用户名: 密码: 验证码:
A因子依赖蛋白AdpA对链霉菌形态分化和次生代谢的调节
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
来自抗生链霉菌的酪氨酸酶基因melC以高拷贝形式(pIJ702)进入不同的链霉菌菌株中后,菌落周围就会产生棕黑色的黑色素圈,这是一种非常明显的表型。转化子中有大约1 %的自发突变的白色的突变株,其中有一部分是因为melC本身发生突变,另一部分是因为宿主染色体发生突变影响到melC的表达。ZX66(衍生于变铅青链霉菌野生型JT46)就是染色体发生突变的白色转化子。来自于JT46染色体的一个3.3 kb的DNA片段含有一个可以回补ZX66黑色素的表达的基因。这个基因编码的蛋白属于转录调节因子AraC家族的一员,高度同源于天蓝色链霉菌中的AdpAc,因此命名为AdpAl。ZX66染色体上的这个基因发生了一个碱基的颠换,引起一个关键的氨基酸,苏氨酸,变成苯丙氨酸。将天蓝色链霉菌、变铅青链霉菌和抗生链霉菌中的adpA进行缺失,所得突变株均不能合成黑色素。在adpA的突变株中,melC的转录水平明显降低。蛋白AdpAl能够结合在melC的启动子区域激活melC基因的转录。我们可以得出结论:在链霉菌中AdpA家族蛋白正调控melC操纵子。
     阿维链霉菌是能够产生阿维菌素和寡霉素的重要工业微生物。阿维链霉菌AdpAa是灰色链霉菌AdpAg的同源蛋白。阿维链霉菌adpAa突变株(ZD7)不能合成黑色素,也不能产生气生菌丝。而且HPLC检测突变株不再产生阿维菌素、寡霉素。CAS平板检测突变株不再分泌铁载体。反转录PCR检测野生型菌株和adpAa突变株ZD7中基因的转录水平。可能参与形态分化的基因的转录水平在adpAa突变株有不同程度的下降。黑色素、阿维菌素和寡霉素的生物合成基因簇在adpAa突变株检测不到转录。阿维链霉菌基因组中32簇次生代谢基因簇超过一半的转录水平明显下降,还有一簇基因的转录水平升高。我们可以得出结论:在阿维链霉菌中AdpA正调控melC操纵子和形态分化,以及阿维菌素、寡霉素和铁载体的生物合成,并且影响超过一半次生代谢基因簇的的转录。
     aveR是阿维链霉菌阿维菌素生物合成基因簇中唯一的可能调节基因。为了验证aveR是否参与阿维菌素生物合成基因的转录调节,我们中断aveR基因获得突变株(ZD10)。高压液相色谱检测表明,与野生型菌株相比,突变株不再产生阿维菌素,并且寡霉素的产量明显高于野生型。进一步的反转录PCR分析显示,与野生型菌株相比,突变株ZD10的聚酮合酶基因aveA3转录水平有明显下降。结果显示AveR是阿维菌素生物合成的正调节因子,通过调节结构基因的转录表达来影响阿维菌素的产生。
Dark brown haloes of melanin around colonies are an easily visualized phenotype displayed by many Streptomyces strains harboring plasmid pIJ702 carrying the melC operon of Streptomyces antibioticus IMRU3270. Spontaneous melanin-negative mutants of pIJ702 occur with a frequency of ca. 1%, and often mutation occurs in the melC operon, which removes the BglII site as part of an inverted repeat. Other melanin-negative mutations seem to occur spontaneously in S. lividans, resulting in white colonies from which intact, melanin-producing pIJ702 can be isolated by introduction into a new host. S. lividans ZX66 was found to be such a mutant and to have a secondary mutation influencing expression of the melC operon on the chromosome. A 3.3 kb DNA fragment was isolated from its progenitor strain, JT46, and a gene able to restore melC operon expression was found to encode a member of an AraC family of transcriptional regulators, which was equivalent to AdpAc in S. coelicolor and therefore was designated AdpAl. Lack of melC operon expression was correlated with a single A-to-C transversion, which altered a single key amino acid residue from Thr to Pro. The transcription of the melC operon was found to be greatly reduced in the adpA mutant background. The counterpart gene in the S. antibioticus strain in which the melC operon carried on pIJ702 originated was also isolated and was found to have an identical regulatory role. Thus, we concluded that the melC operon is under general direct positive control by AdpA family proteins, perhaps at the transcriptional level and certainly at the translational level via bldA, in Streptomyces.
     S. avermitilis is a soil bacterium that carries out not only a complex morphological differentiation but also the production of secondary metabolites such as avermectin and oligomycin. AdpAa, a regulator of the AvaC family encoded by SAV5261 of S. avermitilis genome, is highly similar to AdpAg, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in S. griseus. adpAa was interrupted and the mutant ZD7 fails to produce melanin and to form aerial mycelium. Furthermore adpAa is also involved in production of avermectin and oligomycin. HPLC analysis indicates that AdpA regulates avermectin and oligomycin biosynthesis positively. S. avermitilis can produce siderophore and siderophore production of the mutant of adpAa was blocked. Reverse transcription PCR for transcript analysis also showed the difference of transcription of genes involved in morphological differentiation and secondary metabolites between wild type strain and ZD7. the transcriptional levels of some genes involved in morphological differentiation were lower in ZD7 compared with those in the wild type strain. There are 32 secondary metabolite clusters in S. avermitilis, and the transcriptional levels of 15 clusters of them were lower in ZD7 compared with those in the wild type strain.
     Gene aveR is the only putative regulatory gene in avermectin biosynthetic gene cluster from S. avermitilis. In order to test if aveR is involved in the regulation of transcription of avermectin biosynthetic genes, aveR mutant ZD10 was obtained. Analyzed by LC-MS, avermectin productivity was abolished, whereas the yield of oligomycin significantly increased in ZD10. Reverse transcriptase PCR analysis indicated that the transcription level of aveA3, an essential PKS gene, was drastically reduced in ZD10. Therefore, AveR was proved as a positive regulator for avermectin biosynthesis by promoting the transcription of structural genes.
引文
1. Waksman, S.A. and A.T. Henrici, The Nomenclature and Classification of the Actinomycetes. J Bacteriol, 1943. 46(4): p. 337-41.
    2. Hain, T., et al., Discrimination of Streptomyces albidoflavus strains based on the size and number of 16S-23S ribosomal DNA intergenic spacers. Int J Syst Bacteriol, 1997. 47(1): p. 202-6.
    3. Hopwood, D.A., Forty years of genetics with Streptomyces :from in vivo through in vitro to in silico. Microbiology, 1999. 145: p. 2183–2202.
    4. Pridham, T.G., C.W. Hesseltine, and R.G. Benedict, A guide for the classification of streptomycetes according to selected groups; placement of strains in morphological sections. Appl Microbiol, 1958. 6(1): p. 52-79.
    5. In:, R.E. Buchanan, and N.E. Gibbons, Bergey's manual of determinative bacteriology. 1974: The Williams & Wilkins Co, Baltimore
    6. Williams, S.T., et al., Numerical classification of Streptomyces and related genera. J Gen Microbiol, 1983. 129(6): p. 1743-813.
    7. Lechevalier, M.P. and H.A. Lechevalier, Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol, 1970. 20: p. 435-43.
    8. Vandamme, P., et al., Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev, 1996. 60(2): p. 407-38.
    9. Volff, J.N. and J. Altenbuchner, Genetic instability of the Streptomyces chromosome. Mol Microbiol, 1998. 27(2): p. 239-46.
    10. Leblond, P. and B. Decaris, New insights into the genetic instability of streptomyces. FEMS Microbiol Lett, 1994. 123(3): p. 225-32.
    11. Altenbuchner, J. and J. Cullum, DNA amplification and an unstable arginine gene in Streptomyces lividans 66. Mol Gen Genet, 1984. 195(1-2): p. 134-8.
