用户名: 密码: 验证码:
伤害性感受器NK-1受体的激活增强TRPV1和TTX不敏感钠通道活动的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背根节介导伤害性信息的初级感觉神经元的外周终末,称为“伤害性感受器”或“痛觉感受器”。伤害性感受器将伤害性刺激换能,转变成神经冲动,传递到脊髓背角,经初步整合传递到大脑进行信息加工,最终产生痛觉。背根节中的伤害性感觉神经元作为痛觉传导的第一级神经元,在痛觉产生和维持中发挥重要的作用。
     P物质(SP)是速激肽家族的主要成员,在神经系统广泛表达。在外周神经系统中,主要存在伤害性感觉神经元上,是外周伤害性传入信息向脊髓背角神经元传递的主要信使之一。SP在背根节神经元胞体合成,双向地输送到伤害性感觉神经元的中枢末梢和外周末梢,包含在大的致密的囊泡中。在中枢端的脊髓背角,SP阳性的神经末梢与背角Ⅰ层的投射神经元连接,传递伤害性信息;而在外周神经末梢,伤害性感受器的SP作为炎症因子之一,释放到外周,激活肥大细胞,产生外周敏化机制。速激肽家族有三种受体:NK-1、NK-2和NK-3,其中SP对NK-1的亲和力最高,因此,NK-1被公认为SP受体。
     SP作为脊髓伤害性初级传入信使,在行为、细胞和分子水平已进行了深入的研究。如外周伤害性刺激引起SP在脊髓背角浅层释放;脊髓施加NK-1激动剂和拮抗剂,可分别增强和抑制脊髓背角痛敏神经元活动、伤害性反射和Fos表达;NK-1或者SP基因敲除的动物,急性痛不受影响,但是慢性痛的形成过程大大减慢。但是关于SP参与外周敏化的机制以及细胞内信号通路却知之甚少。本实验室以前的工作表明,含有SP的背根节神经元可能表达NK-1自身受体;SP引起外周的热痛觉过敏,而这一过程与表达NK-1的肥大细胞没有关系。本论文应用免疫组织化学、蛋白免疫印迹、全细胞膜片钳以及钙成像等多种技术,对NK-1自身受体的存在、NK-1对介导热痛敏的辣椒素受体TRPV1和TTX不敏感钠通道的调制,以及可能的作用机制进行了研究。
     一.形态学观察
     背根神经节细胞上存在NK-1受体。该受体合成后被运输到外周神经末梢,在完全福氏佐剂致炎2天之后,表达量明显升高。同时在DRG小细胞上存在一定比例NK-1与SP双标神经元和NK-1与TRPV1双标的神经元。
     二.SP对TRPV1的调制
     1.SP增强TRPV1活动
     TRPV1受体是一个非选择性的阳离子通道,在全细胞膜片钳和钙成像试验中,TRPV1受体特异的激动剂辣椒素分别引起细胞的内向电流以及胞内钙离子浓度的瞬时升高,而SP均能够引起TRPV1反应的增强。75.8%的背根神经节小细胞(直径<25μm)对辣椒素有反应。其中在49.6%的辣椒素反应阳性神经元中,SP对辣椒素反应有增强作用(409.12±44.54%)。NK-1受体的激动剂[Sar~9,Met(O_2)11]SP(Sar-SP,1μM)能够模拟SP的作用;NK-1特异性的拮抗剂GR82,334(1μM)和WIN58,078(5μM)能够特异性的抑制SP引起的反应,而NK-2和NK-3的拮抗剂L659,187(1μM)和SR-142,801(1μM)不影响SP引起的增强作用,提示SP特异的通过NK-1受体调节TRPV1受体的功能。
     2.信号转导机制分析
     G蛋白特异拮抗剂GDP-β-s(1mM,胞内)、PKC的抑制剂BIM(1μM)和Chel.C(1μM)以及PKCε亚型的特异拮抗剂εV_(1-2)(200μM,胞内)也特异性的抑制SP引起的反应,PKC的激活剂PMA(0.6μM)能够模拟SP引起辣椒素反应的增大;PKA的拮抗剂H89(1μM)以及细胞内钙的螯合剂BEPTA不能抑制SP引起的辣椒素反应的增强。以上结果提示SP在外周神经末梢激活G蛋白偶联的NK-1受体,激活PKC的亚型PKCε,从而磷酸化TRPV1受体,产生热痛觉过敏的作用。
     三.SP调制TTX不敏感钠通道
     TTX不敏感的钠通道包含两种亚型Nav1.8和Nav1.9,两者根据电流性质的不同,分别参与动作电位的产生和静息膜电位的维持。我们采用全细胞膜片钳的方法,使用不同的电压刺激方法,成功分离了两种亚型钠离子通道的电流。
     1.Nav1.8
     在78.3%(22/28)的背根神经节小细胞上能够记录到Nav1.8介导的高阈值激活的钠电流,其中在40.9%(9/22)的Nav1.8阳性反应细胞中,特异性NK-1的激动剂Sar—SP(1μM)显著性的增强Nav1.8亚型钠通道介导的电流(123.52±2.83%);且Sar—SP使Nav1.8亚型钠通道的激活和稳态失活曲线向超极化方向移动。
     2.Nav1.9
     在62.6%(20/32)背根神经节小细胞上能够记录到低阈值激活的不失活的Nav1.9介导的钠电流,在35%(7/20)的Nav1.9阳性反应细胞上,Sar—SP显著性的增强Nav1.9亚型钠通道介导的电流(110.27±2.33%)。提示SP通过增强两种亚型钠离子通道的敏感性提高伤害性感受器的兴奋性。
     综上所述,本论文首次系统的论述了SP通过激活伤害性感受器上的NK-1自身受体,激活细胞内的信号通路,增强伤害性感受器上TRPV1受体和TTX不敏感钠通道的敏感性,从而产生外周敏化的机制。这项研究不仅揭示了新的外周敏化的机制,也为我们进一步了解炎症过程中的痛觉过敏的产生和维持机制提供了重要的启示。
Chemical (capsaicin and acid) or physical (heat) variety can excite nociceptors, enabling the cell to generate action potentials which propagate to the dorsal horn of spinal cord after primary integration. The primary afferent nociceptive neurons as the first order neurons play a key role in nociception.
     Substance P (SP), which mainly exists in a subtype of small Dorsal root ganglion (DRG) neurons, is a kind of mammalian tachykinin. After synthesis, it is packed into the dense vesicles and transferred to the central and peripheral terminals. At the central terminals, the SP positive nerves terminate in the lamina I of spinal horn, and pass the nociceptive information to the spinal neurons. At the peripheral, SP is released as an inflammatory modulator, sensitizing the nociceptive perception. There are three kinds of tachykinin receptors, NK-1, NK-2 and NK-3, SP has the highest affinity to NK-1. When activated, it subsequently stimulates PLC-catalysed hydrolysis of PtdIns(4,5)P_2, consequently releasing Ca~(2+) from intracellular stores and activating protein kinase C (PKC).
     In peripheral, abundant NK-1 receptors existed in mast cells but whether the NK-1 autoreceptors in nociceptors existing remains controversy. Our previous work revealed that SP induced the thermal hyperalgesia without the activation of mast cells, which indicated a direct effect of SP on nociceptors.
     Using immunohistochemistry, western blot, whole cell patch clamp, calcium imaging and pain behavioral test, we for the first time characterized the NK-1 autoreceptors in primary sensory neurons.
     1. The existence of NK-1 in DRG
     Evidence of immunohistochemistry and western blot revealed a wide distribution of NK-1 receptors in primary sensory neurons and co-existent with SP and TRPV1, which significant up-regulated after CFA-induced inflammation. There are two key channels in thermal transduction and propagation, TRPV1 and the TTX-resistant sodium channels, which indicates that SP sensitizes nociceptors through the interaction of NK-1 with TRPV1 receptors and the TTX-resistant sodium channels.
     2. The "crosstalk" between NK-1 and TRPV1
     a) SP potentiates TRPV1 responses
     SP potentiated TRPV1 responses through NK1 receptors. TRPV1 is a non-selective cation channel, which is activated by capsaicin or noxious heat stimuli. By the methods of whole cell patch clamp and calcium imaging, an inward non-selective cationic current and a transient increment of intracellular calcium concentration were elicited by capsaicin. 75.8% of recording neurons responded to capsaicin, in which, 49.6% responded to SP (1μM). The mean potentiation of TRPV1 responses were 409.12±44.54% of control. The effect of SP was mimicked by a selective NK-1 agonist [Sar~9, Met(O_2)11]SP (Sar-SP, 1μM) and blocked by the specific NK-1 antagonists, WIN51,708 (5μM) and GR82,334 (1μM), while the NK-2 and NK-3 antagonists, L659, 187 (1μM) and SR-142, 801 (1μM) failed to block the effect of SP.
     b) Cellular mechanism of NK-1
     The effect of Sar-SP was also abolished by the antagonist of G protein, GDP-β-s (1 mM intracellular), the inhibitors of PKC, BIM (1μM) and Chel.C (5μM) and the PKCs specific inhibitor,εV1-2 (200μM, intracellular), but not the PKA inhibitor, H89 (1μM), pre-treatment with Phorbol 12-myristate 13-acetate (PMA, 0.6μM), the activator of PKC, prevented the further enhancement of TRPV1 response, all these results suggested a new signaling pathway from NK-1 to TRPV1 through PKCεphosphorylation.
     3. SP potentiates TTX-resistant sodium channels sensitivity
     There are two TTX-resistant sodium channels subtypes, Nav1.8 and Nav1.9, specifically expressed in small DRG neurons, with distinct characters of activation and inactivation. By method of whole cell patch clamp, we successfully separated two kinds of TTX-resistant sodium currents, supposed to be induced by Nav1.8 and Nav1.9 seperatelly. Sar-SP potentiated both the Nav1.8 and Nav1.9 currents.
     a) Nav1.8
     Of 22 DRG neurons with Nav1.8 currents, 9 responded to Sar-SP (1μM), with a rapid increase in the peak of Nav1.8 currents (123.52±2.83%) and a hyperpolarizing shift of both the active and steady-state inactive curve.
     b) Nav1.9
     Of 20 DRG neurons with Nav1.9 currents, 7 responded to Sar-SP (1μM) with also an increase in Nav1.9 currents (110.27±2.33%), suggesting a role of Sar-SP on enhancement of cellular excitability.
     The present work not only supports the expression of NK-1 autoreceptors in nociceptors, but also strongly indicates a novel positive feedback signaling pathway through NK- 1 autoreceptor in processing peripheral nociceptive information.
引文
[1]. H. U. Zeilhofer. Synaptic modulation in pain pathways[M]. Berlin, Springer-Verlag Berlin, 2005,73-100
    [2]. R. Suzuki, T. Furuno, D. M. McKay, D. Wolvers, R. Teshima, M. Nakanishi and J. Bienenstock. Direct neurite-mast cell communication in vitro occurs via the neuropeptide substance P[J].Journal Of Immunology, 1999,163(5):2410-2415
    [3]. C. J. Helke, C. G. Charlton and R. G. Wiley. Studies on the cellular localization of spinal cord substance P receptors[J].Neuroscience,1986,19(2):523-33
    [4]. M. Malcangio and N. G. Bowery. Peptide autoreceptors: does an autoreceptor for substance P exist[J].Trends In Pharmacological Sciences,1999,20(10):405-407
    [5]. S. De Biasi and A. Rustioni. Glutamate and substance P coexist in primary afferent terminals in the superficial laminae of spinal cord[J].Proc Natl Acad Sci U S A,1988,85(20):7820-4
    [6]. J. K. Neubert, N. T. Maidment, Y. Matsuka, D. W. Adelson, L. Kruger and I. Spigelman. Inflammation-induced changes in primary afferent-evoked release of substance P within trigeminal ganglia in vivo[J].Brain Research,2000,871(2): 181-191
    [7]. L. Quartara and C. A. Maggi. The tachykinin NK1 receptor. Part I: ligands and mechanisms of cellular activation[J].Neuropeptides, 1997,31(6):537-63
    [8]. L. Quartara and C. A. Maggi. The tachykinin NK1 receptor. Part II: Distribution and pathophysiological roles[J].Neuropeptides, 1998,32(1): 1-49
    [9]. G. Y. Xu and Z. Q. Zhao. Change in excitability and phenotype of substance P and its receptor in cat Abeta sensory neurons following peripheral inflammation[J].Brain Res,2001,923(1-2): 112-9
    [10]. M. Khawaja and D. F. Rogers. Tachykinins: receptor to effector[J].Int J Biochem Cell Biol, 1996,28(7):721 -3 8
    [11]. M. L. Nichols, B. J. Allen, S. D. Rogers, J. R. Ghilardi, P. Honore, N. M. Luger, M. P. Finke, J. Li, D. A. Lappi, D. A. Simone and P. W. Mantyh. Transmission of chronic nociception by spinal neurons expressing the substance P receptor[J].Science,1999,286(5444):1558-1561
    [12]. Y. Q. Cao, P. W. Mantyh, E. J. Carlson, A. M. Gillespie, C. J. H. Epstein and A. I. Basbaum. Primary afferent tachykinins are required to experience moderate to intense pain[J].Nature,1998,392(6674):390-394
    [13]. C. De Felipe, J. F. Herrero, J. A. O'Brien, J. A. Palmer, C. A. Doyle, A. J. H. Smith, J. M. A. Laird, C. Belmonte, F. Cervero and S. P. Hunt. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P[J].Nature,1998,392(6674):394-397
    [14]. W. D. Willis. Role of neurotransmitters in sensitization of pain responses[J].Ann N Y Acad Sci,2001,933(142-56
    [15], T. Andoh, T. Nagasawa and Y. Kuraishi. Expression of tachykinin NK1 receptor mRNA in dorsal root ganglia of the mouse[J].Brain Res Mol Brain Res,1996,35(1-2):329-32
    [16]. H. S. Li and Z. Q. Zhao. Small sensory neurons in the rat dorsal root ganglia express functional NK-1 tachykinin receptor[J].Eur J Neurosci, 1998,10(4): 1292-9
    [17]. K. E. McCarson. Central and peripheral expression of neurokinin-1 and neurokinin-3 receptor and substance P-encoding messenger RNAs: Peripheral regulation during formalin-induced inflammation and lack of neurokinin receptor expression in primary afferent sensory neurons[J] .Neuroscience, 1999,93( 1 ):361 -370
    [18]. S. M. Carlton and R. E. Coggeshall. Inflammation-induced up-regulation of neurokinin 1 receptors in rat glabrous skin[J].Neuroscience Letters,2002,326(1):29-32
    [19]. S. M. Carlton, S. Zhou and R. E. Coggeshall. Localization and activation of substance P receptors in unmyelinated axons of rat glabrous skin[J].Brain Res,1996,734(1-2): 103-8
    
