用户名: 密码: 验证码:
鼠尾藻对中肋骨条藻的克生作用及其对CO_2加富的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赤潮是全球性的生态灾害,赤潮爆发严重影响了海洋经济的可持续发展,因此寻求切实有效和环境友好型的赤潮防治方法成为人们颇受关注的问题之一。其中,利用大型海藻对赤潮微藻的克生作用进行赤潮防治是目前赤潮研究工作的热点之一。同时大气CO2浓度升高也成为全球性的重大环境问题之一,研究CO2加富对海洋藻类及其相互之间的克生作用的影响对于揭示全球气候变化对海洋生态系统的影响有重要意义。本文以大型海藻鼠尾藻(Sargassum thunbergii)和赤潮微藻中肋骨条藻(Skeletonema costatum)为材料,研究了鼠尾藻对中肋骨条藻的克生作用及其对CO2加富的响应变化,初步探讨了藻间克生作用及其对CO2加富响应的可能机理,分析了利用大型海藻进行赤潮防控的可能性。实验结果如下:
     1.鼠尾藻对中肋骨条藻的克生效应
     鼠尾藻新鲜组织和干粉末对中肋骨条藻的种群生长均有抑制效应,种群细胞密度和生长参数(环境负载能力K和最大增长率r)显著降低(P<0.05),随着鼠尾藻新鲜组织和干粉末浓度的增加,抑制作用愈加明显;而且高浓度(2.4 gFD·L-1)的干粉末对中肋骨条藻具有致死效应。由直线内插法得到鼠尾藻新鲜组织对中肋骨条藻的半数有效抑制浓度EC50约为3.5 g FW·L-1,干粉末对中肋骨条藻的半数有效抑制浓度EC50约为1.8 g FD·L-1。证实鼠尾藻对中肋骨条藻存在克生效应。
     鼠尾藻水溶性抽提液对中肋骨条藻的生长有明显的抑制作用,抑制作用随浓度的升高而加强。鼠尾藻培养水过滤液对中肋骨条藻的生长具有显著抑制和致死效应。证实鼠尾藻对中肋骨条藻的克生作用主要是通过向环境分泌克生物质的方式完成的。
     经过高温煮沸的鼠尾藻水溶性抽提液和培养水过滤液对中肋骨条藻的种群生长仍然表现出显著的抑制作用。鼠尾藻培养水过滤液不论是在一次性还是在半连续添加方式下,中肋骨条藻的种群生长均受到了显著抑制,并在实验结束时完全致死。证明鼠尾藻分泌的克生物质相对稳定。
     2.CO2加富引起鼠尾藻对中肋骨条藻的克生效应的变化
     研究结果表明,CO2加富培养的新鲜组织、干粉末和水溶性抽提液使中肋骨条藻的细胞密度和种群生长参数(环境负载能力K和最大增长率r)显著降低(P<0.05),说明CO2加富培养引起了鼠尾藻对中肋骨条藻的克生效应的变化,使其对中肋骨条藻种群生长的抑制作用加强。
     经CO2加富培养的鼠尾藻新鲜组织、干粉末和水溶性抽提液对中肋骨条藻的克生效应加强,而培养水过滤液对中肋骨条藻种群生长的影响由加富前的显著抑制作用变化为加富后的无明显影响。因此我们推测CO2加富培养可能改变了鼠尾藻对中肋骨条藻克生作用的方式,由原来的通过分泌克生物质的作用方式变化为细胞直接接触传递的方式。
Harmful algae blooms (HABs) has been considered as a global ecological disaster which severely threaten the sustainable development of marine economy. Therefore, effective and environment-friendly methods of HABs mitigation are necessary. Recently, many researchers focus on the allelopathic effect of aquatic macroalgae on HABs causative algae which is deemed to be a promising method to control HABs. The steady enrichment of CO2 at unprecedented speed has become one of the seriously global environment problems. Thereby, it is important to investigate the effect of CO2 enrichment on marine algae and on the interaction between them, and the result will be useful to reveal the influence of global climatic change on marine ecosystem. In the present study, marine macroalga Sargassum thunbergii and HABs causative microalga Skeletonema costatum were selected to investigate the allelopathic effect of S. thunbergii on S. costatum as well as the response of the allelopathic effect to CO2 enrichment. The mechanisms of allelopathic effect between marine algae and its response to CO2 enrichment were also discussed, and the responsibility of using macroalgae to control HABs was evaluated. The results showed that:
     1. The allelopathic effect of Sargassum thunbergii on Skeletonema costatum
     The fresh tissue and dry power of S. thunbergii showed significantly inhibitory effect on the population growth of S. costatum. The carrying capability (K) and growth rate (r) of S. costatum population decreased significantly (P<0.05). Furthermore, the inhibitory effect was strengthened with the increasing concentration of fresh tissue and dry power, and dry power at a higher concentration of 2.4 g FD·L-1 had lethal effect on S. costatum. The EC50 of fresh tissue of S. thunbergii was estimated as 3.5 g FW·L-1 by straight line interpolation and the EC50 of dry power was 1.8 FD·L-1. The results confirmed that the macroalga S. thunbergii had allelopathic effect on S. thunbergii.