    12. Vandewiele, D., et al., Isolation and characterization of a mutator strain of Streptomyces ambofaciens ATCC23877 exhibiting an increased level of genetic instability. Can J Microbiol 1996. 42: p. 562-70.
    13. Volff, J.N., et al., Ultraviolet light, mitomycin C and nitrous acid induce genetic instability in Streptomyces ambofaciens ATCC23877. Mutat Res, 1993. 287(2): p. 141-56.
    14. Volff, J.N., et al., Stimulation of genetic instability in Streptomyces ambofaciens ATCC 23877 by antibiotics that interact with DNA gyrase. J Gen Microbiol, 1993. 139(11): p. 2551-8.
    15. Chen, C.W., Complications and implications of linear bacterial chromosomes. Trends Genet, 1996. 12(5): p. 192-6.
    16. Kolsto, A.B., Dynamic bacterial genome organization. Mol Microbiol, 1997. 24(2): p. 241-8.
    17. Lin, Y.S., et al., The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol, 1993. 10(5): p. 923-33.
    18. Lezhava, A., et al., Physical map of the linear chromosome of Streptomyces griseus. J Bacteriol, 1995. 177(22): p. 6492-8.
    19. Leblond, P., et al., The unstable region of Streptomyces ambofaciens includes 210 kb terminal inverted repeats flanking the extremities of the linear chromosomal DNA. Mol Microbiol, 1996. 19(2): p. 261-71.
    20. Pandza, K., et al., Physical mapping shows that the unstable oxytetracycline gene cluster of Streptomyces rimosus lies close to one end of the linear chromosome. Microbiology, 1997. 143 ( Pt 5): p. 1493-501.
    21. Zakrzewska-Czerwinska, J. and H. Schrempf, Characterization of an autonomously replicating region from the Streptomyces lividans chromosome. J Bacteriol, 1992. 174(8): p. 2688-93.
    22. Musialowski, M.S., et al., Functional evidence that the principal DNA replication origin of the Streptomyces coelicolor chromosome is close to the dnaA-gyrB region. J Bacteriol, 1994. 176(16): p. 5123-5.
    23. Fischer, J., et al., The use of an improved transposon mutagenesis system for DNA sequencing leads to the characterization of a new insertion sequence of Streptomyces lividans 66. Gene, 1996. 180(1-2): p. 81-9.
    24. Redenbach, M., et al., A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol, 1996. 21(1): p. 77-96.
    25. Redenbach, M., et al., The Streptomyces lividans 66 chromosome contains a 1 MB deletogenic region flanked by two amplifiable regions. Mol Gen Genet, 1993. 241(3-4): p. 255-62.
    26. Lezhava, A., et al., Chromosomal deletions in Streptomyces griseus that remove the afsA locus. Mol Gen Genet, 1997. 253(4): p. 478-83.
    27. Betzler, M., P. Dyson, and H. Schrempf, Relationship of an unstable argG gene to a 5.7-kilobase amplifiable DNA sequence in Streptomyces lividans 66. J Bacteriol, 1987. 169(10): p. 4804-10.
    28. Dittrich, W., M. Betzler, and H. Schrempf, An amplifiable and deletable chloramphenicol-resistance determinant of Streptomyces lividans 1326 encodes a putative transmembrane protein. Mol Microbiol, 1991. 5(11): p. 2789-97.
    29. Birch, A., A. Hausler, and R. Hutter, Genome rearrangement and genetic instability in Streptomyces spp. J Bacteriol, 1990. 172(8): p. 4138-42.
    30. Fischer, G., B. Decaris, and P. Leblond, Occurrence of deletions, associated with genetic instability in Streptomyces ambofaciens, is independent of the linearity of the chromosomal DNA. J Bacteriol, 1997. 179(14): p. 4553-8.
    31. Dary, A., et al., Large genomic rearrangements of the unstable region in Streptomyces ambofaciens are associated with major changes in global gene expression. Mol Microbiol, 1993. 10(4): p. 759-69.
    32. Gravius, B., et al., Genetic instability and strain degeneration in Streptomyces rimosus. Appl Environ Microbiol, 1993. 59(7): p. 2220-8.
    33. Volff, J.N. and J. Altenbuchner, Influence of disruption of the recA gene on genetic instability and genome rearrangement in Streptomyces lividans. J Bacteriol, 1997. 179(7): p. 2440-5.
    34. Volff, J.N., P. Viell, and J. Altenbuchner, Artificial circularization of the chromosome with concomitant deletion of its terminal inverted repeats enhances genetic instability and genome rearrangement in Streptomyces lividans. Mol Gen Genet, 1997. 253(6): p. 753-60.
    35. Kuzminov, A., Collapse and repair of replication forks in Escherichia coli. Mol Microbiol, 1995. 16(3): p. 373-84.
    36. Muth, G., et al., Mutational analysis of the Streptomyces lividans recA gene suggests that only mutants with residual activity remain viable. Mol Gen Genet, 1997. 255(4): p. 420-8.
    37. Hodgson, D.A., Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol, 2000. 42: p. 47-238.
    38. Cole, S.T., et al., Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998. 393(6685): p. 537-44.
    39. Cole, S.T., et al., Massive gene decay in the leprosy bacillus. Nature, 2001. 409(6823): p. 1007-11.
    40. S. D. Bentley, K.F.C., Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 2002. 417: p. 141-7.
    41. Lobry, J.R., Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol, 1996. 13(5): p. 660-5.
    42. Kelemen, G.H., et al., A connection between stress and development in the multicellular prokaryote Streptomyces coelicolor A3(2). Mol Microbiol, 2001. 40(4): p. 804-14.
    43. Vohradsky, J., et al., Developmental control of stress stimulons in Streptomyces coelicolor revealed by statistical analyses of global gene expression patterns. J Bacteriol, 2000. 182(17): p. 4979-86.
    44. Hopwood, D.A., K.F. Chater, and M.J. Bibb, Genetics of antibiotic production in Streptomyces coelicolor A3(2), a model streptomycete. Biotechnology, 1995. 28: p. 65-102.
    45. Chong, P.P., et al., Physical identification of a chromosomal locus encoding biosynthetic genes for the lipopeptide calcium-dependent antibiotic (CDA) of Streptomyces coelicolor A3(2). Microbiology, 1998. 144 ( Pt 1): p. 193-9.
    46. Davis, N.K. and K.F. Chater, Spore colour in Streptomyces coelicolor A3(2) involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics. Mol Microbiol, 1990. 4(10): p. 1679-91.
    47. Challis, G.L. and J. Ravel, Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: structure prediction from the sequence of its non-ribosomal peptide synthetase. FEMS Microbiol Lett, 2000. 187(2): p. 111-4.
    48. Takeyama, H., et al., Expression of the eicosapentaenoic acid synthesis gene cluster from Shewanella sp. in a transgenic marine cyanobacterium, Synechococcus sp. Microbiology, 1997. 143 ( Pt 8): p. 2725-31.
    49. Poralla, K., G. Muth, and T. Hartner, Hopanoids are formed during transition from substrate to aerial hyphae in Streptomyces coelicolor A3(2). FEMS Microbiol Lett, 2000. 189(1): p. 93-5.
    50. Funa, N., et al., A new pathway for polyketide synthesis in microorganisms. Nature, 1999. 400(6747): p. 897-9.
    51. Krugel, H., et al., Functional analysis of genes from Streptomyces griseus involved in the synthesis of isorenieratene, a carotenoid with aromatic end groups, revealed a novel type of carotenoid desaturase. Biochim Biophys Acta, 1999. 1439(1): p. 57-64.
    52. Burg, R.W., et al., Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother, 1979. 15(3): p. 361-7.
    53. Omura S, I.H., Ishikawa J, Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A., 2001 Oct. 98(21): p. 12215-20.
    54. Denoya, C.D., D.D. Skinner, and M.R. Morgenstern, A Streptomyces avermitilis gene encoding a 4-hydroxyphenylpyruvic acid dioxygenase-like protein that directs the production of homogentisic acid and an ochronotic pigment in Escherichia coli. J Bacteriol, 1994. 176(17): p. 5312-9.