    [20]. G. S. von Banchet and H. G. Schaible. Localization of the neurokinin 1 receptor on a subset of substance P-positive and isolectin B4-negative dorsal root ganglion neurons of the rat[J].Neuroscience Letters, 1999,274(3): 175-178
    
    [21]. G. S. von Banchet, A. Scholze and H. G. Schaible. Prostaglandin E-2 increases the expression of the neurokinin(1) receptor in adult sensory neurones in culture: a novel role of prostaglandins[J].British Journal Of Pharmacology,2003,139(3):672-680
    [22]. H. Z. Hu, Z. W. Li and J. Q. Si. Evidence for the existence of substance P autoreceptor in the membrane of rat dorsal root ganglion neurons[J].Neuroscience,1997,77(2):535-41
    [23]. Y. L. Yang, K. H. Yao, Y. Z. Gu, B. C. Guan and Z. W. Li. Three kinds of current in response to substance P in bullfrog DRG neurons[J].Brain Research,2003,981(1-2):70-77
    
    [24], P. Szucs, E. Polgar, I. Spigelman, R. Porszasz and I. Nagy. Neurokinin-1 receptor expression in dorsal root ganglion neurons of young rats[J].Journal Of The Peripheral Nervous System, 1999,4(3-4):270-278
    [25]. K. Inoue, K. Nakazawa, K. Inoue and K. Fujimori. Nonselective cation channels coupled with tachykinin receptors in rat sensory neurons[J].J Neurophysiol,1995,73(2):736-42
    [26]. Spigelman and E. Puil. Ionic mechanism of substance P actions on neurons in trigeminal root ganglia[J].J Neurophysiol,1990,64(1):273-81
    [27]. G. S. von Banchet, M. Kiehl and H. G. Schaible. Acute and long-term effects of IL-6 on cultured dorsal root ganglion neurones from adult rat[J].J Neurochem,2005,94(1):238-48
    [28]. M. Pawlak, R. F. Schmidt, B. Heppelmann and U. Hanesch. The neurokinin-1 receptor antagonist RP 67580 reduces the sensitization of primary afferents by substance P in the rat[J].European Journal Of Pain,2001,5(1):69-79
    [29]. M. K. Herbert and R. E. Schmidt. Sensitisation of group III articular afferents to mechanical stimuli by substance P[J].Inflammation Research,2001,50(5):275-282
    [30]. M. Ishimatsu. Substance P produces an inward current by suppressing voltage-dependent and -independent K+ currents in bullfrog primary afferent neurons[J].Neurosci Res,1994,19(1):9-20
    [31]. M. S. Jafri and D. Weinreich. Substance P hyperpolarizes vagal sensory neurones of the ferret[J].J Physiol, 1996,493 (Pt 1)(157-66
    [32]. M. S. Jafri and D. Weinreich. Substance P regulates Ih via a NK-1 receptor in vagal sensory neurons of the ferret[J].J Neurophysiol,1998,79(2):769-77
    [33]. M. S. Shapiro and B. Hille. Substance P and somatostatin inhibit calcium channels in rat sympathetic neurons via different G protein pathways[J].Neuron,1993,10(1):11-20
    [34]. H. S. Li, Y. D. Bao and Z. Q. Zhao. Expression of tachykinin receptors in Xenopus oocytes injected with poly(A)(+)RNA from cat dorsal root ganglion[J].Science In China Series C-Life Sciences,1998,41(2):139-145
    
    [35]. F. A. Abdulla, M. J. Stebbing and P. A. Smith. Effects of substance P on excitability and ionic currents of normal and axotomized rat dorsal root ganglion neurons[J].European Journal Of Neuroscience,2001,13(3):545-552
    [36]. M. Paukert, R. Osteroth, H. S. Geisler, U. Brandle, E. Glowatzki, J. P. Ruppersberg and S. Grunder. Inflammatory mediators potentiate ATP-gated channels through the P2X(3) subunit[J].J Biol Chem,2001,276(24):21077-82
    
    [37]. Sculptoreanu and W. C. de Groat. Protein kinase C is involved in neurokinin receptor modulation of N- and L-type Ca2+ channels in DRG neurons of the adult rat[J].Journal Of Neurophysiology,2003,90( 1 ):21 -31
    
    [38]. W. P. Hu, X. H. You, B. C. Guan, L. Q. Ru, J. G. Chen and Z. W. Li. Substance P potentiates 5-HT3 receptor-mediated current in rat trigeminal ganglion neurons[J].Neuroscience Letters,2004,365(2): 147-152
    
    [39], Z. Z. Wu, B. C. Guan, Z. W. Li, Q. Yang, C. J. Liu and J. G. Chen. Sustained potentiation by substance P of NMDA-activated current in rat primary sensory neurons[J].Brain Research,2004,1010(1-2): 117-126
    
    [40]. J. Q. Si, Z. Q. Zhang, C. X. Li, L. F. Wang, Y. L. Yang and Z. W. Li. Modulatory effect of substance P on GABA-activated currents from rat dorsal root ganglion[J].Acta Pharmacologica Sinica,2004,25(5):623-629
    
    [41]. M. J. Caterina, M. A. Schumacher, M. Tominaga, T. A. Rosen, J. D. Levine and D. Julius. The capsaicin receptor: a heat-activated ion channel in the pain pathway[J].Nature,1997,389(6653):816-824
    
