用户名: 密码: 验证码:
干旱胁迫对杨桐幼苗生长及生理生化特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以1年生杨桐幼苗为研究材料,采用盆栽称重补水法人工模拟土壤干旱胁迫(设置土壤田间持水量为15%、30%、45%、60%、75%,用W1、W2、W3、W4、CK表示),研究不同干旱胁迫程度和胁迫时间下杨桐苗的生长、生理生化特性,探讨杨桐苗对干旱胁迫的适应机理与能力,以期为不同立地条件下栽培杨桐提供理论依据。主要研究结果如下:
     1.干旱胁迫抑制杨桐苗高、地径、叶面积、叶片数和生物量,但提高了根冠比,表明干旱胁迫会改变杨桐生物量在各器官间的分配比例,其中根比例增加和叶面积减少会有利于其在干旱条件下吸收水分和维持水分平衡。
     2.干旱胁迫使杨桐幼苗叶片相对含水量降低,试验前期降低幅度不大,这与植物体内主动积累可溶性糖和脯氨酸进行渗透调节有关。干旱胁迫使可溶性糖和脯氨酸含量上升,说明杨桐叶片具有一定的保水能力。实验后期叶片相对含水量下降幅度较大,可溶性糖在实验后期有个下降的过程,可能是由于光合机构受损,有机物合成速率降低所致。可溶性蛋白在实验期间总体是下降的趋势,随着土壤含水量的下降呈下降的趋势,说明可溶性蛋白不作为渗透调节物质。
     3.干旱胁迫下,SOD和POD活性呈上升趋势,有效的去除活性氧,表现为杨桐叶片中丙二醛含量和细胞膜透性上升幅度不大。实验后期酶活性低于对照,表现为杨桐叶片中丙二醛含量和细胞膜透性上降幅度较大,且叶片细胞膜相对透性与MDA之间呈现正相关性,说明在一定的胁迫程度和时间内,杨桐能够激活SOD、POD等酶活性来调节胁迫对其造成的伤害。
     4.土壤干旱胁迫使杨桐叶绿素含量降低,但是Chla/b的值上升,说明叶绿素b比叶绿素a更容易受到破坏,同时提高了类胡萝卜素含量,吸收剩余能量,淬灭活性氧,防止膜脂过氧化。
     5.干旱胁迫使杨桐的光合速率、水分利用率、胞间二氧化碳浓度降低,胞间二氧化碳浓度各处理间不显著。Fv/Fm在田间持水量大于45%时变化并不明显说明此时并没有引起光抑制现象的发生。但在不同程度干旱胁迫下ETR、фPSⅡ、qP都明显下降,说明干旱胁迫PSII反应中心的开放程度的降低,从而引起了电子传递速率的降低,最终导致了光合能力的下降。这些结果表明非气孔因素是光合能力下降的主要因素。
This paper using pot culture 1-year-Cleyera japonica seedlings as experiment materials and adopting the method of using different weight of soil to control water content,five different levels of drought stresses(The relative soil moistures for the different treatments were controlled at 15%(W1),30%(W2),45%(W3),60%(W4) and 75% (CK)) were applied to examine the effect of drought stress on the growth and physiological-Biochemical characteristics of Cleyera japonica seedlings.The purpose is to provide theory basis for the future scientific management and culturing high quality seedlings,the results as follows:
     1. With increasing of soil drought stress,the height, ground diameter,leaf area, vane number and biomass of seedlings decreased, but the root-top ratio were increased.It shows that the distributive proportion of biomass in the individuals varied regularly with the decrease of soil water content, the proportion of root increased and leaf area reduction will facilitate the absorption of moisture in dry conditions and maintenance of water balance.