    55. Hopwood, D.A. and D.H. Sherman, Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet, 1990. 24: p. 37-66.
    56. Katz, L. and S. Donadio, Polyketide synthesis: prospects for hybrid antibiotics. Annu Rev Microbiol, 1993. 47: p. 875-912.
    57. Ikeda, H., et al., Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc Natl Acad Sci U S A, 1999. 96(17): p. 9509-14.
    58. Ikeda, H., et al., Transposon mutagenesis by Tn4560 and applications with avermectin-producing Streptomyces avermitilis. J Bacteriol, 1993. 175(7): p. 2077-82.
    59. Lipmann, F., Bacterial production of antibiotic polypeptides by thiol-linked synthesis on protein templates. Adv Microb Physiol, 1980. 21: p. 227-66.
    60. Zocher, R. and U. Keller, Thiol template peptide synthesis systems in bacteria and fungi. Adv Microb Physiol, 1997. 38: p. 85-131.
    61. Du, L., et al., The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase. Chem Biol, 2000. 7(8): p. 623-42.
    62. Ray, T., Weaden,J. and Dyson,P., Tris-dependent site-specific cleavage of Streptomyces lividans DNA. FEMS Microbiol. Lett., 1992. 75: p. 247-52.
    63. Evans, M.a.D., P., Pulsed-field gel-electrophoresis of Streptomyces lividans DNA. Trends Genet., 1993. 9: p. 72.
    64. Zhou, X.F., Deng,Z.X., Firmin,J.L., Hopwood,D.A. and Kieser,T., Site-specific degradation of Streptomyces lividans DNA during electrophoresis in buffers contaminated with ferrous iron. Nucleic Acids Res., 1988. 16: p. 4341-52.
    65. Xiufen Zhou, X.H., Aiying Li, Fang Lei, Tobias Kieser, and Zixin Deng, Streptomyces coelicolor A3(2) Lacks a Genomic Island Present in the Chromosome of Streptomyces lividans 66. Appl Environ Microbiol. , 2004. 70(12): p. 7110-8.
    66. Zhou X, H.X., Liang J, Li A, Xu T, Kieser T, Helmann JD, Deng Z., A novel DNA modification by sulphur. Mol Microbiol. , 2005. 57(5): p. 1428-38.
    67. Jingdan Liang, Z.W., Xinyi He, Jialiang Li, Xiufen Zhou and Zixin Deng, DNA modification by sulfur: analysis of the sequence recognition specificity surrounding the modification sites. Nucleic Acids Research, 2007. 35(9): p. 2944-54.
    68. You D, W.L., Yao F, Zhou X, Deng Z., A novel DNA modification by sulfur: DndA is a NifS-like cysteine desulfurase capable of assembling DndC as an iron-sulfur cluster protein in Streptomyces lividans. Biochemistry. , 2007. 46(20): p. 6126-33.
    69. Wang, L., et al., Phosphorothioation of DNA in bacteria by dnd genes. Nat Chem Biol, 2007. 3(11): p. 709-10.
    70. Kelemen, G.H. and M.J. Buttner, Initiation of aerial mycelium formation in Streptomyces. Curr Opin Microbiol, 1998. 1(6): p. 656-62.
    71. Willey, J.M., et al., Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Mol Microbiol, 2006. 59(3): p. 731-42.
    72. Wildermuth, H., E. Wehrli, and R.W. Horne, The surface structure of spores and aerial mycelium in Streptomyces coelicolor. J Ultrastruct Res, 1971. 35(1): p. 168-80.
    73. Claessen, D., et al., Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface. Mol Microbiol, 2002. 44(6): p. 1483-92.
    74. Claessen, D., et al., A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev, 2003. 17(14): p. 1714-26.
    75. Claessen, D., et al., The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Mol Microbiol, 2004. 53(2): p. 433-43.
    76. Willey, J., et al., Extracellular complementation of a developmental mutation implicates a small sporulation protein in aerial mycelium formation by S. coelicolor. Cell, 1991. 65(4): p. 641-50.
    77. Willey, J., J. Schwedock, and R. Losick, Multiple extracellular signals govern the production of a morphogenetic protein involved in aerial mycelium formation by Streptomyces coelicolor. Genes Dev, 1993. 7(5): p. 895-903.
    78. Tillotson, R.D., et al., A surface active protein involved in aerial hyphae formation in the filamentous fungus Schizophillum commune restores the capacity of a bald mutant of the filamentous bacterium Streptomyces coelicolor to erect aerial structures. Mol Microbiol, 1998. 30(3): p. 595-602.
    79. Wosten, H.A. and J.M. Willey, Surface-active proteins enable microbial aerial hyphae to grow into the air. Microbiology, 2000. 146 ( Pt 4): p. 767-73.
    80. Kelemen, G.H., et al., Developmental regulation of transcription of whiE, a locus specifying the polyketide spore pigment in Streptomyces coelicolor A3 (2). J Bacteriol, 1998. 180(9): p. 2515-21.
    81. Chater, K.F. and S. Horinouchi, Signalling early developmental events in two highly diverged Streptomyces species. Mol Microbiol, 2003. 48(1): p. 9-15.
    82. Dennis Claessen, W.d.J., Lubbert Dijkhuizen and Han A.B. Wo¨ sten, Regulation of Streptomyces development: reach for the sky! TRENDS in Microbiology, July 2006. 14(7): p. 313-9.
    83. EJ Lawlor, H.B.a.K.C., Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes & Development, 1987. 1: p. 1305-1310.
    84. BK Leskiw, E.L., JM Fernandez-Abalos and KF Chater, TTA Codons in Some Genes Prevent Their Expression in a Class of Developmental, Antibiotic-Negative, Streptomyces Mutants. Proceedings of the National Academy of Sciences, 1991. 88: p. 2461-2465.
    85. Margaret K. Pope, B.G., and Janet Westpheling, The bldB Gene Encodes a Small Protein Requiredfor Morphogenesis, Antibiotic Production, and Catabolite Control in Streptomyces coelicolor. J Bacteriol, 1998 March 180: p. 1556-1562.
    86. Eccleston, M., Structural and genetic analysis of the BldB protein of Streptomyces coelicolor. J. Bacteriol, 2002. 184: p. 4270–4276.
    87. Mishig-Ochiriin, Biophysical and structural property of the putative DNA-binding protein, BldB, from Streptomyces lividans. Biopolymers, 2003. 69: p. 343–350.
    88. Kelemen, A.C.H.L.S.n.-G.l.G.H., The bldC Developmental Locus of Streptomyces coelicolor Encodes a Member of a Family of Small DNA-Binding Proteins Related to the DNA-Binding Domains of the MerR Family. JOURNAL OF BACTERIOLOGY, 2005 Jan. 187: p. 716–728.
    89. MARIE ELLIOT, F.D., ROSA PASSANTINO, The bldD Gene of Streptomyces coelicolor A3(2): a Regulatory Gene Involved in Morphogenesis and Antibiotic Production. JOURNAL OF BACTERIOLOGY,, 1998 Mar. 180(6): p. 1549–1555.
    90. Marie A. Elliot, M.J.B., Mark J. Buttner and Brenda K. Leskiw, BldD is a direct regulator of key developmental genes in Streptomyces coelicolor A3(2). Molecular Microbiology 2001. 40(1): p. 257-269.
    91. Tenor, G.H.K.P.H.V.J.L., A connection between stress and development in the multicellular prokaryote Streptomyces coelicolor A3(2). Molecular Microbiology, 2001. 40(4): p. 804–814.
