning 94,Rosemont, IL, 1994,17(19):232~253
    [20]. Busnaina, A.A., and Tao, D., The Adhesion Society Proceedings,20th Annual Meeting, Hilton Head, SC,1997,12:118-121
    [21].刘玉岭,古海云,檀柏梅。ULSI衬底硅单晶片清洗技术现状与展望。稀有金属,2001,25(2)
    [22]. Montcalm C., Sullivan B. T., Pepin H., et al.. Extreme-ultraviolet Mo/Si multilayer mirrors deposited by radio-frequency-magnetron sputtering. Appl. Opt.. 1994, 33 (10): 2057~2068
    [23]. W. M. Tong and R. S. Williams, Kinetics of surface growth: phenomenology, scaling, and mechanisms of smoothening and roughening, Annu. Rev. Phys. Chem., 1994, 45:401-438.
    [24]. Windt D. L., Waskiewicz W. K., Griffith J. E.. Surface finish requirements for soft x-ray mirrors. Appl. Opt.. 1994, 33(10): 2025~2031
    [25]. H. J. Stock, F. Hamelmann, U. Kleineberg, D. Menke, B. Schmiedeskamp, K. Osterried, K. F. Heidernann, and U. Heinzmann, "Carbon Buffer Layers for Smoothing Superpolished Glass Surfaces as Substrates for Molybdenum/Silicon Multilayer Soft-X-Ray Mirrors," Appi Opt, 1997, 36:1650-1654 A. Duparre and H.G.Walther, Surface smoothing and roughening by thin film deposition, Appl.Opt., 27(1988) 1393-1395
    [26]. E.spiller, S.Baker, E.parra, and C.Tarrio, Smoothing of mirror substrates by thin-film deposition, SPIE, 1999,3767:143~153
    [27]. Shinji Miyagaki, Hiromasa Yamanashi,Atsuko Yamaguchi, and Lwao Nishiyama,influence of glass substrate surface roughness on extreme ultraviolet reflectivity of Mo/Si multilayer, J.Vac.Sci.Technol.B, 2004,22(6):3063-3066
    [28]. A.M. Baranov, "Planarization of substrate surface by means of ultrathin diamond-like carbon films", Surface and Coating Technology, 1998, 102:154-158
    [29]. S.Braun, B. Bendjus, T. Foltyn, M. Menzel, J.Scgreuberm and A.Leson, Smoothing of substrate roughness by carbon-based layers prepared by pulsed laser deposition(PLD), SPIE, 2004, 5533:75-84
    [30]. D. G. Steams, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, "Nonspecular x-ray scattering in a multilayer-coated imaging system," J App. Phys. 84, 10003-10028 (Ⅰ998).
    [31]. Weber W., Lengeler B.. Diffuse scattering of hard x rays from rough surfaces. Phys. Rev.. 1992, B46(12): 7953~7956
    [32]. E.Marx, I.J.Malik, Y.E.Strausser, T.Bristow, N.Poduje, and J.C.Stover, Power spectral densities: a multiple technique study of different Si wafer surfaces, J.Vac.Sci.Technol, 2002,20:175-181
    [33]. J.M. Elson and J.M. Bennett, "Calculation of the power spectral density from surface profile data", Applied Optics, v. 34, no. 1, pp. 201-208, (1995).
    [34]. Church E. L.. Fractal surface finish. Appl. Opt.. 1988, 27(8): 1518~1526
    [35]. Angela Duparre and Stefan Jakobs, Combination of surface characterization techniques for investigating optical thin-film components, Applied Optics, 1996, 35(25):5052-5058
    [36]. C.Ruppe, A.Duparre, Roughness analysis of optical films and substrates by atomic force microscopy, thin solid films and substrates by atomic force microscopy, Thin Solid Film, 1996, 288:8-13
    [37]. V.E.Asadchikov, I.V. Kozhevnikov, and Yu.S.Krivonosov, X-ray Invesigations of Surface Roughnesses, Crystallography Reports, 2003, 48(5):836-850
    [38]. E.L. Church and P.Z. Takacs, "Instrumental effects in surface finish measurement,' in Surface Measurement and Characterization, Proc. SPIE, v. 1009, pp. 46-55 (1989).