     2. The relative water content of Cleyera japonica’s leaf were reduced with increasing of soil drought stress,the RWC of leaf rise slowly in the early which accumulate soluble sugar and proline to the osmotic adjustment and soluble sugar and proline is the main infiltration material, soluble sugar and proline increased significantly under drought stress. To the late experiments decreased greatly, indicating Cleyera japonica has a certain capacity of drought resistance. Soluble sugars decreased in the late of experimental,there may be due to damage of photosynthetic apparatus,organic synthesis rate decreases. During the experiment, soluble protein reduced with the decline of soil water content ,may be it is not as osmotic adjustment, but converted to the form of amino acids involved in metabolism and osmotic adjustment.
     3.Under drought stress,SOD, POD activity of leaf increased,it removal of active oxygen effective, shows that MDA content and membrane permeability increase slowly, but the activity was lower in the late of experiment, shows that a significant reduction in experimental late, and positive correlation between MDA and membrane permeability. Indicated a certain stress level and time, Cleyera japonica able to activate SOD, POD activity to regulate the stress of their damage.
     4.With increasing of soil drought stress,the content of Chlorophyll decreased, but the ratio of chla/chlb were increased.It is shows that Chlorophyll b more easily damaged than Chlorophyll a.While increasing the carotenoid content, absorb the remaining energy, quenching oxygen inactivation, to prevent lipid peroxidation.
     5. Pn,WUE.Gs decreased with the increasing of soil drought stress,Fv / Fm does not change clearly when field capacity more than 45%,indicate did not cause the occurrence of photoinhibition. However, ETR,фPSⅡ, qP decreased obviously under drought stress shows PSII reaction center to reduce the degree of openness led to lower the rate of electron transfer, eventually led to the decline in photosynthetic capacity. It shows that non-stomatal factors were major factor in the decline in photosynthetic capacity.
引文
[1] Kramer JP. Water Relation of Plants[M], New York: Academic Press, 1983.
    [2]刘友良编著.植物水分逆境生理[M].农业出版社, 1992.
    [3]康绍忠,李永杰. 21世纪我国节水农业的发展趋势与对策[J].农业工程学报, 1997, 4: 32-36.
    [4]钱玉红,孙丽华.浙江杨桐考察[J].浙江林业科技, 1994, 14(1): 42-46.
    [5]孙伟琴,应叶青,钱莲芳,等.激素处理对杨桐扦插生根的影响[J].江西林业科技, 2005, (03), 15-16.
    [6]吕世新,徐国超,赵锡成.杨桐育苗及造林技术[J].林业科技开发, 2003, 17(1):59.
    [7]张焕贤,徐正法.野生杨桐枝条保鲜技术研究简报[J].江西林业科技, 1999, 3: 15-16.
    [8]詹森梁,潘伟华,朱永军等.杨桐人工栽培模式试验初报[J].浙江林业科技, 2005, 25(4): 21-23.
    [9]吴家胜,应叶青,黎章矩.杨桐苗期光合特性的研究[J].江西农业大学学报, 2004, 26(6), 896-900.
    [10]傅益群,方腾,黄建胜.杨桐的繁殖和培育技术试验研究[J].浙江林业科技, 1999, 19(6): 25-27.
    [11]杨敏生,黄选瑞,李彦慧.水分胁迫对白杨杂种无性系生理和生长的影响[J].河北林果研究, 1998, 13(2): 99-102
    [12]杨鑫光,傅华,张洪荣,等.水分胁迫对霸王苗期叶水势和生物量的影响[J].草业学报, 2006, 15(2): 37-41.
    [13]齐伟,张吉旺,王空军等.干旱胁迫对不同耐旱性玉米杂交种产量和根系生理特性的影响[J].应用生态学报, 2010, 21(1): 48-52
    [14]李晓储,黄利斌,张永兵,等.四种含笑叶解剖性状与抗旱性的研究[J].林业科学研究, 2006, 19(2): 177-181.
    [15]邱全胜.渗透胁迫对小麦根质膜膜脂物理状态的影响[J].植物学报, 1999, 42(2): 161-165.
    [16]蔡永萍,陶汉之,张玉琼.土壤渍水对小麦开花后叶片几种生理特性的影响[J].植物生理学通讯2000, 36(2): 110-113.