    92. Bignell DR, W.J., Strap JL, Chater KF, Leskiw BK, Study of the bldG locus suggests that an anti-anti-sigma factor and an anti-sigma factor may be involved in Streptomyces coelicolor antibiotic production and sporulation. Microbiology, 2000 Sep. 146(9): p. 2161-73.
    93. Champness, W.C., New loci required for Streptomyces coelicolor morphological and physiological differentiation. J. Bacteriol., 1988. 170: p. 1168–1174.
    94. E. Takano, M.T., F. Long,, A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor. Mol. Microbiol., 2003. 50: p. 475–486.
    95. Leskiw BK, M.R., The bldA-encoded tRNA is poorly expressed in the bldI mutant of Streptomyces coelicolor A3(2). Microbiology., 1995 Aug. 141 (8): p. 1921-6.
    96. Nodwell JR, M.K., Losick R., An oligopeptide permease responsible for the import of an extracellular signal governing aerial mycelium formation in Streptomyces coelicolor. Mol Microbiol, 1996 Dec. 22(5): p. 881-93.
    97. Nodwell JR, L.R., Purification of an extracellular signaling molecule involved in production of aerial mycelium by Streptomyces coelicolor. J Bacteriol. , 1998 Mar. 180(5): p. 1334-7.
    98. Park HS, S.S., Yang YY, Kwon HJ, Suh JW. , Accumulation of S-adenosylmethionine induced oligopeptide transporters including BldK to regulate differentiation events in Streptomyces coelicolor M145. FEMS Microbiol Lett. , 2005 Aug 15. 249(2): p. 199-206.
    99. Nodwell, J.R., et al., Extracellular complementation and the identification of additional genes involved in aerial mycelium formation in Streptomyces coelicolor. Genetics, 1999. 151(2): p. 569-84.
    100. Bibb, M.J., V. Molle, and M.J. Buttner, sigma(BldN), an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). J Bacteriol, 2000. 182(16): p. 4606-16.
    101. Molle, V. and M.J. Buttner, Different alleles of the response regulator gene bldM arrest Streptomyces coelicolor development at distinct stages. Mol Microbiol, 2000. 36(6): p. 1265-78.
    102. Elliot, M.A., et al., BldD is a direct regulator of key developmental genes in Streptomyces coelicolor A3(2). Mol Microbiol, 2001. 40(1): p. 257-69.
    103. Kodani, S., et al., The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc Natl Acad Sci U S A, 2004. 101(31): p. 11448-53.
    104. Ma, H. and K. Kendall, Cloning and analysis of a gene cluster from Streptomyces coelicolor that causes accelerated aerial mycelium formation in Streptomyces lividans. J Bacteriol, 1994. 176(12): p. 3800-11.
    105. Keijser, B.J., et al., Developmental regulation of the Streptomyces lividans ram genes: involvement of RamR in regulation of the ramCSAB operon. J Bacteriol, 2002. 184(16): p. 4420-9.
    106. O'Connor, T.J., P. Kanellis, and J.R. Nodwell, The ramC gene is required for morphogenesis in Streptomyces coelicolor and expressed in a cell type-specific manner under the direct control of RamR. Mol Microbiol, 2002. 45(1): p. 45-57.
    107. Kodani, S., et al., SapT, a lanthionine-containing peptide involved in aerial hyphae formation in the streptomycetes. Mol Microbiol, 2005. 58(5): p. 1368-80.
    108. Hopwood, D.A. and A.M. Glauert, Electron microscope observations on the surface structures of Streptomyces violaceoruber. J Gen Microbiol, 1961. 26: p. 325-30.
    109. Wosten, H.A., Hydrophobins: multipurpose proteins. Annu Rev Microbiol, 2001. 55: p. 625-46.
    110. Wosten, H., O. De Vries, and J. Wessels, Interfacial Self-Assembly of a Fungal Hydrophobin into a Hydrophobic Rodlet Layer. Plant Cell, 1993. 5(11): p. 1567-1574.
    111. Elliot, M.A., et al., The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev, 2003. 17(14): p. 1727-40.
    112. Elliot, M.A. and N.J. Talbot, Building filaments in the air: aerial morphogenesis in bacteria and fungi. Curr Opin Microbiol, 2004. 7(6): p. 594-601.
    113. Elliot, M.A. and B.K. Leskiw, The BldD protein from Streptomyces coelicolor is a DNA-binding protein. J Bacteriol, 1999. 181(21): p. 6832-5.
    114. Elliot, M., et al., The bldD gene of Streptomyces coelicolor A3(2): a regulatory gene involved in morphogenesis and antibiotic production. J Bacteriol, 1998. 180(6): p. 1549-55.
    115. Kwak, J. and K.E. Kendrick, Bald mutants of Streptomyces griseus that prematurely undergo key events of sporulation. J Bacteriol, 1996. 178(15): p. 4643-50.
    116. Ainsa, J.A., et al., WhiA, a protein of unknown function conserved among gram-positive bacteria, is essential for sporulation in Streptomyces coelicolor A3(2). J Bacteriol, 2000. 182(19): p. 5470-8.
    117. Molle, V., et al., WhiD and WhiB, homologous proteins required for different stages of sporulation in Streptomyces coelicolor A3(2). J Bacteriol, 2000. 182(5): p. 1286-95.
    118. Tan, H., et al., The Streptomyces coelicolor sporulation-specific sigma WhiG form of RNA polymerase transcribes a gene encoding a ProX-like protein that is dispensable for sporulation. Gene, 1998. 212(1): p. 137-46.
    119. Ryding, N.J., et al., A developmentally regulated gene encoding a repressor-like protein is essentialfor sporulation in Streptomyces coelicolor A3(2). Mol Microbiol, 1998. 29(1): p. 343-57.
    120. Ainsa, J.A., H.D. Parry, and K.F. Chater, A response regulator-like protein that functions at an intermediate stage of sporulation in Streptomyces coelicolor A3(2). Mol Microbiol, 1999. 34(3): p. 607-19.
    121. Gehring, A.M., et al., Genomewide insertional mutagenesis in Streptomyces coelicolor reveals additional genes involved in morphological differentiation. Proc Natl Acad Sci U S A, 2000. 97(17): p. 9642-7.
    122. Nystrom, T., Starvation, cessation of growth and bacterial aging. Curr Opin Microbiol, 1999. 2(2): p. 214-9.
    123. Chater, K.F., Regulation of sporulation in Streptomyces coelicolor A3(2): a checkpoint multiplex? Curr Opin Microbiol, 2001. 4(6): p. 667-73.
    124. Ryding, N.J., et al., New sporulation loci in Streptomyces coelicolor A3(2). J Bacteriol, 1999. 181(17): p. 5419-25.
    125. Soliveri, J., et al., Two promoters for the whiB sporulation gene of Streptomyces coelicolor A3(2) and their activities in relation to development. J Bacteriol, 1992. 174(19): p. 6215-20.
    126. Flardh, K., K.C. Findlay, and K.F. Chater, Association of early sporulation genes with suggested developmental decision points in Streptomyces coelicolor A3(2). Microbiology, 1999. 145 ( Pt 9): p. 2229-43.
    127. Soliveri, J.A., et al., Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes. Microbiology, 2000. 146 ( Pt 2): p. 333-43.
    128. Kelemen, G.H., et al., The positions of the sigma-factor genes, whiG and sigF, in the hierarchy controlling the development of spore chains in the aerial hyphae of Streptomyces coelicolor A3(2). Mol Microbiol, 1996. 21(3): p. 593-603.
    129. Flardh, K., et al., Generation of a non-sporulating strain of Streptomyces coelicolor A3(2) by the manipulation of a developmentally controlled ftsZ promoter. Mol Microbiol, 2000. 38(4): p. 737-49.
    130. Viollier, P.H., et al., Roles of aconitase in growth, metabolism, and morphological differentiation of Streptomyces coelicolor. J Bacteriol, 2001. 183(10): p. 3193-203.