    [42]. J. Jung, S. W. Hwang, J. Kwak, S. Y. Lee, C. J. Kang, W. B. Kim, D. Kim and U. Oh. Capsaicin binds to the intracellular domain of the capsaicin-activated ion channel[J].Journal Of Neuroscience, 1999,19(2):529-53 8
    
    [43]. J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall and S. A. Sheardown. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia[J].Nature,2000,405(6783): 183-187
    
    [44]. S. W. Hwang, H. Cho, J. Kwak, S. Y. Lee, C. J. Kang, J. Jung, S. Cho, K. H. Min, Y. G. Suh, D. Kim and U. Oh. Direct activation of capsaicin receptors by products of lipoxygenases: Endogenous capsaicin-like substances[J].Proceedings Of The National Academy Of Sciences Of The United States Of America,2000,97(11):6155-6160
    
    [45]. S. M. Huang, T. Bisogno, M. Trevisani, A. Al-Hayani, L. De Petrocellis, F. Fezza, M. Tognetto, T. J. Petros, J. F. Krey, C. J. Chu, J. D. Miller, S. N. Davies, P. Geppetti, J. M. Walker and V. Di Marzo. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors[J].Proceedings Of The National Academy Of Sciences Of The United States Of America,2002,99(12):8400-8405
    
    [46]. H. B. Wang and C. J. Woolf. Pain TRPs[J].Neuron,2005,46(1):9-12
    
    [47]. M. J. Caterina, A. Leffler, A. B. Malmberg, W. J. Martin, J. Trafton, K. R. Petersen-Zeitz, M. Koltzenburg, A. I. Basbaum and D. Julius. Impaired nociception and pain sensation in mice lacking the capsaicin receptor[J].Science,2000,288(5464):306-313
    
    [48]. M. Tominaga, M. Wada and M. Masu. Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia[J].Proceedings Of The National Academy Of Sciences Of The United States Of America,2001,98(12):6951-6956
    [49]. T. Moriyama, T. Iida, K. Kobayashi, T. Higashi, T. Fukuoka, H. Tsumura, C. Leon, N. Suzuki, K. Inoue, C. Gachet, K. Noguchi and M. Tominaga. Possible involvement of P2Y2 metabotropic receptors in ATP-induced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity[J].J Neurosci,2003,23(14):6058-62
    [50]. S. Amadesi, J. J. Nie, N. Vergnolle, G. S. Cottrell, E. F. Grady, M. Trevisani, C. Manni, P. Geppetti, J. A. McRoberts, H. Ennes, B. Davis, E. A. Mayer and N. W. Bunnett. Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia[J].Journal Of Neuroscience,2004,24(18):4300-4312
    
    [51]. N. Kawao, H. Ikeda, T. Kitano, R. Kuroda, F. Sekiguchi, K. Kataoka, Y. Kamanaka and A. Kawabata. Modulation of capsaicin-evoked visceral pain and referred hyperalgesia by protease-activated receptors 1 and 2[J] Journal Of Pharmacological Sciences,2004,94(3):277-285
    [52]. T. Sugiuar, K. Bielefeldt and G. F. Gebhart. TRPV1 function in mouse colon sensory neurons is enhanced by metabotropic 5-hydroxytryptamine receptor activation [J].J Neurosci,2004,24(43):9521-30
    [53]. S. M. Carlton, S. Zhou, J. Du, G. L. Hargett, G. Ji and R. E. Coggeshall. Somatostatin modulates the transient receptor potential vanilloid 1 (TRPVl) ion channel[J].Pain,2004,110(3):616-27
    [54]. N. Zhang, S. Inan, A. Cowan, R. Sun, J. M. Wang, T. J. Rogers, M. Caterina and J. J. Oppenheim. A proinflammatory chemokine, CCL3, sensitizes the heat- and capsaicin-gated ion channel TRPV1[J].Proc Natl Acad Sci U S A,2005,102(12):4536-41
    
    [55]. Obreja, P. K. Rathee, K. S. Lips, C. Distler and M. Kress. IL-10 potentiates heat-activated currents in rat sensory neurons: involvement of IL-1RI, tyrosine kinase, and protein kinase C[J].Faseb Journal,2002,16(12): 1497-1503
    
    [56]. H. J. Hu, G. Bhave and R. W. Gereau. Prostaglandin and protein kinase A-dependent modulation of vanilloid receptor function by metabotropic glutamate receptor 5: Potential mechanism for thermal hyperalgesia[J].Journal Of Neuroscience,2002,22(17):7444-7452
    
    [57]. T. Moriyama, T. Higashi, K. Togashi, T. Iida, E. Segi, Y. Sugimoto, T. Tominaga, S. Narumiya and M. Tominaga. Sensitization of TRPVl by EPl and IP reveals peripheral nociceptive mechanism of prostaglandins[J].Mol Pain,2005,1(1):3
    
    [58]. J. Ferreira, G. L. da Silva and J. B. Calixto. Contribution of vanilloid receptors to the overt nociception induced by B-2 kinin receptor activation in mice[J].British Journal Of Pharmacology,2004,141(5):787-794
    [59]. X. M. Zhang, J. H. Huang and P. A. McNaughton. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels[J].Embo Journal,2005,24(24):4211-4223
    
    [60]. X. C. Jin, N. Morsy, J. Winston, P. J. Pasricha, K. Garrett and H. I. Akbarali. Modulation of TRPVl by nonreceptor tyrosine kinase, c-Src kinase[J] .American Journal Of Physiology-Cell Pbysiology,2004,287(2):C558-C563
    [61]. X. Shu and L. M. Mendell. Acute sensitization by NGF of the response of small-diameter sensory neurons to capsaicin[J].Journal Of Neurophysiology,2001,86(6):2931-2938
    
    [62]. J. Shin, H. Cho, S. W. Hwang, J. Jung, C. Y. Shin, S. Y. Lee, S. H. Kim, M. G. Lee, Y. H. Choi, J. Kim, N. A. Haber, D. B. Reichling, S. Khasar, J. D. Levine and U. Oh. Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia[J].Proceedings Of The National Academy Of Sciences Of The United States Of America,2002,99(15):10150-10155
    
    [63]. J. Y. Jung, J. S. Shin, S. Y. Lee, S. W. Hwang, J. Koo, H. W. Cho and U. Oh. Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding[J].Journal Of Biological Chemistry,2004,279(8):7048-7054
    
    [64]. P. K. Rathee, C. Distler, O. Obreja, W. Neuhuber, G. K. Wang, S. Y. Wang, C. Nau and M. Kress. PKA/AKAP/VR-1 module: A common link of G(s)-mediated signaling to thermal hyperalgesia[J].Journal Of Neuroscience,2002,22(11):4740-4745
    
    [65]. L. Vyklicky, H. Knotkova-Urbancova, Z. Vitaskova, V. Vlachova, M. Kress and P. W. Reeh. Inflammatory mediators at acidic pH activate capsaicin receptors in cultured sensory neurons from newborn rats[J].J Neurophysiol,1998,79(2):670-6
    
    [66]. F. Amaya, I. Decosterd, T. A. Samad, C. Plumpton, S. Tate, R. J. Mannion, M. Costigan and C. J. Woolf. Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2[J].Mol Cell Neurosci,2000,15(4):331-42
    
    [67]. N. Akopian, V. Souslova, S. England, K. Okuse, N. Ogata, J. Ure, A. Smith, B. J. Kerr, S. B. McMahon, S. Boyce, R. Hill, L. C. Stanfa, A. H. Dickenson and J. N. Wood. The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways [J] .Nat Neurosci, 1999,2(6):541-8
    
    [68], T. R. Cummins, S. D. Dib-Hajj, J. A. Black, A. N. Akopian, J. N. Wood and S. G. Waxman. A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons[J].J Neurosci, 1999,19(24):RC43
    
    [69], B. T. Priest, B. A. Murphy, J. A. Lindia, C. Diaz, C. Abbadie, A. M. Ritter, P. Liberator, L. M. Iyer, S. F. Kash, M. G. Kohler, G. J. Kaczorowski, D. E. MacIntyre and W. J. Martin. Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior[J].Proc Natl Acad Sci U S A,2005,102(26):9382-7
    
    [70]. X. Fang, L. Djouhri, J. A. Black, S. D. Dib-Hajj, S. G. Waxman and S. N. Lawson. The presence and role of the tetrodotoxin-resistant sodium channel Na(v)1.9 (NaN) in nociceptive primary afferent neurons[J].J Neurosci,2002,22(17):7425-33
    [71], M. Renganathan, T. R. Cummins and S. G. Waxman. Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons[J] J Neurophysiol,2001,86(2):629-40
    [72]. M. S. Gold, J. D. Levine and A. M. Correa. Modulation of TTX-R/(Na) by PKC and PKA and their role in PGE(2)-induced sensitization of rat sensory neurons in vitro [J]. Journal Of Neuroscience,1998,18(24):10345-10355
    
    [73]. M. S. Gold, D. B. Reichling, M. J. Shuster and J. D. Levine. Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors[J].Proceedings Of The National Academy Of Sciences Of The United States Of America, 1996,93(3): 1108-1112
    
    [74]. S. England, S. Bevan and R. J. Docherty. PGE(2) modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade[J].Journal Of Physiology-London, 1996,495(2):429-440
    
    [75]. E. M. Fitzgerald, K. Okuse, J. N. Wood, A. C. Dolphin and S. J. Moss. cAMP-dependent phosphorylation of the tetrodotoxin-resistant voltage-dependent sodium channel SNS[J].J Physiol, 1999,516 (Pt2)(433-46
    
    [76], X. Jin and R. W. t. Gereau. Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha[J].J Neurosci,2006,26(1):246-55
    [77]. M. S. Gold. Inflammatory mediator-induced modulation of TTX-R INa: an underlying mechanism of inflammatory hyperalgesia[J].Proc West Pharmacol Soc,1999,42(111-2
    
    [78], L. M. Cardenas, C. G. Cardenas and R. S. Scroggs. 5HT increases excitability of nociceptor-like rat dorsal root ganglion neurons via cAMP-coupled TTX-resistant Na(+) channels[J].J Neurophysiol,2001,86(1):241 -8
    [79]. M. S. Gold, L. Zhang, D. L. Wrigley and R. J. Traub. Prostaglandin E(2) modulates TTX-R I(Na) in rat colonic sensory neurons[J].J Neurophysiol,2002,88(3): 1512-22
    