     The aqueous extract of S. thunbergii had significantly inhibitory effect on the population growth of S. costatum, and the inhibitory effect strengthen with the increasing concentration of aqueous extract. And the culture medium filtrate of S. thunbergii also had significantly inhibitory and lethal effect on S. costatum. The results indicated that S. thunbergii secreted allelopathic substance to influence S. costatum.
     The boiled aqueous extract and culture medium filtrate of S. thunbergii also had significant inhibitory effect on S. costatum. Culture medium filtrate of S. thunbergii appeared remarkably inhibitory effect on S. costatum under either initial filtrate addition or semi-continuous addition, and all S. costatum were killed at the end of the experiment. The results indicated that the allelopathic substances secreted by S. thunbergii were relative stable.
     2. Response of allelopathic effect of S. thunbergii on S. costatum to CO2 enrichment
     The fresh tissue, dry power and aqueous extract of S. thunbergii which were culture under CO2 enrichment condition obviously led to a decrease in population density and the value of K and r(P<0.05) compared with them cultured under normal condition. The results demonstrated that CO2 enrichment resulted in an increase in allelopathic effect of S. thunbergii on S. costatum.
     The fresh tissue, dry power and aqueous extract of S. thunbergii cultured under CO2 enrichment condition had a stronger allelopathic effect compared with them cultured under normal condition, but the allelopathic effect of culture medium filtrate decreased remarkably. Accordingly, it was speculated that the action way of allelopathic effect might be changed by CO2 enrichment, which changed from secreting allelopathic substance to direct cell contact transmission.
引文
Anderson D.M. Turning back the harmful red tide [J]. Nature,1997,388:513-514.
    Andria J.R., Vergara J.J. and Perez-Llorens J.L. Biochemical responses and photosynthetic performance of Gracilaria sp. (Rhodophyta) from Cadiz, Spain, cultured under different inorganic carbon and nitrogen levels [J]. European Journal of Phycology,1999,34:497-504.
    Arzul G., Seguel M., Guzman L. and Erard-Le Denn E. Comparison of allelopathic properties in three toxic Alexandriun species [J]. Journal of Experimental Marine Biology and Ecology, 1999,232:285-295.
    Badger M.R. and Gallagher A. Adaptation of photosynthetic CO2 and HCO3- accumulation by the cyanobacterium Synechococcus PCC6301 to growth at different inorganic carbon concentrations [J]. Plant Physiology,1987,14:189-201.
    Badger M.R., Berry J.A. and Kaplan A. Photosynthesis and the intracellular inorganic pool in the blue-green alga Anabaaena variabilis:response to external CO2 concentration [J]. Planta, 1980a,149:219-226.
    Badger M.R., Kaplan A. and Berry J.A. Internal inorganic carbon pool of Chlamydomonas reinhardtii. Evidence for carbon dioxide concentrating mechanism [J]. Plant Physiology, 1980b,66:407-413.
    Bais H.P., Vepachedu R., Gilroy S., Callaway R.M. and Vivanco J.M. Allelopathy and exotic plant invasion:from molecules and genes to species interactions [J]. Science,2003,301: 1377-1380.
    Bjork M., Haglund K., Rammazanov Z. and Pedersen M. Inducible mechanisms for HCO3-utilization and repression of photorespiration in protoplasts and thalli of three species of Ulva (Chlorophyta) [J]. Journal of Phycology,1993,29:166-173.