    131. Viollier, P.H., et al., Role of acid metabolism in Streptomyces coelicolor morphological differentiation and antibiotic biosynthesis. J Bacteriol, 2001. 183(10): p. 3184-92.
    132. Gehring, A.M., N.J. Yoo, and R. Losick, RNA polymerase sigma factor that blocks morphological differentiation by Streptomyces coelicolor. J Bacteriol, 2001. 183(20): p. 5991-6.
    133. Paget, M.S., et al., Mutational analysis of RsrA, a zinc-binding anti-sigma factor with a thiol-disulphide redox switch. Mol Microbiol, 2001. 39(4): p. 1036-47.
    134. Kang, J.G., et al., RsrA, an anti-sigma factor regulated by redox change. Embo J, 1999. 18(15): p. 4292-8.
    135. Cho, Y.H., E.J. Lee, and J.H. Roe, A developmentally regulated catalase required for proper differentiation and osmoprotection of Streptomyces coelicolor. Mol Microbiol, 2000. 35(1): p. 150-60.
    136. Susstrunk, U., et al., Pleiotropic effects of cAMP on germination, antibiotic biosynthesis andmorphological development in Streptomyces coelicolor. Mol Microbiol, 1998. 30(1): p. 33-46.
    137. Cho, Y.H., et al., SigB, an RNA polymerase sigma factor required for osmoprotection and proper differentiation of Streptomyces coelicolor. Mol Microbiol, 2001. 42(1): p. 205-14.
    138. Nguyen, K.T., et al., A central regulator of morphological differentiation in the multicellular bacterium Streptomyces coelicolor. Mol Microbiol, 2002. 46(5): p. 1223-38.
    139. Shima, J., A. Penyige, and K. Ochi, Changes in patterns of ADP-ribosylated proteins during differentiation of Streptomyces coelicolor A3(2) and its development mutants. J Bacteriol, 1996. 178(13): p. 3785-90.
    140. Yonekawa, T., Y. Ohnishi, and S. Horinouchi, Involvement of amfC in physiological and morphological development in Streptomyces coelicolor A3(2). Microbiology, 1999. 145 ( Pt 9): p. 2273-80.
    141. de Crecy-Lagard, V., et al., Alteration of the synthesis of the Clp ATP-dependent protease affects morphological and physiological differentiation in Streptomyces. Mol Microbiol, 1999. 32(3): p. 505-17.
    142. Sun, J., A. Hesketh, and M. Bibb, Functional analysis of relA and rshA, two relA/spoT homologues of Streptomyces coelicolor A3(2). J Bacteriol, 2001. 183(11): p. 3488-98.
    143. Okamoto, S. and K. Ochi, An essential GTP-binding protein functions as a regulator for differentiation in Streptomyces coelicolor. Mol Microbiol, 1998. 30(1): p. 107-19.
    144. van Wezel, G.P., et al., ssgA is essential for sporulation of Streptomyces coelicolor A3(2) and affects hyphal development by stimulating septum formation. J Bacteriol, 2000. 182(20): p. 5653-62.
    145. H, Y., et al., The function of a regulatory gene, scrX, related to differentiation in Streptomyces coelicolor. Sci China, 2000. 43: p. 157-168.
    146. McCormick, J.R., et al., Growth and viability of Streptomyces coelicolor mutant for the cell division gene ftsZ. Mol Microbiol, 1994. 14(2): p. 243-54.
    147. McCormick, J.R. and R. Losick, Cell division gene ftsQ is required for efficient sporulation but not growth and viability in Streptomyces coelicolor A3(2). J Bacteriol, 1996. 178(17): p. 5295-301.
    148. Khosla, C., et al., Tolerance and specificity of polyketide synthases. Annu Rev Biochem, 1999. 68: p. 219-53.
    149. Gokhale, R.S., et al., Dissecting and exploiting intermodular communication in polyketide synthases. Science, 1999. 284(5413): p. 482-5.
    150. Bystrykh LV, F.-M.M., Herrema JK, Malpartida F, Hopwood DA, Dijkhuizen L., Production of actinorhodin-related "blue pigments" by Streptomyces coelicolor A3(2). J Bacteriol. , 1996. 178(8): p. 2238-44.
    151. Burg RW, M.B., Baker EE, Birnbaum J, Currie SA, Hartman R, Kong YL, Monaghan RL, Olson G, Putter I, Tunac JB, Wallick H, Stapley EO, Oiwa R, Omura S., Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother. , 1979. 15: p. 361-7.
    152. Haruo Ikeda , L.-R.W., Toshio Ohta , Junji Inokoshi , Satoshi Omura, Cloning of the gene encoding avermectin B 5-O-methyltransferase in avermectin-producing Streptomyces avermitilis. Gene, 1998. 206: p. 175–180.
    153. HARUO IKEDA, T.N., MASAYO USAMI, TOSHIO OHTA, AND SATOSHI OMURA, Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc. Natl. Acad. Sci., 1999. 96: p. 9509–9514.
    154. Ikeda H, P.C., Endo H, Ohta T, Tanaka H, Omura S., Construction of a single component producer from the wild type avermectin producer Streptomyces avermitilis. J Antibiot (Tokyo). , 1995. 48(6): p. 532-4.
    155. Pang CH, M.K., Ikeda H, Tanaka H, Omura S., Production of 6,8a-seco-6,8a-deoxy derivatives of avermectins by a mutant strain of Streptomyces avermitilis. J Antibiot (Tokyo), 1995. 48(1): p. 59-66.
    156. Masamune S, S.J., Tamelen EE, Strong FM, Peterson, Separation and preliminary characterization of oligomycins A, B and C. J. Am. Chem. Soc., 1958. 80: p. 6092-5.
    157. Tzagoloff A, M.P., Assesmbly of the mitochondrial membrane system. VI. Mitochondrial synthesis of subunit proteins of the rutamycin-sensitive adenosine triphosphatase. J Biol Chem, 1972. 247: p. 594-603.
    158. Laatsch H, K.M., Wolf G, Lee YS, Hansske F, Konetschny-Rapp S, Pessara U, Scheuer W, Stockinger Hopwood, David A., Oligomycin F, a new immunosuppressive homologue of oligomycin A. J Antibiotics, 1993. 46: p. 1334-41.
    159. Yamazaki M, Y.T., Harada T, Nishikiori T, Saito S, Shimada N, Fujii A (44-Homooligomycins A and B, new antitumor antibiotics from Streptomyces bottropensis: producing organism, fermentation, isolation, structure elucidation and biological properties. J Antibiotics, 1992. 45: p. 171-9.
    160. Ikeda H, I.J., Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M,
    170. Tovarova, II, et al., [Role of the A-factor in the biosynthesis of streptomycin]. Izv Akad Nauk SSSR Biol, 1970. 3: p. 427-34.
    171. Horinouchi, S., Y. Kumada, and T. Beppu, Unstable genetic determinant of A-factor biosynthesis in streptomycin-producing organisms: cloning and characterization. J Bacteriol, 1984. 158(2): p. 481-7.
    172. Ando, N., et al., Involvement of afsA in A-factor biosynthesis as a key enzyme. J Antibiot (Tokyo), 1997. 50(10): p. 847-52.
    173. Kato, J.Y., et al., Biosynthesis of gamma-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces. Proc Natl Acad Sci U S A, 2007. 104(7): p. 2378-83.
    174. Miyake, K., et al., Detection and properties of A-factor-binding protein from Streptomyces griseus. J Bacteriol, 1989. 171(8): p. 4298-302.
    175. Miyake, K., et al., The A-factor-binding protein of Streptomyces griseus negatively controls streptomycin production and sporulation. J Bacteriol, 1990. 172(6): p. 3003-8.
    176. Onaka, H., et al., Cloning and characterization of the A-factor receptor gene from Streptomyces griseus. J Bacteriol, 1995. 177(21): p. 6083-92.
    177. Onaka, H. and S. Horinouchi, DNA-binding activity of the A-factor receptor protein and its recognition DNA sequences. Mol Microbiol, 1997. 24(5): p. 991-1000.