    [80]. Z. Zhou, G. Davar and G. Strichartz. Endothelin-1 (ET-1) selectively enhances the activation gating of slowly inactivating tetrodotoxin-resistant sodium currents in rat sensory neurons: a mechanism for the pain-inducing actions of ET-1[J].J Neurosci,2002,22(15):6325-30
    [81]. E. Joo Choi, M. P. Hong, Y. Kyoo Shin, C. Soo Lee, M. Park and J. H. Song. ATP modulation of sodium currents in rat dorsal root ganglion neurons[J].Brain Res,2003,968(1):15-25
    [82]. M. Rush and S. G. Waxman. PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins[J].Brain Res,2004,1023(2):264-71
    [83]. M. D. Baker. Protein kinase C mediates up-regulation of tetrodotoxin-resistant, persistent Na+ current in rat and mouse sensory neurones[J].J Physiol,2005,567(Pt 3):851-67
    
    [84]. G. Natura, G. S. von Banchet and H. G. Schaible. Calcitonin gene-related peptide enhances TTX-resistant sodium currents in cultured dorsal root ganglion neurons from adult rats[J].Pain,2005,116(3): 194-204
    [85]. K. Kwong and L. Y. Lee. Prostaglandin E2 potentiates a TTX-resistant sodium current in rat capsaicin-sensitive vagal pulmonary sensory neurones[J].J Physiol,2005,564(Pt 2):437-50
    [86]. L. Liu, T. M. Yang, W. Liedtke and S. A. Simon. Chronic IL-1beta signaling potentiates voltage-dependent sodium currents in trigeminal nociceptive neurons[J].J Neurophysiol,2006,95(3): 1478-90
    
    [87]. W. L. Chen, Y. Q. Zhang and Z. Q. Zhao. Neurokinin-1 receptor in peripheral nerve terminals mediates thermal hyperalgesia[J].Biochemical And Biophysical Research Communications,2006,339(1): 132-136
    [88]. P. G. Kostyuk, O. A. Krishtal and V. I. Pidoplichko. Asymmetrical displacement currents in nerve cell membrane and effect of internal fluoride[J].Nature,1977,267(5606):70-2
    [89]. A. Elliott and J. R. Elliott. Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia[J].J Physiol, 1993,463(39-56
    [90]. J. Yates, U. R. Tipnis, J. H. Hofteig and J. K. Warner. Biosynthesis and transport of gangliosides in peripheral nerve[J].Adv Exp Med Biol, 1984,174(155-68
    
    [91]. J. K. Bonnington and P. A. McNaughton. Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor[J].Journal Of Physiology-London,2003,551(2):433-446
    [92]. H. S. Li and Z. Q. Zhao. Small sensory neurons in the rat dorsal root ganglia express functional NK-1 tachykinin receptor[J].European Journal Of Neuroscience, 1998,10(4): 1292-1299
    [93]. Brechenmacher, Y. Larmet, P. Feltz and J. L. Rodeau. Cultured rat sensory neurones express functional tachykinin receptor subtypes 1, 2 and 3[J].Neurosci Lett, 1998,241(2-3): 159-62
    [94]. S. Harrison and P. Geppetti. Substance p[J].Int J Biochem Cell Biol,2001,33(6):555-76
    [95]. P. Cesare, L. V. Dekker, A. Sardini, P. J. Parker and P. A. McNaughton. Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat[J].Neuron,1999,23(3):617-24
    [96]. M. Numazaki, T. Tominaga, H. Toyooka and M. Tominaga. Direct phosphorylation of capsaicin receptor VR1 by protein Kinase C epsilon and identification of two target serine residues[J].Journal Of Biological Chemistry,2002,277(16): 13375-13378
    [97]. J. N. Wood, J. P. Boorman, K. Okuse and M. D. Baker. Voltage-gated sodium channels and pain pathways[J].J Neurobiol,2004,61(1):55-71
    
    [98]. Coste, N. Osorio, F. Padilla, M. Crest and P. Delmas. Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons[J].Mol Cell Neurosci,2004,26(1):123-34
    [99]. H. Maruyama, M. Yamamoto, T. Matsutomi, T. Zheng, Y. Nakata, J. N. Wood and N. Ogata. Electrophysiological characterization of the tetrodotoxin-resistant Na+ channel, Na(v)].9, in mouse dorsal root ganglion neurons[J].Pflugers Arch,2004,449(1):76-87
    
    [100]. J. R. Ghilardi, C. J. Allen, S. R. Vigna, D. C. McVey and P. W. Mantyh. Trigeminal And Dorsal-Root Ganglion Neurons Express Cck Receptor-Binding Sites In The Rat, Rabbit, And Monkey - Possible Site Of Opiate-Cck Analgesic Interactions[J] .Journal Of Neuroscience,1992,12(12):4854-4866
    
    [101]. K. Inoue, K. Nakazawa, K. Inoue and K. Fujimori. Nonselective Cation Channels Coupled With Tachykinin Receptors In Rat Sensory Neurons[J].Journal Of Neurophysiology,1995,73(2):736-742
    [102]. S. M. Carlton, S. T. Zhou and R. E. Coggeshall. Localization and activation of substance P receptors in unmyelinated axons of rat glabrous skin[J].Brain Research, 1996,734(1-2): 103-108
    [103]. G. S. von Banchet, M. Kiehl and H. G. Schaible. Acute and long-term effects of IL-6 on cultured dorsal root ganglion neurones from adult rat[J].Journal Of Neurochemistry,2005,94(1):238-248
    [104], J. C. Beaujouan, Y. Torrens, M. Saffroy, M. L. Kernel and J. Glowinski. A 25 year adventure in the field of tachykinins[J].Peptides,2004,25(3):339-57
    [105]. M. Malcangio and N. G. Bowery. Peptide autoreceptors: does an autoreceptor for substance P exist?[J].Trends Pharmacol Sci,1999,20(10):405-7
    [106]. M. Hanani. Satellite glial cells in sensory ganglia: from form to function[J].Brain Research Reviews,2005,48(3):457-476
    
    [107]. K. O. Aley, R. O. Messing, D. Mochly-Rosen and J. D. Levine. Chronic hypersensitivity for inflammatory nociceptor sensitization mediated by the epsilon isozyme of protein kinase C[J].Journal Of Neuroscience,2000,20(12):4680-4685
    
    [108], H. H. Chuang, E. D. Prescott, H. Y. Kong, S. Shields, S. E. Jordt, A. I. Basbaum, M. V. Chao and D. Julius. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P-2-mediated inhibition[J].Nature,2001,411(6840):957-962
    
    [109]. K. O. Aley, A. Martin, T. McMahon, J. Mok, J. D. Levine and R. O. Messing. Nociceptor sensitization by extracellular signal-regulated kinases[J]. Journal Of Neuroscience,2001,21(17):6933-6939
    
    [110]. T. Sugiura, M. Tominaga, H. Katsuya and K. Mizumura. Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor l[J].Journal Of Neurophysiology,2002,88(1):544-548
    
    [111]. Y. Dai, T. Moriyama, T. Higashi, K. Togashi, K. Kobayashi, H. Yamanaka, M. Tominaga and K. Noguchi. Proteinase-activated receptor 2-mediated potentiation of transient receptor potential vanilloid subfamily 1 activity reveals a mechanism for proteinase-induced inflammatory pain[J].Journal Of Neuroscience,2004,24(18):4293-4299
    
    [112]. R. R. Ji, T. A. Samad, S. X. Jin, R. Schmoll and C. J. Woolf. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia[J].Neuron,2002,36(1):57-68
    
    [113]. F. Amaya, G. Shimosato, M. Nagano, M. Ueda, S. Hashimoto, Y. Tanaka, H. Suzuki and M. Tanaka. NGF and GDNF differentially regulate TRPV1 expression that contributes to development of inflammatory thermal hyperalgesia[J].Eur J Neurosci,2004,20(9):2303-10
    [114]. J. Winston, H. Toma, M. Shenoy and P. J. Pasricha. Nerve growth factor regulates VR-1 mRNA levels in cultures of adult dorsal root ganglion neurons[J].Pain,2001,89(2-3): 181-6
    [115]. P. Ogun-Muyiwa, R. Helliwell, P. McIntyre and J. Winter. Glial cell line derived neurotrophic factor (GDNF) regulates VR1 and substance P in cultured sensory neurons[J].Neuroreport,1999,10(10):2107-ll
    
    [116]. R. J. Docherty, J. C. Yeats, S. Bevan and H. W. Boddeke. Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats[J].Pflugers Arch, 1996,431(6):828-37
    
    [117]. J. Jung, J. S. Shin, S. Y. Lee, S. W. Hwang, J. Koo, H. Cho and U. Oh. Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding[J].J Biol Chem,2004,279(8):7048-54
    [118]. Y. Zhou, Z. S. Zhou and Z. Q. Zhao. PKC regulates capsaicin-induced currents of dorsal root ganglion neurons in rats[J].Neuropharmacology,2001,41(5):601-8
    
    [119]. Y. Wang, N. Kedei, M. Wang, Q. J. Wang, A. R. Huppler, A. Toth, R. Tran and P. M. Blumberg. Interaction between protein kinase C mu and the vanilloid receptor type 1[J].Journal Of Biological Chemistry,2004,279(51):53674-53682
    
    [120]. G. Bhave, H. J. Hu, K. S. Glauner, W. Zhu, H. Wang, D. J. Brasier, G. S. Oxford and R. W. t. Gereau. Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPVl)[J].Proc Natl Acad Sci U S A,2003,100(21): 12480-5
    