    Caldeira K. and Wickett M.E. Anthropogenic carbon and ocean pH [J]. Nature,2003,425:365.
    Cannell R.J.P., Kellam S.J., Owsianka A.M. and Walker J.M. Microalgae and cyanobacteria as a source of glucosidase inhibitors [J]. Journal of General Microbiology,1987,133:1701-1705.
    Dahlman R C. CO2 and plants:Revisited [J]. Vegetatio,1993,104/105:339-355.
    Doney S.C., Fabry V.J., Feely R.A. and Kleypas J.A. Ocean acidification:the other CO2 problem [J]. Annual Review of Marine Science,2009,1:169-192.
    Fistarol G.O., Legrand C., Selander E., Hummert C., Stolte W. and Graneli E. Allelophathy in Alexandrium spp.:effect on a natural plankton community and on algal monocultures [J]. Aquatic Microbial Ecology,2004,35:45-56.
    Fitzgerald G.P. Some factors in the competitors antagonism among bacteria, algae, and aqueous weeds [J]. Journal of Phycology,1969,5:351-359.
    Gallaway R.M. Postive interactions among plant [J]. Botanical Review.1995,61:306-349.
    Gao K.S., Aruga Y., Asada K. and Kiyohara Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis [J]. Journal of Applied Phycology,1993,5:563-571.
    Gao K.S., Aruga Y., Asada K., Ishihara T., Akano T. and Kiyohara M. Enhanced growth of red alga Porphyra yezoensis Ueda in high CO2 concentration [J]. Journal of Applied Phycology, 1991,3:355-362.
    Gao K.S., Ji Y. and Aruga Y. Relationship of CO2 concentrations to photosynthesis of intertidal macroalgae during emersion [J]. Hydrobiologa,1999,398/399:355-359.
    Garcia-Sanchez M.J., Fernandez J.A. and Niell F.X. Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata [J]. Planta,1994,194:55-61.
    Garry R.T., Hearing P. and Cosper E.M. Characterization of a lytic virus infectiousto the bloom-forming microalga Aureococcus aophageffereus (Pelagophyceae) [J]. Journal of Phycology,1998,34:616-621.
    Gleason F.K. The natural herbicide, cyanobacterin, specifically disrupts thylakoid membrane structure in Euglena gracillis strain Z. Microbiology Letters,1990,68:77-81.
    Graham R.W. and Grimm E.C. effects of global climate change on the pattern of terrestrial biological communities [J]. Trends in Ecoloy and Evolution,1990,5:289-292.
    Gross E.M. Allelopathy in benthis and littoral areas:case studies on allelochemicals from benthic cyanobacteria and submerged macrophytes[A]. In:Inderjit D, Dakshini K M M, Foy C L. Principles and practices in plant ecology:Allelochemical interactions [C]. CRC, Boca Raton, 1999,179-199.
    Gross E.M. Allelopathy of aquatic autotrophs [J]. Critical Reviews in Plant Sciences,2003,22: 313-339.
    Han M.S., Jeon J.K. and Kim, Y.O. Occurrence of dinoflagellate Alexandrium tamarense, a causative organisms of paralytic shellfish poisoning in Chinhae Bay, Korea. Journal of Plankton Research,1992,14:1581-1592.
    Hein M. and Sand-Jensen K. CO2 increases oceanic primary production [J]. Nature,1997,18: 339-356.
    Horner R.A., Garrison D. L. and Plumley F.G. Harmful algal blooms and red tide problems on the U.S. west coast. Limnology and Oceanography,1997,42:1076-1088.
    Iglesias-Rondriguez M.D., Halloran P.R., Rickaby R.E.M., Hall I.R. Phytoplankton calcification in high-CO2 world [J]. Science,2008,320:336-340.
    Imai I., Ishida Y., Sakaguchi K. and Hata Y. Algicidal marine bacteria isolated from northern Hiroshima bay, Japan [J]. Fishery Science,1995,61:628-636.
    Israel A., Katz S., Dubinsky Z., Merrill J.E., Friedlander M. and Brown M.T. Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhorophyta). Journal of Applied Phycology,1999,11:447-453.