    178. Natsume, R., et al., Crystallization of CprB, an autoregulator-receptor protein from Streptomyces coelicolor A3(2). Acta Crystallogr D Biol Crystallogr, 2003. 59(Pt 12): p. 2313-5.
    179. Natsume, R., et al., Crystal structure of a gamma-butyrolactone autoregulator receptor protein in Streptomyces coelicolor A3(2). J Mol Biol, 2004. 336(2): p. 409-19.
    180. Ohnishi, Y., et al., AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci Biotechnol Biochem, 2005. 69(3): p. 431-9.
    181. Gallegos, M.T., et al., Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev, 1997. 61(4): p. 393-410.
    182. Tobes, R. and J.L. Ramos, AraC-XylS database: a family of positive transcriptional regulators in bacteria. Nucleic Acids Res, 2002. 30(1): p. 318-21.
    183. Ohnishi, Y., et al., The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus : identification of a target gene of the A-factor receptor. Mol Microbiol, 1999. 34(1): p. 102-11.
    184. Higashi, T., et al., A-factor and phosphate depletion signals are transmitted to the grixazone biosynthesis genes via the pathway-specific transcriptional activator GriR. J Bacteriol, 2007. 189(9): p. 3515-24.
    185. Yamazaki, H., Y. Ohnishi, and S. Horinouchi, An A-factor-dependent extracytoplasmic function sigma factor (sigma(AdsA)) that is essential for morphological development in Streptomyces griseus. J Bacteriol, 2000. 182(16): p. 4596-605.
    186. Kato, J.Y., et al., Control by A-factor of a metalloendopeptidase gene involved in aerial mycelium formation in Streptomyces griseus. J Bacteriol, 2002. 184(21): p. 6016-25.
    187. Yamazaki, H., Y. Ohnishi, and S. Horinouchi, Transcriptional switch on of ssgA by A-factor, which is essential for spore septum formation in Streptomyces griseus. J Bacteriol, 2003. 185(4): p. 1273-83.
    188. Yamazaki, H., et al., amfR, an essential gene for aerial mycelium formation, is a member of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus. Mol Microbiol, 2003. 50(4): p. 1173-87.
    189. Kato, J.Y., et al., Transcriptional control by A-factor of two trypsin genes in Streptomyces griseus. J Bacteriol, 2005. 187(1): p. 286-95.
    190. Tomono, A., et al., Three chymotrypsin genes are members of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus. J Bacteriol, 2005. 187(18): p. 6341-53.
    191. Kato, J.Y., Y. Ohnishi, and S. Horinouchi, Autorepression of AdpA of the AraC/XylS family, a key transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. J Mol Biol, 2005. 350(1): p. 12-26.
    192. Yamazaki, H., et al., DNA-binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. Mol Microbiol, 2004. 53(2): p. 555-72.
    193. Takano, E., Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol, 2006. 9(3): p. 287-94.
    194. Anisova, L.N., et al., [Regulators of development in Streptomyces coelicolor A3(2)]. Izv Akad Nauk SSSR Biol, 1984(1): p. 98-108.
    195. Takano, E., et al., Purification and structural determination of SCB1, a gamma-butyrolactone that elicits antibiotic production in Streptomyces coelicolor A3(2). J Biol Chem, 2000. 275(15): p. 11010-6.
    196. Takano, E., et al., A complex role for the gamma-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol, 2001. 41(5): p. 1015-28.
    197. Takano, E., et al., A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Mol Microbiol, 2005. 56(2): p. 465-79.
    198. Ohnishi, Y., et al., An oligoribonuclease gene in Streptomyces griseus. J Bacteriol, 2000. 182(16): p. 4647-53.
    199. Takano, E., et al., A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor. Mol Microbiol, 2003. 50(2): p. 475-86.
    200. Nguyen, K.T., et al., Colonial differentiation in Streptomyces coelicolor depends on translation of a specific codon within the adpA gene. J Bacteriol, 2003. 185(24): p. 7291-6.
    201. Hashimoto, K., et al., IM-2,a Butyrolactone Autoregulator, Induces Production of Several Nucleoside Antibiotics in Streptomyces sp. FRI-5. Journal of fermentation and bioengineering, 1992. 73: p. 449-55.
    202. Waki, M., T. Nihira, and Y. Yamada, Cloning and characterization of the gene (farA) encoding the receptor for an extracellular regulatory factor (IM-2) from Streptomyces sp. strain FRI-5. J Bacteriol, 1997. 179(16): p. 5131-7.
    203. Kawachi, R., et al., Identification of an AfsA homologue (BarX) from Streptomyces virginiae as apleiotropic regulator controlling autoregulator biosynthesis, virginiamycin biosynthesis and virginiamycin M1 resistance. Mol Microbiol, 2000. 36(2): p. 302-13.
    204. Nakano, H., et al., Gene replacement analysis of the Streptomyces virginiae barA gene encoding the butyrolactone autoregulator receptor reveals that BarA acts as a repressor in virginiamycin biosynthesis. J Bacteriol, 1998. 180(13): p. 3317-22.
    205. Lerch, K., Tyrosinase: molecular and active-site structure. ACS Symp. Ser., 1995. 600: p. 64-80.
    206. Mayer, A.M. and E. Harel, Polyphenol oxidases in plants. Phytochemistry, 1978. 18: p. 193-215.
    207. van Gelder, C.W., W.H. Flurkey, and H.J. Wichers, Sequence and structural features of plant and fungal tyrosinases. Phytochemistry, 1997. 45(7): p. 1309-23.
    208. Butler, M.J. and A.W. Day, Fungal melanins: a review. Can. J. Microbiol, 1998. 44: p. 1115-36.
    209. Nosanchuk, J.D. and A. Casadevall, The contribution of melanin to microbial pathogenesis. Cell Microbiol, 2003. 5(4): p. 203-23.
    210. Riley, P.A., Melanogenesis and melanoma. Pigment Cell Res, 2003. 16(5): p. 548-52.
    211. Cerenius, L. and K. Soderhall, The prophenoloxidase-activating system in invertebrates. Immunol Rev, 2004. 198: p. 116-26.
    212. Muller, W.E., et al., Oxygen-controlled bacterial growth in the sponge Suberites domuncula: toward a molecular understanding of the symbiotic relationships between sponge and bacteria. Appl Environ Microbiol, 2004. 70(4): p. 2332-41.
    213. Garcia-Borron, J.C. and F. Solano, Molecular anatomy of tyrosinase and its related proteins: beyond the histidine-bound metal catalytic center. Pigment Cell Res, 2002. 15(3): p. 162-73.
    214. Decker, H., R. Dillinger, and F. Tuczek, How Does Tyrosinase Work? Recent Insights from Model Chemistry and Structural Biology This work was supported by the Medicine and Science Center of the University of Mainz (H.D.) and the Deutsche Forschungsgemeinschaft (F.T., R.D.). The authors thank M.Moller for help with the graphical artwork. Angew Chem Int Ed Engl, 2000. 39(9): p. 1591-1595.
    215. Land, E.J., C.A. Ramsden, and P.A. Riley, Tyrosinase autoactivation and the chemistry of ortho-quinone amines. Acc Chem Res, 2003. 36(5): p. 300-8.
    216. Solomon, E.I., U.M. Sundaram, and T.E. Machonkin, Multicopper Oxidases and Oxygenases. Chem Rev, 1996. 96(7): p. 2563-2606.
    217. Decker, H. and F. Tuczek, Phenoloxidase activity of hemocyanins: activation, substrate orientation and molecular mechanism. Trends Biochem. Sci., 2000. 25: p. 392-7.
    218. Decker, H., et al., SDS-induced phenoloxidase activity of hemocyanins from Limulus polyphemus, Eurypelma californicum, and Cancer magister. J Biol Chem, 2001. 276(21): p. 17796-9.