    [121]. Z. Olah, L. Karai and M. J. Iadarola. Protein kinase C(alpha) is required for vanilloid receptor 1 activation. Evidence for multiple signaling pathways[J].J Biol Chem,2002,277(38):35752-9
    [122]. S. G. Khasar, Y. H. Lin, A. Martin, J. Dadgar, T. McMahon, D. Wang, B. Hundle, K. O. Aley, W. Isenberg, G. McCarter, P. G. Green, C. W. Hodge, J. D. Levine and R. O. Messing. A novel nociceptor signaling pathway revealed in protein kinase C epsilon mutant mice[J].Neuron,1999,24(1):253-60
    [123]. J. Ferreira, K. M. Triches, R. Medeiros and J. B. Calixto. Mechanisms involved in the nociception produced by peripheral protein kinase c activation in mice[J].Pain,2005,117(1-2): 171-81
    [124]. W. Ma, W. H. Zheng, S. Belanger, S. Kar and R. Quirion. Effects of amyloid peptides on cell viability and expression of neuropeptides in cultured rat dorsal root ganglion neurons: a role for free radicals and protein kinase C[J].Eur J Neurosci,2001,13(6): 1125-35
    [125]. W. Poole, G. Pula, I. Hers, D. Crosby and M. L. Jones. PKC-interacting proteins: from function to pharmacology [J]. Trends Pharmacol Sci,2004,25(10):528-35
    
    [126]. Y. Zhou, G. D. Li and Z. Q. Zhao. State-dependent phosphorylation of epsilon-isozyme of protein kinase C in adult rat dorsal root ganglia after inflammation and nerve injury[J].J Neurochem,2003,85(3):571-80
    
    [127]. T. B. Hucho, O. A. Dina and J. D. Levine. Epac mediates a cAMP-to-PKC signaling in inflammatory pain: an isolectin B4(+) neuron-specific mechanism[J].J Neurosci,2005,25(26):6119-26
    
    [128]. Morenilla-Palao, R. Planells-Cases, N. Garcia-Sanz and A. Ferrer-Montiel. Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity[J].J Biol Chem,2004,279(24):25665-72
    [129]. T. Rosenbaum, A. Gordon-Shaag, M. Munari and S. E. Gordon. Ca2+/calmodulin modulates TRPV1 activation by capsaicin[J]. Journal Of General Physiology,2004,123(1):53-62
    [130]. M. Numazaki, T. Tominaga, K. Takeuchi, N. Murayama, H. Toyooka and M. Tominaga. Structural determinant of TRPV1 desensitization interacts with calmodulin[J].Proceedings Of The National Academy Of Sciences Of The United States Of America,2003,100(13):8002-8006
    [131]. V. Vellani, S. Mapplebeck, A. Moriondo, J. B. Davis and P. A. McNaughton. Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide[J].Journal Of Physiology-London,2001,534(3):813-825
    [132]. P. Mohapatra and C. Nau. Desensitization of capsaicin-activated currents in the vanilloid receptor TRPV1 is decreased by the cyclic AMP-dependent protein kinase pathway[J].Journal Of Biological Chemistry,2003,278(50):50080-50090
    [133] Bhave, W. G. Zhu, H. B. Wang, D. J. Brasier, G. S. Oxford and R. W. Gereau. cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation[J].Neuron,2002,35(4):721-731
    [134]. M. Crandall, J. Kwash, W. F. Yu and G. White. Activation of protein kinase C sensitizes human VR1 to capsaicin and to moderate decreases in pH at physiological temperatures in Xenopus oocytes[J].Pain,2002,98( 1 -2): 109-117
    [135]. J. C. Lopshire and G. D. Nicol. The cAMP transduction cascade mediates the prostaglandin E-2 enhancement of the capsaicin-elicited current in rat sensory neurons: Whole-cell and single-channel studies[J]. Journal Of Neuroscience, 1998,18( 16):6081 -6092
    [136]. P. A. Koplas, R. L. Rosenberg and G. S. Oxford. The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons[J].Journal Of Neuroscience, 1997,17(10):3525-3537
    [137]. J. Fjell, P. Hjelmstrom, W. Hormuzdiar, M. Milenkovic, F. Aglieco, L. Tyrrell, S. Dib-Hajj, S. G. Waxman and J. A. Black. Localization of the tetrodotoxin-resistant sodium channel NaN in nociceptors[J] .Neuroreport,2000,11 (1): 199-202
    [138]. J. Fjell, T. R. Cummins, S. D. Dib-Hajj, K. Fried, J. A. Black and S. G. Waxman. Differential role of GDNF and NGF in the maintenance of two TTX-resistant sodium channels in adult DRG neurons[J].Brain Res Mol Brain Res,1999,67(2):267-82
    [139]. L. Djouhri, X. Fang, K. Okuse, J. N. Wood, C. M. Berry and S. N. Lawson. The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons[J].J Physiol,2003,550(Pt 3):739-52
    [140]. N. T. Blair and B. P. Bean. Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons[J].J Neurosci,2002,22(23): 10277-90
    [141]. M. Renganathan, T. R. Cummins and S. G. Waxman. Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons[J].Journal Of Neurophysiology,2001,86(2):629-640
    [142]. M. S. Gold, D. Weinreich, C. S. Kim, R. Wang, J. Treanor, F. Porreca and J. Lai. Redistribution of Na(V)1.8 in uninjured axons enables neuropathic pain[J].J Neurosci,2003,23(1):158-66
    
    [143]. M. D. Baker and J. N. Wood. Involvement of Na+ channels in pain pathways[J].Trends Pharmacol Sci,2001,22(1):27-31
    [144]. J. Lai, M. S. Gold, C. S. Kim, D. Bian, M. H. Ossipov, J. C. Hunter and F. Porreca. Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, NaV1.8[J].Pain,2002,95(1-2): 143-52
    [145]. C. F. Villarreal, D. Sachs, F. de Queiroz Cunha, C. A. Parada and S. H. Ferreira. The role of Na(V)1.8 sodium channel in the maintenance of chronic inflammatory hypernociception[J].Neurosci Lett,2005,386(2):72-7
    [146]. L. Liu, T. Yang, M. J. Bruno, O. S. Andersen and S. A. Simon. Voltage-gated ion channels in nociceptors: modulation by cGMP[J].J Neurophysiol,2004,92(4):2323-32
    [147]. Deschenes, N. Neyroud, D. DiSilvestre, E. Marban, D. T. Yue and G. F. Tomaselli. Isoform-specific modulation of voltage-gated Na+ channels by calmodulin[J].Circulation Research,2002,90(4):E49-E57
    [148]. M. Chahine, R. Ziane, K. Vijayaragavan and Y. Okamura. Regulation of Na-v channels in sensory neurons[J].Trends In Pharmacological Sciences,2005,26(10):496-502
    [149]. R. E. Coggeshall, S. Tate and S. M. Carlton. Differential expression of tetrodotoxin-resistant sodium channels Nav1.8 and Nav1.9 in normal and inflamed rats[J].Neurosci Lett,2004,355(1-2):45-8
    [150]. M. Ishimatsu. Substance-P Produces An Inward Current By Suppressing Voltage-Dependent And Voltage-Independent K+ Currents In Bullfrog Primary Afferent Neurons[J].Neuroscience Research,1994,19(1):9-20
    [151]. R. Gilbert, J. S. Ryan, M. Horackova, F. M. Smith and M. E. M. Kelly. Actions of substance P on membrane potential and ionic currents in guinea pig stellate ganglion neurons[J].American Journal Of Physiology-Cell Physiology, 1998,43(4):C892-C903
    [152]. C. Z. Wang, H. Zhang, H. Jiang, W. Lu, Z. Q. Zhao and C. W. Chi. A novel conotoxin from Conus striatus, mu-SIIIA, selectively blocking rat tetrodotoxin-resistant sodium channels[J].Toxicon,2006,47(1): 122-32
    [153]. Zhang, Y. Q. Zhang, Z. B. Qiu and Z. Q. Zhao. Inhibitory effect of intrathecal meptazinol on carrageenan-induced thermal hyperalgesia in rats[J].Neurosci Lett,2004,356(1):9-12
    [1].P.D.Wall and R.Melzack.Textbook of pain[M].Edinburgh,Churchill Livingstone,1999,
    [2].赵志奇.疼痛及其脊髓机理[M].上海科技教育出版社,2000,
    [3].M.S.Gold and N.M.Flake.Inflammation-mediated hyperexcitability of sensory neurons[J].Neurosignals,2005,14(4):147-57
    [4].D.Julius and A.I.Basbaum.Molecular mechanisms of nociception[J].Nature,2001,413(6852):203-10
    [5].G.M.Story,A.M.Peier,A.J.Reeve,S.R.Eid,J.Mosbacher,T.R.Hricik,T.J.Earley,A.C.Hergarden,D.A.Andersson,S.W.Hwang,P.McIntyre,T.Jegla,S.Bevan and A.Patapoutian.ANKTM1,a TRP-like channel expressed in nociceptive neurons,is activated by cold temperatures[J].Cell,2003,112(6):819-829
    [6].M.Peier,A.Moqrich,A.C.Hergarden,A.J.Reeve,D.A.Andersson,G.M.Story,T.J.Earley,I.Dragoni,P.McIntyre,S.Bevan and A.Patapoutian.A TRP channel that senses cold stimuli and menthol[J].Cell,2002,108(5):705-715
    [7].H.B.Wang and C.J.Woolf.Pain TRPs[J].Neuron,2005,46(1):9-12
    [8].D.D.McKemy,W.M.Neuhausser and D.Julius.Identification of a cold receptor reveals a general role for TRP channels in thermosensation[J].Nature,2002,416(6876):52-58
    [9].Krishtal.The ASICs:Signaling molecules? Modulators?[J].Trends In Neurosciences,2003,26(9):477-483
    [10].G.Bhave and R.W.t.Gereau.Posttranslational mechanisms of peripheral sensitization[J].J Neurobiol,2004,61(1):88-106
    [11].S.Bevan and J.Yeats.Protons Activate A Cation Conductance In A Subpopulation Of Rat Dorsal-Root Ganglion Neurons[J].Journal Of Physiology-London,1991,433(145-161
    [12].Y.Lee,C.H.Lee and U.Oh.Painful channels in sensory neurons[J].Mol Cells,2005,20(3):315-24
    [13].L.Djouhri and S.N.Lawson.Increased conduction velocity of nociceptive primary afferent neurons during unilateral hindlimb inflammation in the anaesthetised guinea-pig[J].Neuroscience,2001,102(3):669-79
    [14].J.D.Richardson and M.R.Vasko.Cellular mechanisms of neurogenic inflammation[J].J Pharmacol Exp Ther,2002,302(3):839-45
    [15].L.S.Premkumar and G.P.Ahern.Induction of vanilloid receptor channel activity by protein kinase C[J].Nature,2000,408(6815):985-990
    [16].J.Ferreira,K.M.Triches,R.Medeiros and J.B.Calixto.Mechanisms involved in the nociception produced by peripheral protein kinase c activation in mice[J].Pain,2005,117(1-2):171-81
    [17].P.Cesare,L.V.Dekker,A.Sardini,P.J.Parker and P.A.McNaughton.Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat[J].Neuron,1999,23(3):617-24
    [18].W.Ma,W.H.Zheng,S.Belanger,S.Kar and R.Quirion.Effects of amyloid peptides on cell viability,and expression of neuropeptides in cultured rat dorsal root ganglion neurons:a role for free radicals and protein kinase C[J].Eur J Neurosci,2001,13(6): 1125-35
    [19]. S. G. Khasar, Y. H. Lin, A. Martin, J. Dadgar, T. McMahon, D. Wang, B. Hundle, K. O. Aley, W. Isenberg, G. McCarter, P. G. Green, C. W. Hodge, J. D. Levine and R. O. Messing. A novel nociceptor signaling pathway revealed in protein kinase C epsilon mutant mice[J].Neuron,1999,24(1):253-60
    [20]. Z. Olah, L. Karai and M. J. Iadarola. Protein kinase C(alpha) is required for vanilloid receptor 1 activation. Evidence for multiple signaling pathways[J].J Biol Chem,2002,277(38):35752-9
    [21]. Y. Wang, N. Kedei, M. Wang, Q. J. Wang, A. R. Huppler, A. Toth, R. Tran and P. M. Blumberg. Interaction between protein kinase C mu and the vanilloid receptor type l[J].Journal Of Biological Chemistry,2004,279(51):53674-53682
    [22]. K. Obata, H. Yamanaka, Y. Dai, T. Tachibana, T. Fukuoka, A. Tokunaga, H. Yoshikawa and K. Noguchi. Differential activation of extracellular signal-regulated protein kinase in primary afferent neurons regulates brain-derived neurotrophic factor expression after peripheral inflammation and nerve injury[J].Journal Of Neuroscience,2003,23(10):4117-4126
    [23]. K. O. Aley, A. Martin, T. McMahon, J. Mok, J. D. Levine and R. 0. Messing. Nociceptor sensitization by extracellular signal-regulated kinases[J].J Neurosci,2001,21(17):6933-9
    