    [17] Sofo A, Dichio B, Xiloyannis C, et al. Lipoxygenase activity and praline accumulation in leaves and roots of olive trees in response to drought stress[J]. Physiologia plantarum, 2004, 121: 58-65
    [18]王洪春.生物膜结构和渗透调节[M].上海:上海科学技术出版社, 1987, 13-16.
    [19] McCree K J. Whole plant carbon banance during osmntic adjustment to brought and salinity stress. Australian Journal of Plant Physiology. 1986, 13: 33-44
    [20] Martinez-Carrasco R, et al. Changes in chlorophyll fluorescence during the course of photoperiod and in response to drought in Casuarina equisetifolia forestry[J]. Photosynthetica, 2002, 40(3): 363-368.
    [21]李国宝.果树光合作用研究进展[J].河北林学院学报, 1990, 5(3): 254-261.
    [22]晋纲,蔡庆生,周兴元,宋刚.土壤干旱胁迫对2种不同光合类型草坪草的光合特性和水分利用率的影响[J].草业科学, 2005, 22(4): 103-107.
    [23]李勤报,梁厚果.轻度水分胁迫的小麦幼苗中与呼吸有关的几种酶活性变化[J].植物生理学报, 1988, 14(3): 217-222.
    [24] Boyer,J.S. Plant hysiol[M]. 1970, (46): 233-235.
    [25]李莉,钟章成,缪世利,等.诸葛菜对水分胁迫的生理生化反应及调节适应能力[J].西南师范大学学报, 2000, 25(1): 33-37.
    [26]蒋明义,杨文英,徐江,等.渗透胁迫诱导水稻幼苗的氧化伤害[J].作物学报, 1994, 20(6): 733-738.
    [27] Shen B, Jense RG, Bohnert H J. Mannitol protects against oxidation by hydroxyl radicals[J]. Plant Physiol, 1997, 115: 52-53
    [28] Alscher RG, Donahue J L, Camer C L.Reactive oxygen species and antioxidants:relationship in green cells[J]. Physiol Plant, 1997, 100: 224-233
    [29]周瑞莲,张承烈,金巨和.干旱胁迫下紫花苜蓿叶片含水量、质膜透性活性变化与抗旱性关系研究[J].中国草地, 1991, (2): 20-25.
    [30]杨特武,鲍健寅,何光明.干旱胁迫下白三叶器官生理特征变化及其SOD在抗旱中的作用[J].中国草地, 1997, (4): 55-61.
    [31]张冬梅.干旱胁迫下佛甲草生理生化变化的研究[J].河北林果研究, 2007, 22 (2): 207-209.
    [32]江香梅,黄敏仁,王明庥.植物抗盐碱、耐干旱基因工程研究进展[J].南京林业大学学报, 2001, 25(5): 57-62.
    [33]蒋志荣,杨占彪,汪君,等.兰州九州台四种绿化树种抗旱性机理比较研究[J].中国沙漠, 2006, 26(4): 553-558.
    [34] Dure L. Plant response dehydration during environment stress. Plant physiology, 1993, (10): 91-93.
    [35]朱万泽,王金锡,薛建辉.台湾桤木和四川桤木种源苗木对水分胁迫的生理响应[J].西北植物学报, 2005, 25(10): 1969-1975.
    [36]张立新,李生秀.氮、钾、甜菜碱对减缓夏玉米水分胁迫的效果[J].中国农业科学, 2005, 38(7): 140l-1407.
    [37]张道远,尹林克,潘伯荣,等.柽柳属植物抗旱性能研究及其应用潜力评价[J].中国沙漠, 2003, 23(3): 252-256.
    [38]马双艳,姜远茂,彭福田,等.干旱胁迫对几种果树甜菜碱含量的影响[J].山西果树, 2003(8): 3-4.
    [39]郝建军,康宗利主编.植物生理学[M].北京:化学工业出版社, 2005.
    [40]李岩,潘海春,李德全.土壤干旱条件下玉米叶片内源激素含量及光合作用的变化[J].植物生理学报, 2000, 26(4): 301~305.