    219. Decker, H. and E. Jaenicke, Recent findings on phenoloxidase activity and antimicrobial activity of hemocyanins. Dev Comp Immunol, 2004. 28(7-8): p. 673-87.
    220. Jaenicke, E. and H. Decker, Functional changes in the family of type 3 copper proteins during evolution. Chembiochem, 2004. 5(2): p. 163-9.
    221. van Holde, K.E., K.I. Miller, and H. Decker, Hemocyanins and invertebrate evolution. J Biol Chem, 2001. 276(19): p. 15563-6.
    222. Kutzner, H.J., Uber die Bildung von Huminstoffen durch Streptomyceten. Landwirt. Forsch., 1968.21 p. 48-61.
    223. Claus, H., Untersuchungen uber die Tyrosinase bei Melanin-bildenden Streptomyceten. Thesis, TH Darmstadt, 1983.
    224. Claus, H. and H.J. Kutzner, Untersuchungen uber die Tyrosinase von Streptomyceten. Landwirt. Forsch., 1985. 38: p. 48-54.
    225. Nambudiri, A.M.D. and J.V. Bhat, Conversion of p-cumarate into caffeate by Streptomyces nigrifaciens. Biochem. J., 1972. 130: p. 425-33.
    226. Lerch, K. and L. Ettinger, Purification and characterization of a tyrosinase from Streptomyces glaucescens. Eur J Biochem, 1972. 31(3): p. 427-37.
    227. Bernan, V., et al., The nucleotide sequence of the tyrosinase gene from Streptomyces antibioticus and characterization of the gene product. Gene, 1985. 37(1-3): p. 101-10.
    228. Kohashi, P.Y., et al., An efficient method for the overexpression and purification of active tyrosinase from Streptomyces castaneoglobisporus. Protein Expr Purif, 2004. 34(2): p. 202-7.
    229. Liu, N., et al., A heat inducible tyrosinase with distinct properties from Bacillus thuringiensis. Lett Appl Microbiol, 2004. 39(5): p. 407-12.
    230. Kong, K.H., et al., Purification and characterization of a highly stable tyrosinase from Thermomicrobium roseum. Biotechnol Appl Biochem, 2000. 31 ( Pt 2): p. 113-8.
    231. Lopez-Serrano, D., A. Sanchez-Amat, and F. Solano, Cloning and molecular characterization of a SDS-activated tyrosinase from Marinomonas mediterranea. Pigment Cell Res, 2002. 15(2): p. 104-11.
    232. Lopez-Serrano, D., F. Solano, and A. Sanchez-Amat, Identification of an operon involved in tyrosinase activity and melanin synthesis in Marinomonas mediterranea. Gene, 2004. 342(1): p. 179-87.
    233. Pomerantz, S.H. and V.V. Murthy, Purification and properties of tyrosinases from Vibrio tyrosinaticus. Arch Biochem Biophys, 1974. 160(1): p. 73-82.
    234. Yoshida, H., Y. Tanaka, and K. Nakyama, Properties of a tyrosinase from Pseudomonas melanogenum. Agric. Biol. Chem., 1974. 38: p. 632-72.
    235. Baumann, R., et al., Actinomycetes, The Boundary Microorganims. Control of Melanin Formation in Streptomyces glaucescens. Toppan Co. Ltd., Tokyo, 1976: p. 53-63.
    236. Betancourt, A.M., et al., Analysis of tyrosinase synthesis in Streptomyces antibioticus. J. Gen. Microbiol., 1992. 138: p. 787-94.
    237. Katz, E. and A. Betancourt, Induction of tyrosinase by L-methionine in Streptomyces antibioticus. Can J Microbiol, 1988. 34(12): p. 1297-303.
    238. Ikeda, K., T. Masujima, and M. Sugiyama, Effects of methionine and Cu2+ on the expression of tyrosinase activity in Streptomyces castaneoglobisporus. J Biochem, 1996. 120(6): p. 1141-5.
    239. Held, T. and H.J. Kutzner, The expression of the tyrosinase gene of Streptomyces michiganensis is induced by copper and repressed by ammonium. J. Gen. Microbiol., 1990. 136: p. 2413-9.
    240. Wyss, M. and L. Ettlinger, Oxygen as a regulator of tyrosinase in Streptomyces glaucescens. Experientia, 1981. 37.
    241. Lucas-Elio, P., F. Solano, and A. Sanchez-Amat, Regulation of polyphenol oxidase activities andmelanin synthesis in Marinomonas mediterranea: identification of ppoS, a gene encoding a sensor histidine kinase. Microbiology, 2002. 148(Pt 8): p. 2457-66.
    242. Crameri, R., et al., Tyrosinase activity in Streptomyces glaucescens is controlled by three chromosomal loci. Can J Microbiol, 1984. 30(8): p. 1058-67.
    243. Held, T. and H.J. Kutzner, Genetic recombination in Streptomyces michiganensis DSM 40,015 revealed three genes responsible for the formation of melanin. J Basic Microbiol, 1991. 31(2): p. 127-34.
    244. Hintermann, G., M. Zatchej, and R. Hutter, Cloning and expression of the genetically unstable tyrosinase structural gene from Streptomyces glaucescens. Mol Gen Genet, 1985. 200(3): p. 422-32.
    245. Ikeda, K., et al., Cloning and sequence analysis of the highly expressed melanin-synthesizing gene operon from Streptomyces castaneoglobisporus. Appl Microbiol Biotechnol, 1996. 45(1-2): p. 80-5.
    246. Katz, E., C.J. Thompson, and D.A. Hopwood, Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J Gen Microbiol, 1983. 129(9): p. 2703-14.
    247. Kawamoto, S., M. Nakamura, and S. Yashima, Cloning, sequence and expression of the tyrosinase gene from Streptomyces lavendulae MA406 A-1. J. Ferment. Bioeng., 1993. 76: p. 345-55.
    248. Huber, M., G. Hintermann, and K. Lerch, Primary structure of tyrosinase from Streptomyces glaucescens. Biochemistry, 1985. 24(22): p. 6038-44.
    249. Chen, L.Y., et al., Mutational study of Streptomyces tyrosinase trans-activator MelC1. MelC1 is likely a chaperone for apotyrosinase. J Biol Chem, 1993. 268(25): p. 18710-6.
    250. Chen, L.Y., et al., Copper transfer and activation of the Streptomyces apotyrosinase are mediated through a complex formation between apotyrosinase and its trans-activator MelC1. J Biol Chem, 1992. 267(28): p. 20100-7.
    251. Pohlschroder, M., et al., Translocation of proteins across archaeal cytoplasmic membranes. FEMS Microbiol Rev, 2004. 28(1): p. 3-24.
    252. Nielsen, H., S. Brunak, and G. von Heijne, Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng, 1999. 12(1): p. 3-9.
    253. Leu, W.M., et al., Secretion of the Streptomyces tyrosinase is mediated through its trans-activator protein, MelC1. J Biol Chem, 1992. 267(28): p. 20108-13.
    254. Tsai, T.Y. and Y.H. Lee, Roles of copper ligands in the activation and secretion of Streptomyces tyrosinase. J Biol Chem, 1998. 273(30): p. 19243-50.
    255. Schaerlaekens, K., et al., Twin-arginine translocation pathway in Streptomyces lividans. J Bacteriol, 2001. 183(23): p. 6727-32.
    256. Schaerlaekens, K., et al., The importance of the Tat-dependent protein secretion pathway in Streptomyces as revealed by phenotypic changes in tat deletion mutants and genome analysis. Microbiology, 2004. 150(Pt 1): p. 21-31.
    257. Castro-Sowinski, S., G. Martinez-Drets, and Y. Okon, Laccase activity in melanin-producing strains of Sinorhizobium meliloti. FEMS Microbiol Lett, 2002. 209(1): p. 119-25.