    [24]. S. Pezet, A. Spyropoulos, R. J. Williams and S. B. McMahon. Activity-dependent phosphorylation of Akt/PKB in adult DRG neurons[J].European Journal Of Neuroscience,2005,21 (7): 1785-1797
    [25]. Y. Dai, K. Iwata, T. Fukuoka, E. Kondo, A. Tokunaga, H. Yamanaka, T. Tachibana, Y. Liu and K. Noguchi. Phosphorylation of extracellular signal-regulated kinase in primary afferent neurons by noxious stimuli and its involvement in peripheral sensitization[J].Journal Of Neuroscience,2002,22( 17):7737-7745
    [26]. T. Mizushima, K. Obata, H. Yamanaka, Y. Dai, T. Fukuoka, A. Tokunaga, T. Mashimo and K. Noguchi. Activation of p38 MAPK in primary afferent neurons by noxious stimulation and its involvement in the development of thermal hyperalgesia[J].Pain,2005,113(1-2):51-60
    [27]. R. R. Ji, T. A. Samad, S. X. Jin, R. Schmoll and C. J. Woolf. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia[J].Neuron,2002,36(1):57-68
    [28]. Y. Qian, D. S. Chao, D. R. Santillano, T. L. Cornwell, A. C. Nairn, P. Greengard, T. M. Lincoln and D. S. Bredt. cGMP-dependent protein kinase in dorsal root ganglion: relationship with nitric oxide synthase and nociceptive neurons[J].J Neurosci, 1996,16( 10):3130-8
    [29]. K. O. Aley, G. McCarter and J. D. Levine. Nitric oxide signaling in pain and nociceptor sensitization in the rat[J].J Neurosci, 1998,18(17):7008-14
    [30]. X. J. Song, Z. B. Wang, Q. Gan and E. T. Walters. cAMP and cGMP contribute to sensory neuron hyperexcitability and hyperalgesia in rats with dorsal root ganglia compression[J].J Neurophysiol,2006,95( 1 ):479-92
    
    [31]. D. Duarte, I. R. dos Santos, B. B. Lorenzetti and S. H. Ferreira. Analgesia by direct antagonism of nociceptor sensitization involves the arginine-nitric oxide-cGMP pathway[J].Eur J Pharmacol, 1992,217(2-3):225-7
    [32]. T. Thippeswamy and R. Morris. The roles of nitric oxide in dorsal root ganglion neurons[J].Ann N Y Acad Sci,2002,962(103-10
    
    [33]. T. B. Hucho, O. A. Dina and J. D. Levine. Epac mediates a cAMP-to-PKC signaling in inflammatory pain: an isolectin B4(+) neuron-specific mechanism[J].J Neurosci,2005,25(26):6119-26
    [34]. A. Dina, G. C. McCarter, C. de Coupade and J. D. Levine. Role of the sensory neuron cytoskeleton in second messenger signaling for inflammatory pain[J].Neuron,2003,39(4):613-24
    [35]. G. Bhave and R. W. t. Gereau. Growing pains: the cytoskeleton as a critical regulator of pain plasticity[J].Neuron,2003,39(4):577-9
    [36]. S. M. Carlton. Localization of CaMKIl alpha in rat primary sensory neurons: increase in inflammation[J].Brain Research,2002,947(2):252-259
    [37]. J. K. Bonnington and P. A. McNaughton. Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor[J]. Journal Of Physiology-London,2003,551(2):433-446
    [38]. X. M. Zhang, J. H. Huang and P. A. McNaughton. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels[J].Embo Journal,2005,24(24):4211-4223
    [39]. Z. Y. Zhuang, H. X. Xu, D. E. Clapham and R. R. Ji. Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization[J].Journal Of Neuroscience,2004,24(38):8300-8309
    [40]. M. J. Caterina, M. A. Schumacher, M. Tominaga, T. A. Rosen, J. D. Levine and D. Julius. The capsaicin receptor: a heat-activated ion channel in the pain pathway[J].Nature,1997,389(6653):816-824
    [41]. J. Jung, S. W. Hwang, J. Kwak, S. Y. Lee, C. J. Kang, W. B. Kim, D. Kim and U. Oh. Capsaicin binds to the intracellular domain of the capsaicin-activated ion channel[J].Journal Of Neuroscience,1999,19(2):529-538
    [42]. J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall and S. A. Sheardown. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia[J].Nature,2000,405(6783): 183-187
    [43]. S. W. Hwang, H. Cho, J. Kwak, S. Y. Lee, C. J. Kang, J. Jung, S. Cho, K. H. Min, Y. G. Suh, D. Kim and U. Oh. Direct activation of capsaicin receptors by products of lipoxygenases: Endogenous capsaicin-like substances[J].Proceedings Of The National Academy Of Sciences Of The United States Of America,2000,97(11):6155-6160
    [44] S. M. Huang, T. Bisogno, M. Trevisani, A. Al-Hayani, L. De Petrocellis, F. Fezza, M. Tognetto, T. J. Petros, J. F. Krey, C. J. Chu, J. D. Miller, S. N. Davies, P. Geppetti, J. M. Walker and V. Di Marzo. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors[J].Proceedings Of The National Academy Of Sciences Of The United States Of America,2002,99(12):8400-8405
    [45]. J. Y. Jung, J. S. Shin, S. Y. Lee, S. W. Hwang, J. Koo, H. W. Cho and U. Oh. Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding[J]. Journal Of Biological Chemistry,2004,279(8):7048-7054
    [46]. T. Rosenbaum, A. Gordon-Shaag, M. Munari and S. E. Gordon. Ca2+/calmodulin modulates TRPV1 activation by capsaicin[J]. Journal Of General Physiology,2004,123(1):53-62
    [47]. M. Numazaki, T. Tominaga, K. Takeuchi, N. Murayama, H. Toyooka and M. Tominaga. Structural determinant of TRPV1 desensitization interacts with calmodulin[J].Proceedings Of The National Academy Of Sciences Of The United States Of America,2003,100( 13):8002-8006
    [48]. D. P. Mohapatra and C. Nau. Desensitization of capsaicin-activated currents in the vanilloid receptor TRPV1 is decreased by the cyclic AMP-dependent protein kinase pathway[J].Journal Of Biological Chemistry,2003,278(50):50080-50090
    
    [49]. G. Bhave, W. G. Zhu, H. B. Wang, D. J. Brasier, G. S. Oxford and R. W. Gereau. cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation[J].Neuron,2002,35(4):721-731
    
    [50]. M. Crandall, J. Kwash, W. F. Yu and G. White. Activation of protein kinase C sensitizes human VR1 to capsaicin and to moderate decreases in pH at physiological temperatures in Xenopus oocytes[J].Pain,2002,98( 1 -2): 109-117
    
    [51]. V. Vellani, S. Mapplebeck, A. Moriondo, J. B. Davis and P. A. McNaughton. Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide[J].Journal Of Physiology-London,2001,534(3):813-825
    
    [52]. J. C. Lopshire and G. D. Nicol. The cAMP transduction cascade mediates the prostaglandin E-2 enhancement of the capsaicin-elicited current in rat sensory neurons: Whole-cell and single-channel studies[J].Journal Of Neuroscience, 1998,18( 16):6081 -6092
    
    [53]. P. A. Koplas, R. L. Rosenberg and G. S. Oxford. The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons[J].Journal Of Neuroscience, 1997,17( 10):3525-3537
    
    [54]. M. J. Caterina, A. Leffler, A. B. Malmberg, W. J. Martin, J. Trafton, K. R. Petersen-Zeitz, M.Koltzenburg, A. I. Basbaum and D. Julius. Impaired nociception and pain sensation in mice lacking the capsaicin receptor[J].Science,2000,288(5464):306-313
    