    [41] Jackson MB. Are plant homones involved in the root to shoot commnnication[J]. Adv Bot Res, 1993: 103-187.
    [42] Parvathi K, Raghavendra K. Bioenergetic processes in guard cells related to stoatal function[J]. Physiol Plant, 1995, 93: 146-154.
    [43]傅益群,方腾,黄建胜.杨桐的繁殖和培育技术试验研究[J].浙江林业科技, 1999, 19(6): 25-28.
    [44]程瑞平,束怀瑞等.水分胁迫对苹果树生长和叶片中矿质含量的影响闭[J].植物生理学通讯, 1992, 28(1): 32-34.
    [45]汤章城.现代植物生理学实验指南[M].北京:科学出版社, 1999.
    [46]李合生,植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000.
    [47] Ral ph PJ, Gademann R, Dennison WC. In situ seagrass Photosynthesis measured using a submersible, pulse-amplitude modulated fluorometer. Marine Biology, 1998, 132: 367-373
    [48]杨敏生,梁海永,王进茂等.水分肋迫下白杨双交杂种无形系苗木生长研究[J].河北农业大学学报, 2002, 25(4): 1-7.
    [49]陈军,戴厚英.干旱对不同耐性玉米品种光合作用及产量的影响[J].作物学报, 1996, 22(6): 757-762.
    [50]刘勇.我国苗木培育理论与技术进展[J].世界林业研究. 2000, 13(5): 43-49.
    [51]王森,代力民,姬兰柱.长白山阔叶红松林主要树种对于干旱胁迫的生态反应及生物量分配初步研究[J].应用生态学报, 2001, 12(4): 496-500.
    [52] Fitter AH. Functional significance of root morphology and root system architecture Ecological Interaction soil: Plants,microbes and animals[M]. Oxford: Blackwell Scientific Press,1985.
    [53] Grime JP, Campbell BD, Mackey JML, Crick JC. Root Plasticity, nitrogen capture and competitive Plant root growth: an ecological Perspective[M]. Oxford: Blackwell Scientific Press, 1991.
    [54]肖冬梅,王森,姬兰柱.水分胁迫对长白山阔叶红松林主要树种生长及生物量分配的影响[J].生态学杂志, 2004,23(5): 93-97.
    [55]宋会兴,钟章成,王开发.土壤水分和接种VA菌根对构树根系形态和分形特征的影响[J].林业科学. 2007, 43(7): 142-147.
    [56] Sofo A, Dichio B, Xiloyannis C, et al. Lipoxygenase activity and praline accumulation in leaves and roots of olive trees in response to drought stress[J]. Physiologia plantarum, 2004, 121: 58-65.
    [57]余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,1998.
    [58]李向东,王晓云,张高英,等.花生叶片衰老过程中某些酶的变化[J].植物生理学报, 2001, 27(4): 353-358.
    [59]李林锋,刘新田.干旱胁迫对桉树幼苗的生长和某些生理生态的影响[J].西北林学院学报. 2003, 19(1): 14-17.
    [60] Kuo L G. Chen H M, Ma L H. Effect of high temperature on praline content in tomato floral buds and leaves[J]. Amer. Sco. Hort Sci. 1986, 11(5): 746-750.
    [61]张明生,谈锋,谢波,等.甘薯膜脂过氧化作用和膜保护系统的变化与品种抗旱性的关系[J].中国农业科学, 2003, 36(11): 1395-1398.
    [62]陈京.抗寒性不同的甘薯品种对渗透胁迫的生理响应[J].作物学报, 1999, 25(2): 232-236.
    [63]张明生,谈锋.水分胁迫下甘薯叶绿素a/b比值的变化及其抗旱性的关系[J].种子, 2001,(4)23-25.
    [64]王忠安,袁照年,李文卿,等.水分胁迫对不同抗旱性甘薯膜脂过氧化和非酶促保护物质的影响[J].热带作物学报, 2004, 25(4): 54-57.