    258. Claus, H., Laccases and their occurrence in prokaryotes. Arch Microbiol, 2003. 179(3): p. 145-50.
    259. Mercado-Blanco, J., et al., Melanin production by Rhizobium meliloti GR4 is linked tononsymbiotic plasmid pRmeGR4b: cloning, sequencing, and expression of the tyrosinase gene mepA. J Bacteriol, 1993. 175(17): p. 5403-10.
    260. Sanchez-Amat, A., et al., Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim Biophys Acta, 2001. 1547(1): p. 104-16.
    261. Freeman, J.C., et al., Stoichiometry and spectroscopic identity of copper centers in phenoxazinone synthase: a new addition to the blue copper oxidase family. Biochemistry, 1993. 32(18): p. 4826-30.
    262. Arias, M.E., et al., Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol, 2003. 69(4): p. 1953-8.
    263. Endo, K., et al., Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. J Biochem, 2003. 133(5): p. 671-7.
    264. Suzuki, T., et al., A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression. Biosci Biotechnol Biochem, 2003. 67(10): p. 2167-75.
    265. Machczynski, M.C., et al., Characterization of SLAC: a small laccase from Streptomyces coelicolor with unprecedented activity. Protein Sci, 2004. 13(9): p. 2388-97.
    266. Ruan, L., et al., Expression of the mel gene from Pseudomonas maltophilia in Bacillus thuringiensis. Lett Appl Microbiol, 2002. 34(4): p. 244-8.
    267. Ruan, L., et al., Melanin pigment formation and increased UV resistance in Bacillus thuringiensis following high temperature induction. Syst Appl Microbiol, 2004. 27(3): p. 286-9.
    268. Claus, H. and Z. Filip, Behaviour of phenoloxidases in the presence of clays and other soil-related adsorbents. Appl. Microbiol. Biotechnol, 1988. 28: p. 506-11.
    269. Claus, H. and Z. Filip, Enzymatic oxidation of some substituted phenols and aromatic amines, and the behaviour of some phenoloxidases in the presence of soil related adsorbents. Water Sci. Technol., 1990. 22: p. 69-77.
    270. Gasowska, B., P. Kafarski, and H. Wojtasek, Interaction of mushroom tyrosinase with aromatic amines, o-diamines and o-aminophenols. Biochim Biophys Acta, 2004. 1673(3): p. 170-7.
    271. Wang, G., et al., Cloning and overexpression of a tyrosinase gene mel from Pseudomonas maltophila. FEMS Microbiol Lett, 2000. 185(1): p. 23-7.
    272. Umeyama, T., et al., An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus. Microbiology, 1999. 145 ( Pt 9): p. 2281-92.
    273. Ueda, K., et al., A putative regulatory element for carbon-source-dependent differentiation in Streptomyces griseus. Microbiology, 1999. 145 ( Pt 9): p. 2265-71.
    274. Pope, M.K., B.D. Green, and J. Westpheling, The bld mutants of Streptomyces coelicolor are defective in the regulation of carbon utilization, morphogenesis and cell--cell signalling. Mol Microbiol, 1996. 19(4): p. 747-56.
    275. Schupp, T., C. Toupet, and M. Divers, Cloning and expression of two genes of Streptomyces pilosus involved in the biosynthesis of the siderophore desferrioxamine B. Gene, 1988. 64(2): p. 179-88.
    276. Barona-Gomez, F., et al., Identification of a cluster of genes that directs desferrioxaminebiosynthesis in Streptomyces coelicolor M145. J Am Chem Soc, 2004. 126(50): p. 16282-3.
    277. Bunet, R., et al., Identification of genes involved in siderophore transport in Streptomyces coelicolor A3(2). FEMS Microbiol Lett, 2006. 262(1): p. 57-64.
    278. Flores, F.J. and J.F. Martin, Iron-regulatory proteins DmdR1 and DmdR2 of Streptomyces coelicolor form two different DNA-protein complexes with iron boxes. Biochem J, 2004. 380(Pt 2): p. 497-503.
    279. Fiss, E. and G.F. Brooks, Use of a siderophore detection medium, ethylene glycol degradation, and beta-galactosidase activity in the early presumptive differentiation of Nocardia, Rhodococcus, Streptomyces, and rapidly growing Mycobacterium species. J Clin Microbiol, 1991. 29(7): p. 1533-5.
    280. Volpon, L. and J. Lancelin, Solution NMR structures of the polyene macrolide antibiotic filipin III. FEBS Lett, 2000. 478(1-2): p. 137-40.
    281. Ueda, K., et al., Overexpression of a gene cluster encoding a chalcone synthase-like protein confers redbrown pigment production in Streptomyces griseus. J Antibiot (Tokyo), 1995. 48(7): p. 638-46.
    282. Tetzlaff, C.N., et al., A gene cluster for biosynthesis of the sesquiterpenoid antibiotic pentalenolactone in Streptomyces avermitilis. Biochemistry, 2006. 45(19): p. 6179-86.
    283. Cane, D.E., et al., Geosmin biosynthesis in Streptomyces avermitilis. Molecular cloning, expression, and mechanistic study of the germacradienol/geosmin synthase. J Antibiot (Tokyo), 2006. 59(8): p. 471-9.
    284. Brown, A.D., Microbial water stress. Bacteriol Rev, 1976. 40(4): p. 803-46.
    285. Pringsheim, E.G., The Vitreoscillaceae; a family of colourless, gliding, filamentous organisms. J Gen Microbiol, 1951. 5(1): p. 124-49.
    286. Tyree, B. and D.A. Webster, The binding of cyanide and carbon monoxide to cytochrome o purified from Vitreoscilla. Evidence for subunit interaction in the reduced protein. J Biol Chem, 1978. 253(19): p. 6988-91.
    287. Wakabayashi, S., H. Matsubara, and D.A. Webster, Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature, 1986. 322(6078): p. 481-3.
    288. Dikshit, K.L. and D.A. Webster, Cloning, characterization and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli. Gene, 1988. 70(2): p. 377-86.
    289. Brunker, P., et al., Genetic engineering of an industrial strain of Saccharopolyspora erythraea for stable expression of the Vitreoscilla haemoglobin gene (vhb). Microbiology, 1998. 144 ( Pt 9): p. 2441-8.
    290. Wen, Y., Y. Song, and J.L. Li, [The effects of Vitreoscilla hemoglobin expression on growth and antibiotic production in Streptomyces cinnamonensis]. Sheng Wu Gong Cheng Xue Bao, 2001. 17(1): p. 24-8.
    291. Meng, C., et al., [Cloning and expression of Vitreoscilla hemoglobin in Streptomyces aureofaciens]. Wei Sheng Wu Xue Bao, 2002. 42(3): p. 305-10.
    292. Chen, S., et al., Organizational and mutational analysis of a complete FR-008/candicidin gene cluster encoding a structurally related polyene complex. Chem Biol, 2003. 10(11): p. 1065-76.
    293. Yu, T.W., et al., The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci U S A, 2002. 99(12): p. 7968-73.
    294. Reeves, C.D., et al., A new substrate specificity for acyl transferase domains of the ascomycin polyketide synthase in Streptomyces hygroscopicus. J Biol Chem, 2002. 277(11): p. 9155-9.
    295. Shafiee, A., H. Motamedi, and T. Chen, Enzymology of FK-506 biosynthesis. Purification and characterization of 31-O-desmethylFK-506 O:methyltransferase from Streptomyces sp. MA6858. Eur J Biochem, 1994. 225(2): p. 755-64.
    296. Rascher, A., et al., Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602. FEMS Microbiol Lett, 2003. 218(2): p. 223-30.
    297. Hata, T., et al., Structure of leucomycin A. Chem Pharm Bull (Tokyo), 1967. 15(3): p. 358-9.
    298. Ligon, J., et al., Characterization of the biosynthetic gene cluster for the antifungal polyketide soraphen A from Sorangium cellulosum So ce26. Gene, 2002. 285(1-2): p. 257-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700