    [55]. H. H. Chuang, E. D. Prescott, H. Y. Kong, S. Shields, S. E. Jordt, A. I. Basbaum, M. V. Chao and D. Julius. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P-2-mediated inhibition[J].Nature,2001,411(6840):957-962
    
    [56]. R. J. Docherty, J. C. Yeats, S. Bevan and H. W. Boddeke. Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats[J].Pflugers Arch,1996,431(6):828-37
    
    [57]. J. Jung, J. S. Shin, S. Y. Lee, S. W. Hwang, J. Koo, H. Cho and U. Oh. Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding[J].J Biol Chem,2004,279(8):7048-54
    
    [58]. M. Numazaki, T. Tominaga, H. Toyooka and M. Tominaga. Direct phosphorylation of capsaicin receptor VR1 by protein Kinase C epsilon and identification of two target serine residues[J].Journal Of Biological Chemistry,2002,277(16): 13375-13378
    
    [59]. G. Bhave, H. J. Hu, K. S. Glauner, W. Zhu, H. Wang, D. J. Brasier, G. S. Oxford and R. W. t. Gereau. Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1)[J].Proc Natl Acad Sci U S A,2003,100(21):12480-5
    
    [60]. M. Tominaga, M. Wada and M. Masu. Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia[J].Proceedings Of The National Academy Of Sciences Of The United States Of America,2001,98( 12):6951 -6956'
    
    [61]. T. Moriyama, T. Iida, K. Kobayashi, T. Higashi, T. Fukuoka, H. Tsumura, C. Leon, N. Suzuki, K. Inoue, C. Gachet, K. Noguchi and M. Tominaga. Possible involvement of P2Y2 metabotropic receptors in ATP-induced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity[J].J Neurosci,2003,23(14):6058-62
    
    [62]. S. Amadesi, J. J. Nie, N. Vergnolle, G. S. Cottrell, E. F. Grady, M. Trevisani, C. Manni, P. Geppetti, J. A. McRoberts, H. Ennes, B. Davis, E. A. Mayer and N. W. Bunnett. Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia[J].Jouraal Of Neuroscience,2004,24( 18):4300-4312
    
    [63], N. Kawao, H. Ikeda, T. Kitano, R. Kuroda, F. Sekiguchi, K. Kataoka, Y. Kamanaka and A. Kawabata. Modulation of capsaicin-evoked visceral pain and referred hyperalgesia by protease-activated receptors 1 and 2 [J]. Journal Of Pharmacological Sciences,2004,94(3):277-285
    
    [64]. T. Sugiuar, K. Bielefeldt and G. F. Gebhart. TRPV1 function in mouse colon sensory neurons is enhanced by metabotropic 5-hydroxytryptamine receptor activation[J].J Neurosci,2004,24(43):9521-30
    
    [65]. S. M. Carlton, S. Zhou, J. Du, G. L. Hargett, G. Ji and R. E. Coggeshall. Somatostatin modulates the transient receptor potential vanilloid 1 (TRPV1) ion channel[J].Pain,2004,110(3):616-27
    
    [66]. N. Zhang, S. Inan, A. Cowan, R. Sun, J. M. Wang, T. J. Rogers, M. Caterina and J. J. Oppenheim. A proinflammatory chemokine, CCL3, sensitizes the heat- and capsaicin-gated ion channel TRPVl[J].Proc Natl Acad Sci U S A,2005,102(12):4536-41
    
    [67]. Obreja, P. K. Rathee, K. S. Lips, C. Distler and M. Kress. IL-10 potentiates heat-activated currents in rat sensory neurons: involvement of IL-1R1, tyrosine kinase, and protein kinase C[J].Faseb Journal,2002,16(12): 1497-1503
    
    [68]. H. J. Hu, G. Bhave and R. W. Gereau. Prostaglandin and protein kinase A-dependent modulation of vanilloid receptor function by metabotropic glutamate receptor 5: Potential mechanism for thermal hyperalgesia[J].Journal Of Neuroscience,2002,22(17):7444-7452
    [69]. T. Moriyama, T. Higashi, K. Togashi, T. Iida, E. Segi, Y. Sugimoto, T. Tominaga, S. Narumiya and M. Tominaga. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins[J].Mol Pain,2005,1(1):3
    
    [70]. J. Ferreira, G. L. da Silva and J. B. Calixto. Contribution of vanilloid receptors to the overt nociception induced by B-2 kinin receptor activation in mice[J].British Journal Of Pharmacology,2004,141(5):787-794
    
    [71]. X. C. Jin, N. Morsy, J. Winston, P. J. Pasricha, K. Garrett and H. I. Akbarali. Modulation of TRPV1 by nonreceptor tyrosine kinase, c-Src kinase[J].American Journal Of Physiology-Cell Physiology,2004,287(2):C558-C563
    [72]. X. Shu and L. M. Mendell. Acute sensitization by NGF of the response of small-diameter sensory neurons to capsaicin[J].Journal Of Neurophysiology,2001,86(6):2931-2938
    [73]. J. Shin, H. Cho, S. W. Hwang, J. Jung, C. Y. Shin, S. Y. Lee, S. H. Kim, M. G. Lee, Y. H. Choi, J. Kim, N. A. Haber, D. B. Reichling, S. Khasar, J. D. Levine and U. Oh. Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesiafJ].Proceedings Of The National Academy Of Sciences Of The United States Of America,2002,99( 15): 10150-10155
    
    [74]. P. K. Rathee, C. Distler, 0. Obreja, W. Neuhuber, G. K. Wang, S. Y. Wang, C. Nau and M. Kress. PKA/AKAP/VR-1 module: A common link of G(s)-mediated signaling to thermal hyperalgesia[J].Journal Of Neuroscience,2002,22(11):4740-4745
    [75]. L. Vyklicky, H. Knotkova-Urbancova, Z. Vitaskova, V. Vlachova, M. Kress and P. W. Reeh. Inflammatory mediators at acidic pH activate capsaicin receptors in cultured sensory neurons from newborn rats[J].J Neurophysiol,1998,79(2):670-6
    
    [76]. C. Morenilla-Palao, R. Planells-Cases, N. Garcia-Sanz and A. Ferrer-Montiel. Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity[J].J Biol Chem,2004,279(24):25665-72
    [77]. J. Winston, H. Toma, M. Shenoy and P. J. Pasricha. Nerve growth factor regulates VR-1 mRNA levels in cultures of adult dorsal root ganglion neurons[J].Pain,2001,89(2-3): 181-186
    [78]. F. Amaya, I. Decosterd, T. A. Samad, C. Plumpton, S. Tate, R. J. Mannion, M. Costigan and C. J. Woolf. Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2[J].MoI Cell Neurosci,2000,15(4):331-42
    
    [79]. M. Renganathan, T. R. Cummins and S. G. Waxman. Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons[J].J Neurophysiol,2001,86(2):629-40
    
    [80]. N. Akopian, V. Souslova, S. England, K. Okuse, N. Ogata, J. Ure, A. Smith, B. J. Kerr, S. B. McMahon, S. Boyce, R. Hill, L. C. Stanfa, A. H. Dickenson and J. N. Wood. The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways[J].Nat Neurosci, 1999,2(6):541-8
    
    [81]. T. R. Cummins, S. D. Dib-Hajj, J. A. Black, A. N. Akopian, J. N. Wood and S. G. Waxman. A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons[J].J Neurosci, 1999,19(24):RC43
    
    [82]. B. T. Priest, B. A. Murphy, J. A. Lindia, C. Diaz, C. Abbadie, A. M. Ritter, P. Liberator, L. M. Iyer, S. F. Kash, M. G. Kohler, G. J. Kaczorowski, D. E. MacIntyre and W. J. Martin. Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior[J].Proc Natl Acad Sci U S A,2005,102(26):9382-7
    [83]. X. Fang, L. Djouhri, J. A. Black, S. D. Dib-Hajj, S. G. Waxman and S. N. Lawson. The presence and role of the tetrodotoxin-resistant sodium channel Na(v)1.9 (NaN) in nociceptive primary afferent neurons[J].J Neurosci,2002,22(17):7425-33
    
    [84]. M. S. Gold, J. D. Levine and A. M. Correa. Modulation of TTX-R/(Na) by PKC and PKA and their role in PGE(2)-induced sensitization of rat sensory neurons in vitro[J].Journal Of Neuroscience, 1998,18(24): 10345-10355
    
    [85]. M. S. Gold, D. B. Reichling, M. J. Shuster and J. D. Levine. Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors[J].Proceedings Of The National Academy Of Sciences Of The United States Of America, 1996,93(3): 1108-1112
    
    [86]. S. England, S. Bevan and R. J. Docherry. PGE(2) modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade[J] Journal Of Physiology-London, 1996,495(2):429-440
    
    [87]. E. M. Fitzgerald, K. Okuse, J. N. Wood, A. C. Dolphin and S. J. Moss. cAMP-dependent phosphorylation of the tetrodotoxin-resistant voltage-dependent sodium channel SNS[J].J Physiol, 1999,516 (Pt2)(433-46
    [88]. L. Liu, T. Yang, M. J. Bruno, O. S. Andersen and S. A. Simon. Voltage-gated ion channels in nociceptors: modulation by cGMP[J].J Neurophysiol,2004,92(4):2323-32
    
    [89]. X. Jin and R. W. t. Gereau. Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha[J]J Neurosci,2006,26(1):246-55
    
    [90]. K. O. Aley, A. Martin, T. McMahon, J. Mok, J. D. Levine and R. O. Messing. Nociceptor sensitization by extracellular signal-regulated kinases [J]. Journal Of Neuroscience,2001,21( 17):6933-6939
    