    Jeong J.H., Jin H.J., Sohn C.H., Suh K.H. and Hong Y.K. Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae [J]. Journal of Applied Phycology,2000,12: 37-43.
    Jin Q. and Dong S.L. Comparative studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexandrium tamarense [J]. Journal of Experimental Marine Biology and Ecology,2003,293:41-55.
    Johansson N., Graneli E., Yasumoto T., Per Carlsson och Catherine C. Legrand. Toxin production by Dinophysis acuminata and D. acuta cells grown under nutrient sufficient and deficient conditions. In:Yasumoto T., Oshima Y. and Fukuyo Y. (Eds.) Harmful and Toxic Algal Blooms [M]. Paris:Intergovernmental Oceanographic Commission of UNESCO,1996, 277-280.
    Johnston A.M. and Raven J. A. Effects of Culture in high CO2 on the photosynthetic physiology of Fucus serratus [J]. Br Phycol J,1990,25:75-82.
    Joos F., Plattner G. K., Stocker T.F., Marchal O. and Schmittner A. Global warming and marine carbon cycle feedbacks on future atmospheric CO2 [J]. Science,1999,284:464-467.
    Keating K. I. Allelopathic influence on blue-green bloom sequence in a eutrophic lake [J]. Science,1977,196:885-887.
    Keating K.I. Blue-green algal inhibition of diatom growth:transition from mesotrophic to eutrophic community structure [J]. Science,1978,199:971-973.
    Kim C.S., Lee S.G., Lee C.K., Kim H.G. and Jung J. Reactive oxygen species as causative agents in the ichthyotoxicity of the red tide dinoflagellate Cochlodinium polykrikoides [J]. Journal of Pytoplankton Research,1998,21:2105-2115.
    Korner S. and Nicklisch A. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes [J]. Journal of Phycology,38:862-871.
    Kubler J.E., Johnston A.M. and Raven J.A. The effects reduced and elevated CO2 and O2 on the seaweed Lomentaria articulate [J]. Plant, Cell and Environmental,1999,22:1303-1310.
    Lampert W. and Sommer U. Limnoecology [M]. New York:Oxford University Press,2007, 89-147.
    Lashof D.A. and Tirpak D.A. Policy options for stabilizing global climate [M]. New York: Hemisphere Publishing Corporation,1990.
    Lawlor D.W. and Mitchell R.A.C. The effects of increasing CO2 on crop photosynthesis and productivity:a review of field studies [J]. Plant, Cell and Environment,1991,14:807-818.
    Leadley P.W., Reynolds J.A., Thomas J.F. Effects of CO2 enrichment on internal leaf surface area in soybeans. Botanical Gazette,1987,148:137-140.
    Legrand C., Rengefors K., Fistarol GO. and Graneli E. Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects [J]. Phycologia,2003,42: 406-419.
    Maberly S.C., Raven J.A. and Johnston A.M. Discrimination between 12C and 13C by marine plants [J]. Oecologia,1992,91:481-492.
    Malanson G.P. Comment on modelling ecological response to climatic change [J]. Climatic Change,1993,23:95-10.
    Mason C.P., Edwards K.P., Carlson R.E., Pignatello J., Gleason F.K. and Wood J.M. Isolation of chlorine-containing antibiotic from the freshwater cyanobacterium Scytonema hofmanni [J]. Science,1982,215:400-402.
    Mercado J.M., Javier F., Gordillo L., Niell F.X., Figueroa F.L. and Brown M.T. Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticte [J]. Journal of Applied Phycology,1999,11:455-461.
    Mercado J.M., Niell F.X. and Figueroa F.L. Regulation of the mechanism for HCO3- use by the inorganic carbon level in Porphyra leucostica Thus in Le Jolis (Rhotophyta) [J]. Planta,1997, 201:319-325.
    Miyachi S., Tsuzuki M., Maruyama I., Gantar M., Miyachi S. and Matsushima H. Effects of CO2 concentration during growth on the intracellular structure of Chlorella and Scenedesmus (Chlorophyta) [J]. Journal of Phycology,1986,22:313-319.
    Molisch H. Der Einfluss einer Pflanze auf die andere-Allelopathie [M]. Fischer Verlag, Jena, Germany,1937,106.