    [39]. Eastman J. M., Baumeister P. W.. The microstructure of polished optical surfaces. Opt. Commun.. 1974, 12(4): 418~420
    [40]. Victor E. Asadchikov, Angela Duparre, Igor V. Kozhevnikov, Yury S. Krivonosov, and Spartak I. Sagitov, X ray and AFM studies of ultrathin films for EUV and soft X-ray applications, SPIE,
    [41]. 1999,3738:387-393
    [42]. Eastman J.M., Baumeister P. W..The microstructure of polished optical surface.Opt.Commun.. 1974, 12(24):418~420
    [43].电子工业生产技术手册.北京:国防工业出版社,1997,23
    [44].刘玉岭,刘纳,曹阳.硅单晶片镜面吸附物吸附状态的研究.稀有金属,1999,23(2):85~88
    [45].李家值,半导体化学原理,北京:科技出版社.1980,153
    [46].朱步瑶,赵振国,界面化学基础,北京:化学工业出版社.1996,311
    [47].[美]S.Roy Morrison著,赵璧英译,表面化学物理.北京:北京大学出版社,1990,13
    [48]. Skidmorek, Cleaning Techniques for Wafer Surface, Semiconductor In'l. 1987,10:80
    [49].梁治齐主编,实用清洗技术手册,北京:化学工业出版社.2001
    [50]. H.Krupp,Particle adhesion theory and experiment,advances in collid and interface sci, 1967(2): 111-239
    [51]. Bowling RA. A theoretical review of particle adhesion. In: Mittal KL, editor. Particles on surface 1: detection, adhesion, and removal, 1988. p. 129-142
    [52]. M.B.Ranade, Adhesion and removal of fine particles on surfaces,Aerosl Sci.and Technol.1987(7):161-176
    [53]. Kuide Qin,and Yongcheng Li.Mechanisms of particle removal from silicon wafer surface in wet chemical cleaning process.Journal of colloid and interface science.2003.(261):569-574.
    [54]. Bardina, Methods for surface particle removal: A comparative study, Particulate and technology, 1988, 6:121-131
    [55]. J.Israelachvili,intermolecular and surface force, London: Academic press, 1992.
    [56]. S. P. Hotaling and D. A. Dykeman, "An advanced surface particle and molecular contaminant identification, removal, and collection system" in Particles on Surfaces: Detection, Adhesion, and Removal, K.L. Mittal, ed., Marcel Dekker, Inc., New York, 1995, pp. 111-140.
    [57]. D.Tabor, Gases,Liquids,and Solids and Other States of Matter.New York:Cambridge.
    [58]. Blitz.J,Ultrasonics:methods and applications,Van Nostrand Reinhold,New York,1971
    [59]. L. G. Olson, Finite element model for ultrasonic cleaning, J.Sound and Vibration 1988, 126:387~392
    [60]. Kashkoush I., Busnaina A., Kern Jr.F. and Kunesh R.,Particle removal using ultrasonic cleaning, Proceeding of Institute of Environmental Science, 1990,19;407-413
    [61]. A.A.Busnaina,G.W.Gale and I.I.Kashkoush,ultrasonic and megasonic theory and experimentation,precision cleaning, 1994,13,4:197-211.
    [62]. Quail Qi, and Giles J.Brereton, Mechanisms of Removal of Micron-Sized Particles by High-Frequency Ultrasonic Waves, IEEE transations on ultrasonics, ferroelectrics, and frequency control, 1995,42(4):619-629
    [63]. Kern W, Handbook of Semiconductor Wafer Cleaning Technology: Science Technology and Applications, Noyes Publication, New Jersey,1993
    [64]. Pui, D.Y.H., Ye Y., etal., Experimental study of particle deposition on semiconductor wafers, Aerosol Science and Technology, 1990, 12:795-804
    [65]. M.O'Donoghue, the ultrasonic cleaning process,Microcontamination,1984,2(5).
    [66]. T. L. Geers, and M. Hasheminejad, "Linear analysis of an ultrasonic cleaning problem," J. Acoust. Soc. Amer., 1991, 29(4), 669-678.