    [65]罗孝政,低温和水分亏缺对常绿果树成花作用研究进展[J].亚热带植物通讯. 2000, 29(1): 61-66.
    [66]朱慧,马瑞君,吴双桃,等.干旱胁迫对五爪金龙种子萌发与幼苗生长的影响[J].西北植物学报, 2009,29(2): 0344-0349.
    [67]余玲,王彦荣, GARNETTTrevor,等.紫花苜蓿不同品种对干旱胁迫的生理响应[J].草业学报, 2006, 6(3): 75-85.
    [68] Selote DS, Khanna CR. Drought acclimation confers oxidative stress tolerance by inducing coordinated antioxidant defense at cellular an sub cellular level in leaves of wheat seedings[J]. Physiol Plantarum, 2006. 127: 494-506.
    [69]张冬梅.干旱胁迫下佛甲草生理生化变化的研究[J].河北林果研究, 2007, 22(2), 207-209.
    [70]阎秀峰,李晶,祖元刚.干旱胁迫对红松幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报, 1999, 19(6): 850-854.
    [71]李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报, 2002, 22(4): 503-507.
    [72] Wlleken S H, Vancam PW, Lnze D, et al. Ozone, sulfur dioxide, and ozone ultravio let-B have similar effect on Mrna accumulation of antioxidant genes in Nicotiana plum baginifolia L.[J]. Plant Physiol, 1994, 106 (3): 1007-1014.
    [73]葛体达,隋方功,白莉萍,等.水分胁迫下夏玉米根叶保护酶活性变化及其对膜脂过氧化作用的影响[J].中国农业科学, 2005, 38(5): 922-928.
    [74]陈立松,刘星辉.水分胁迫对荔枝叶片氮和核酸代谢的影响及其与抗旱性的关系[J].植物生理学报, 1999, 25(1): 49-56.
    [75] CLIFFORD S C, ARNDT S K, CORTLETT J E, et al. The role of solute accumulation osmotic adjustment and changes in cell wallelasticity in drought tolerance in Ziziphus mauritiana(Lamk.)[J]. Journal of Experimental Botany, 1998, 49(323): 967-977.
    [76]潘瑞炽.植物生理学(第四版)[M].北京:高等教育出版社, 2000.
    [77]蒋志荣,杨占彪,汪君,等.兰州九州台四种绿化树种抗旱性机理比较研究[J].中国沙漠, 2006, 26(4): 553-558.
    [78] Hanson A D, Xlelsen C E, Everson E H. Evaluation of free proline accumulation as an index of drought resistance using two contrasting barely cultivars, Corp Sci. 1977, 17: 702~726
    [79] Tan B H, Halloran G M. Variation adn correlation of proline accumulation in spring wheat cultivars, Crop Science, 1982, 22: 459~463
    [80]张明生,杜建厂,谢波,等.水分胁迫下甘薯叶片渗透调节物质含量与品种抗旱性的关系[J].南京农业大学学报, 2004, 27(4):123-125.
    [81]刘瑞香,杨吉力,高丽.中国沙棘和俄罗斯沙棘叶片在不同土壤水分条件下脯氨酸、可溶性糖及内源激素含量的变化[J].水土保持学报, 2005,19(3): 148-152.
    [82] Genty B, Briantais J M, Silva J B. Effects of drought on primary photosynthetic process ofcotton leaves[J]. Plant Physiol, 1987, 83: 360-364.
    [83]唐薇,罗振,温四民,等.干旱和盐胁迫对棉苗光合抑制效应的比较[J].棉花学报, 2007,19(1):28-32.
    [84]吕芳德,徐德聪,栗彬.水分胁迫对美国山核桃叶绿素荧光参数的影响[J].中南林学院学报, 2006,26(4):27-30.
    [85] Selote DS, Khanna CR. Drought acclimation confers oxidative stress tolerance by inducing coordinated antioxidant defense at cellular an sub cellular level in leaves of wheat seedlings[J]. Physiol Plantarum, 2006, 127: 494-506.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700