    Na G., Choi W. and Chun Y. A study on red tide control with loess suspension [J]. Korea Journal of Aquaculture,1996,9,239-245.
    Nakai S., Inoue Y., Hosomi M. and Murakami A. Growth inhibition of blue-green algae by allelopathic effects of macrophytes [J]. Water Science and Technology,1999,39:47-53.
    Orr J.C., Fabry V.J., Aumont O., Bopp L. Anthropogenic ocean acidfication over the twenty-first century and its impact on calcifying organisms [J]. Nature,2005,437:681-686.
    Pan Y.L., Subba Rao D. V., Mann K.H., Brown R.G. and Pocklington R. Effects of silicate limitation on production of domoic acid, a neurotoxin, by the diatom Pseudonitschia multiseries [J]. Marine Ecology Progress Series,1996,131:225-243.
    Perez E., Martin D.E. and Padilla M. Rate of production of APONINs by Nannochloris oculata [J]. Biomedical Letters,1999,59:83-91.
    Pratt C.M. Competition between Skeletonema costatum and Olisthediscus luteus in Narraaaganesett Bay and in culture [J]. Limnology and Oceanography,1966,11:447.
    Rice E.L. Allelopathy 2nd Ed. [M]. Orlande:Academic Press,1984,139-233.
    Riebesell U., Schulz K.G, Bellerby R.GJ., Botros M. Enhanced biological carbon consuption in a high CO2 ocean [J]. Nature,2007,450:545-549.
    Smith S.V. Marine macroalgae as a global carbon sink [J]. Science,1981,211:828-840.
    Steidinger K.A. A re-evaluation of toxic dinoflagellates biology and ecology [J]. Progress in Phycological Research,1983,2:147-188.
    Sun X., Song X., Zhang B. and Yu Z. A study on the coagulation of clay-MMH system with red tide organisms [J]. Marine Sicence,1999,13,46-49.
    Sun X.X., Choi J.K. and Kim E.K. A preliminary study on the mechanism of harmful algal bloom mitigation by use of sophorolipid treatment [J]. Journal of Experimental Marine Biology and Ecology,2004,304:35-49.
    Takuji U., Satoru T., Yukihiko M., Mineo Y., Yuichi K. and Tsuneo H. Interaction between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture [J]. Journal of Experimental Marine Biology and Ecology,1999,241: 285-299.
    Tournay F.J.R. Harmful phytoplankton blooms and aquaculture in British Columbia. The Problems of Toxic Dinoflagellate Blooms in Aquculture,1987:54-55.
    Tsuzuki M., Gantar M., Aizawa K. Ultrastructure of Dunaliella tertiolecta cells grown under low and high CO2 concentrations [J]. Plant and Cell Physiology,1986,27:737-739.
    Tyree M.T. and Alexander J.D. Plant water relations and the effects of elevated CO2:A review and suggestions for future research [J]. Vegetatio,1993,104/105:47-62.
    van Donk E. and van de Bund W.J. Impact of submerged macrophytes including charophytes on phyto-and zooplandton communities:allelopathy versus other mechanisms [J]. Aquatic Botany, 2002,72:261-274.
    Wang Y., Yu Z.M., Song X.X. and Zhang S.D. Interactions between the bloom-forming dinoflagellates Prorocentrum donghaiense and Alexandrium tamarense in laboratory cultures [J]. Journal of sea research,2006,56:17-26.
    Weidenhamer J.D., Hartnett D.C. and Romeo J.T. Density-dependent phytotoxicity: distinguishing resource competition and allelopathic interference in plants [J]. Journal of Applied Ecology,1989,26:613-624.
    Wink M., Schmeller T. and Latz-bruning B. Modes of action of allelochemicals alkaloida: interaction with neuroreceptors DNA and other molecular targets [J]. Journal of Chemical Ecology,1998,1881-1937.
    Wu J.T., Lee J. and Kuo-Huang L.L. Algicidal effect of Peridinium bipes on Microcystis aeruginosa [J]. Current Microbiology,1998,37:257-261.
    Xia J.R. and Gao K.S. Effects of CO2 enrichment on microstructure and ultrastructure of two species of freshwater green algae [J]. Acta Botanica Sinica,2002,44(5):527-531.