    [67]. M.Chemla, S.Durand-Vidal, S.Zanna, S.Petitdidier, D.Levy, Silicon surface wet cleaning and chemical oxide growth by a novel treatment in aqueous chlorine solutions, Electrochimica Acta,2004, 49:3545-3553
    [68]. I. Kashkoush and A. A. Busnaina, "Recent developments in submicrometer particle removal," in Particles on Surfaces 4, K. Mittal, Ed. New York: Plenum, 1993.
    [69]. D.Deal,coming cleaning:what's ahead in silicon wafer cleaning technology, precision cleaning, 1994,(6),24
    [70]. R.Iscoff.Wet Cleaning Methods, Semiconductor international, 1993(7):58
    [71]. G. J. Brereton and B. A. Bruno, "Particles removal by focused ultrasound," J. Sound and vibration, 1994, 173(5):683-689.
    [72]. Atchley.A,and Crum.L,ultrasound,its chemical,physical,and biological effects,VCH publishers,New York, 1988.
    [73]. S. L. Kudryashov, K. Smith, S. Shukia, R. Oyler, L. Geib, M. Y. Hussaini, and S. D. Allen, Laser Assisted Particle Removal—Experiments and Modeling, Poster Paper, USA Annual Meeting 2002, Urlando, FL
    [74]. D. Allen, Laser cleaning techniques for critical surfaces, Opt. Photonics News 1992, 3(6):28~30
    [75]. S.Santucci, A.V.la Cecilia, A. Digiacomo, R.A.Phani, L.Lozzi, X-ray reflectivity studies of very thin film of silicon oxide and silicon oxide-silicon nitride stacked structures, Journal of Non-Crystalline Solids, 2001,280:228-234
    [76]. R. V. Peterson and C. W. Bowers, "Contamination removal by CO2 jet spray," in Optical System Contamination: Effects, Measurement, Control Ⅱ, A.P. Glassford and D. F. Hall, eds., Proc. SPIE 1990,1329:72~85.
    [77].周泽存,检测技术,北京:机械工业出版社,1993
    [78].杨力.先进制造技术.北京:科学出版社,2001
    [79]. Fang S J, Haplepete S, Chen W. et al..Analyzing atomic force microscopy images using spectral methods.J Apply phys, 1997,82(12):5891~5898
    [80]. Lawson J K, Wolfe C R, Manes K R, et al, Specification of optical components using the power spectral density function, SPIE, 1995,2536,38-50
    [81]. Angela D, Ferre-Borrull J,Gliech S,e tal..Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components[J]. Appl Opt,2002,41 (1): 1541~71
    [82].魏东波,互换性与测量技术基础,北京:北京航空航天大学出版社,1996
    [83]. Angela D, Ferre-Borrull J,Gliech S,e tal..Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components[J]. Appl Opt,2002,41(1):1541~71
    [84]. Elson J M, Bennett J M. Calculation of the power spectral density from surface profile data[J],AppliedOptics,1995,34(1):201-208
    [85]. Aikens D M, Wolfe R, Lawsom J K, The use of power spectral density (PSD) functions in specifying optics for the National Ignition Facility. SPIE, 1995,2576:281-291
    [86]. Angela D, Josep F-B, Stefan G, et al, "Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components". Applied Optics 2002,41:154-171.
    [87].张蓉竹,蔡邦维,杨春林等,功率谱密度的数值计算方法,强激光与粒子束,2000,23(6),661-664
    [88].沈正祥,王占山,马彬等,利用功率谱密度函数表征光学薄膜基底表面粗糙度,光学仪器,第28卷第4期,2006,141-145
    [89].于瀛洁,李国培.关于光学元件波面测量中的功率谱密度[J].计量学报,2003,24(2):103~107
    [90]. Stearns D G. Stochastic model for thin film growth and erosion. Appl. Phys. Lett. 1993, Vol 62(15): 1745-1747
    [91]. Spiller E. Soft x ray optics. Bellingham: SPIE Optical Engineering Press, 1994.
    [92].王华馥,吴自勤,固体物理实验方法,北京:高等教育出版社,1997
    [93]. Sergei N.Magonov, Myung-Hwan Whangbo, Surface Analysis with STM and AFM, VCH Vedagsgesellschaft mbH, D-69451 Weinheim(Federal Republic of Germany) 1996
    [94].陈永华,应用数理统计,杭州:浙江大学出版社,1990.
    [95]. Hans K. Pulker, coatings on glass, Elsevier Science Publishers B.V., 1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700