    [91]. Deschenes, N. Neyroud, D. DiSilvestre, E. Marban, D. T. Yue and G. F. Tomaselli. Isoform-specific modulation of voltage-gated Na+ channels by calmodulin[J].Circulation Research,2002,90(4):E49-E57
    [92]. M. S. Gold. Inflammatory mediator-induced modulation of TTX-R INa: an underlying mechanism of inflammatory hyperalgesia[J].Proc West Pharmacol Soc, 1999,42(111-2
    [93]. L. M. Cardenas, C. G. Cardenas and R. S. Scroggs. 5HT increases excitability of nociceptor-like rat dorsal root ganglion neurons via cAMP-coupled TTX-resistant Na(+) channels[J]. J Neurophysiol,2001,86(1 ):241 -8
    [94]. M. S. Gold, L. Zhang, D. L. Wrigley and R. J. Traub. Prostaglandin E(2) modulates TTX-R I(Na) in rat colonic sensory neurons[J].J Neurophysiol,2002,88(3): 1512-22
    
    [95]. Z. Zhou, G. Davar and G. Strichartz. Endothelin-1 (ET-1) selectively enhances the activation gating of slowly inactivating tetrodotoxin-resistant sodium currents in rat sensory neurons: a mechanism for the pain-inducing actions of ET-1[J].J Neurosci,2002,22(15):6325-30
    [96]. E. Joo Choi, M. P. Hong, Y. Kyoo Shin, C. Soo Lee, M. Park and J. H. Song. ATP modulation of sodium currents in rat dorsal root ganglion neurons[J].Brain Res,2003,968(1):15-25
    [97]. M. Rush and S. G. Waxman. PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins[J].Brain Res,2004,1023(2):264-71
    [98]. M. D. Baker. Protein kinase C mediates up-regulation of tetrodotoxin-resistant, persistent Na+ current in rat and mouse sensory neurones[J].J Physiol,2005,567(Pt 3):851-67
    
    [99]. G. Natura, G. S. von Banchet and H. G. Schaible. Calcitonin gene-related peptide enhances TTX-resistant sodium currents in cultured dorsal root ganglion neurons from adult rats[J].Pain,2005,116(3): 194-204
    [100]. K. Kwong and L. Y. Lee. Prostaglandin E2 potentiates a TTX-resistant sodium current in rat capsaicin-sensitive vagal pulmonary sensory neurones[J].J Physiol,2005,564(Pt 2):437-50
    [101]. L. Liu, T. M. Yang, W. Liedtke and S. A. Simon. Chronic IL-1beta signaling potentiates voltage-dependent sodium currents in trigeminal nociceptive neurons[J].J Neurophysiol,2006,95(3): 1478-90
    [102]. J. N. Wood, J. P. Boorman, K. Okuse and M. D. Baker. Voltage-gated sodium channels and pain pathways[J].J Neurobiol,2004,61(1):55-71
    [103], J. Lai, F. Porreca, J. C. Hunter and M. S. Gold. Voltage-gated sodium channels and hyperalgesia[J].Annu Rev Pharmacol Toxicol,2004,44(371-97
    [104]. M. D. Baker and J. N. Wood. Involvement of Na+ channels in pain path way s[J]. Trends Pharmacol Sci,2001,22(1):27-31
    [105]. M. Chahine, R. Ziane, K. Vijayaragavan and Y. Okamura. Regulation of Na-v channels in sensory neurons [J]. Trends In Pharmacological Sciences,2005,26(10):496-502
    [106]. C. J. Helke and J. L. Seagard. Substance P in the baroreceptor reflex: 25 years[J].Peptides,2004,25(3):413-23
    
    [107]. G. Y. Xu and Z. Q. Zhao. Change in excitability and phenotype of substance P and its receptor in cat Abeta sensory neurons following peripheral inflammation[J]. Brain Res,2001,923( I -2): 112-9
    [108]. S. De Biasi and A. Rustioni. Glutamate and substance P coexist in primary afferent terminals in the superficial laminae of spinal cord[J].Proc Natl Acad Sci U S A,1988,85(20):7820-4
    [109]. C. J. Helke, C. G. Charlton and R. G. Wiley. Studies on the cellular localization of spinal cord substance P receptors[J].Neuroscience,1986,19(2):523-33
    [110]. C. Brechenmacher, Y. Larmet, P. Feltz and J. L. Rodeau. Cultured rat sensory neurones express functional tachykinin receptor subtypes 1, 2 and 3[J].Neurosci Lett, 1998,241(2-3): 159-62
    [111]. S. M. Carlton, S. T. Zhou and R. E. Coggeshall. Localization and activation of substance P receptors in unmyelinated axons of rat glabrous skin[J].Brain Research, 1996,734( 1 -2): 103-108
    
    [112]. S. Harrison and P. Geppetti. Substance p[J].Int J Biochem Cell Biol,2001,33(6):555-76
    
    [113]. M. Khawaja and D. F. Rogers. Tachykinins: receptor to effector[J].Int J Biochem Cell Biol, 1996,28(7):721 -38
    [114]. J. C. Beaujouan, Y. Torrens, M. Saffroy, M. L. Kernel and J. Glowinski. A 25 year adventure in the field of tachykinins[J].Peptides,2004,25(3):339-57
    [115]. F. A. Abdulla, M. J. Stebbing and P. A. Smith. Effects of substance P on excitability and ionic currents of normal and axotomized rat dorsal root ganglion neurons[J].European Journal Of Neuroscience,2001,13(3):545-552
    [116]. Spigelman and E. Puil. Ionic mechanism of substance P actions on neurons in trigeminal root ganglia[J].J Neurophysiol,1990,64(1):273-81
    [117]. M. S. Shapiro and B. Hille. Substance P and somatostatin inhibit calcium channels in rat sympathetic neurons via different G protein pathways[J].Neuron,1993,10(1): 11-20
    [118]. M. Ishimatsu. Substance P produces an inward current by suppressing voltage-dependent and -independent K+ currents in bullfrog primary afferent neurons [J].Neurosci Res,1994,19(1):9-20
    [119]. K. Inoue, K. Nakazawa, K. Inoue and K. Fujimori. Nonselective Cation Channels Coupled With Tachykinin Receptors In Rat Sensory Neurons[J]. Journal Of Neurophysiology,1995,73(2):736-742
    [120]. T. Akasu, M. Ishimatsu and K. Yamada. Tachykinins cause inward current through NK1 receptors in bullfrog sensory neurons[J].Brain Res, 1996,713(1-2): 160-7
    [121]. R. Gilbert, J. S. Ryan, M. Horackova, F. M. Smith and M. E. Kelly. Actions of substance P onmembrane potential and ionic currents in guinea pig stellate ganglion neurons[J].Am J Physiol, 1998,274(4 Pt l):C892-903
    [122]. H. S. Li and Z. Q. Zhao. Small sensory neurons in the rat dorsal root ganglia express functional NK-1 tachykinin receptor[J],European Journal Of Neuroscience, 1998,10(4): 1292-1299
    [123]. H. Ueda. Molecular mechanisms of neuropathic pain-phenotypic switch and initiation mechanisms[J].Pharmacol Ther,2006,109(1-2):57-77
    [124]. M. Malcangio and N. G. Bowery. Peptide autoreceptors: does an autoreceptor for substance P exist?[J].Trends Pharmacol Sci,1999,20(10):405-7
    [125]. E. Pannese. The satellite cells of the sensory ganglia[J].Adv Anat Embryol Cell Biol,1981,65(1-111
    
    [126]. V. Shinder, R. Govrin-Lippmann, S. Cohen, M. Belenky, P. Ilin, K. Fried, H. A. Wilkinson and M. Devor. Structural basis of sympathetic-sensory coupling in rat and human dorsal root ganglia following peripheral nerve injury[J].J Neurocytol,1999,28(9):743-61
    [127]. X. Lu and P. M. Richardson. Inflammation near the nerve cell body enhances axonal regeneration[J].J Neurosci, 1991,11 (4):972-8
    [128]. H. Hibino, Y. Horio, A. Fujita, A. Inanobe, K. Doi, T. Gotow, Y. Uchiyama, T. Kubo and Y. Kurachi. Expression of an inwardly rectifying K(+) channel, Kir4.1, in satellite cells of rat cochlear ganglia[J].Am J Physiol, 1999,277(4 Pt l):C638-44
    [129]. U. V. Berger and M. A. Hediger. Distribution of the glutamate transporters GLAST and GLT-1 in rat circumventricular organs, meninges, and dorsal root ganglia[J].J Comp Neurol,2000,421(3):385-99
    [130]. C. Wetmore and L. Olson. Neuronal and nonneuronal expression of neurotrophins and their receptors in sensory and sympathetic ganglia suggest new intercellular trophic interactions[J].J Comp Neurol,1995,353(1): 143-59
    [131]. E. Pannese and P. Procacci. Ultrastructural localization of NGF receptors in satellite cells of the rat spinal ganglia[J].J Neurocytol,2002,31(8-9):755-63
    [132], H. Hammarberg, F. Piehl, S. Cuilheim, J. Fjell, T. Hokfelt and K. Fried. GDNF mRNA in Schwann cells and DRG satellite cells after chronic sciatic nerve injury[J].Neuroreport,1996,7(4):857-60
    [133]. L. R. Watkins and S. F. Maier. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states[J].Physiol Rev,2002,82(4):981-1011
    [134]. W. M. Campana and R. R. Myers. Exogenous erythropoietin protects against dorsal root ganglion apoptosis and pain following peripheral nerve injury[J].Eur J Neurosci,2003,18(6):1497-506
    [135], S. Ohtori, K. Takahashi, H. Moriya and R. R. Myers. TNF-alpha and TNF-alpha receptor type 1 upregulation in glia and neurons after peripheral nerve injury: studies in murine DRG and spinal cord[J].Spine,2004,29(10):1082-8
    [136]. T. J. Shi, K. Holmberg, Z. Q. Xu, H. Steinbusch, J. de Vente and T. Hokfelt. Effect of peripheral nerve injury on cGMP and nitric oxide synthase levels in rat dorsal root ganglia: time course and coexistence[J].Pain, 1998,78(3): 171-80
    [137]. T. Y. Huang and M. Hanani. Morphological and electrophysiological changes in mouse dorsal root ganglia after partial colonic obstruction [J]. American Journal Of Physiology-Gastrointestinal And Liver Physiology,2005,289(4):G670-G678
    [138]. M. Hanani. Satellite glial cells in sensory ganglia: from form to function[J].Brain Research Reviews,2005,48(3):457-476

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700