    安蓁.大型海藻及纳米材料对赤潮中肋骨条藻的抑制作用研究[硕士学位论文].青岛:中国海洋大学,2008.
    毕蓉.多环芳烃—蒽对两种海洋微藻间相互作用影响的研究[硕士学位论文].青岛:中国海 洋大学,2009.
    陈炳章,朱明远,王宗灵,李瑞香.赤潮藻类的适应与竞争策略[J].海洋环境科学,2005,24:70-75.
    陈德辉,刘永定,宋立荣.蓖齿眼子菜队栅藻和微囊藻的他感作用及参数[J].水生生物学报,2004,28:163-168.
    陈德辉,刘永定,袁俊峰,章宗涉,宋立荣,陈坚.微囊藻和栅藻共培养实验及其竞争参数的计算[J].生态学报,1999,19(6):908-913.
    陈烨,冯婧,严小军.3种常见赤潮微藻间相互作用的研究[J].宁波大学学报,2007,20(3):311-314.
    董云伟,董双林,刘相义.不同起始浓度对塔玛亚历山大藻和赤潮异弯藻种群竞争的影响[J].中国海洋大学学报,2004,34(6):964-968.
    和丽忠,陈锦玉,董宝生.国内植物化感作用研究概况[J].云南农业科技,1:37-41.
    胡晗华,高坤山.CO2浓度倍增对牟氏角毛藻生长和光合作用的影响[J].水生生物学报,2001,25(6):636-638.
    胡洪营,门玉洁,李锋民.植物化感作用抑制藻类生长的研究进展[J].生态环境,2006,15:153-157.
    黄京华,曾任森,黎华寿.HPLC在化学生态学和环境监测中的应用[J].广西农业生物科学,2002,21:284-288.
    金秋.大型海藻孔石莼对赤潮微藻克生作用的实验研究及其克生物质的分离与鉴定[博士学位论文].青岛:中国海洋大学,2005.
    李锋民,胡洪营.芦苇抑藻化感物质的分离及其抑制蛋白核小球藻效果研究[J].环境科学,2004,25:89-92.
    刘健康.高级水生生物学[M].北京:科学出版社,1999,63-72.
    刘世枚,黎尚豪.两种蓝藻种群间的相互作用[J].植物学报,1991,33:110-117.
    沈国英,施并章.海洋生态学[M].北京:科学出版社,2003,400-401.
    谭志军,颜天,周名江,李钧,于任诚,王云峰.塔玛亚历山大藻对黑褐新糠虾存活、生长及种群繁殖的影响[J]。生态学报,2002,22(10):1635-1639.
    王峰,张琪,蔡崇法.生化他感物质的收集与分离[J].科技进步与对策,2000,17:198-199.
    王仁君.大型海藻对有害赤潮微藻克生效应的实验生态学研究[博士学位论文].青岛:中国海洋大学,2007.
    王悠,俞志明,宋秀贤,张善东.大型海藻与赤潮微藻以及赤潮微藻之间的相互作用研究[J].环境科学,2006,27:274-280.
    夏建荣,高坤山.高浓度CO2对极大螺旋藻生长和光合作用的影响[J].水生生物学报,2001,25(5):474-780.
    延晓冬,赵士洞.崔-Lawson和Logistic方程参数的优化估计方法[J].应用生态学报,1991,2(3):275-279.
    余叔文.植物生理与分子生物学[M].北京:科学出版社,1990,210-243.
    喻梅高琼,高素华.全球变化条件下植物个体的生理生态学模型[J].植物学报,1997,39(9):811-820.
    张水浸.赤潮及其防治对策[M].北京:海洋出版社,1994.
    张婷,宋立荣.铜绿微囊藻(Microcystis aeruginosa)与三种丝状体蓝藻间的相互作用[J].湖泊科学,2006,18:150-156.
    周明江,朱明远,张经.中国赤潮的发生趋势和研究进展[J].生命科学,2001,13(2):54-59.
    邹定辉,高坤山.大型海藻类光合无机碳利用研究进展[J].海洋通报,2001a,20(5):83-90.
    邹定辉,高坤山.高CO2浓度对石莼光合作用及营养盐吸收的影响[J].青岛海洋大学学报,2001b,31(6):877-882.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700