用户名: 密码: 验证码:
不同品种和不同茬口大豆根面及根际的微生物群落结构分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在控制条件下,采用平板稀释法、直接计数法和16S rDNA-DGGE相结合的方法,检测了不同抗病品种大豆根面及根际微生物群落结构的差异,包括抗大豆根腐病(SRR)的绥农10(S10)、抗胞囊线虫病(SCN)的抗线2号(K2)以及易感SRR利SCN的合丰25(H25)。结果表明,三个品种大豆从三叶期到鼓粒初期,根面和根际的可培养细菌总数均随生育期逐渐增加,鼓粒初期达最大值,而成熟期则有明显的下降;大豆根际细菌生物量也存在相同的变化规律,这种变化趋势与前人报道的根分泌物随生育期的变化规律相似;S10和K2大豆的根瘤重明显高于H25;到成熟期H25根际积累的病原生物(镰孢霉Fusarium sp.和大豆胞囊线虫Heterodera glycines的胞囊数)也明显高于S10和K2。通过16S rDNA-DGGE分析表明,不同品种或是不同生育期大豆根面细菌种群均存在差异,而且不可培养细菌在根面占有绝对的优势。上述结果表明大豆根系分泌物对微生物具有选择性的促进或抑制作用,可能由于不同品种和不同生育期大豆根系分泌物的组成和数量不同,从而使大豆根面及根际形成了特定的微生物群落结构。
     采用除去了残茬的连作土壤为供试土壤,检测了抗感SRR的两个品种(S10和H25)大豆根分泌物对根面和根际微生物区系的影响。结果表明H25根瘤重明显低于S10;两个品种大豆连作后均造成根面、根际真菌种类单一化,根面细菌数量减少和病原菌(镰孢霉)数量积累,表明根系分泌物对根面和根际微生物有更进一步的选择作用。
     在田间长期定位试验(微区和小区)条件下,采用平板稀释法和16S rDNA-DGGE检测了不同茬口(正茬、迎茬和不同连作年限的连作大豆)大豆之间根面及根际微生物群落结构的差异。结果表明,正茬大豆生长状况、干物质积累和外观品质均好于迎茬和连作大豆。但大豆生长状况并非随着连作年限的增加而变差,短期连作(连作4~5年以内)随着连作年限增加,大豆的生长越来越差,而连作6年以上大豆的生长状况又有所改善。土壤中SCN的胞囊量随着连作年限增加也有一个“自然衰退”的现象。在微区试验中,连作和迎茬大豆苗期根面和根际镰孢霉数量均多于正茬大豆,正茬大豆根瘤重均高于连作。在小区试验中,正茬大豆花期根面细菌的多样性(H)高于迎茬,迎茬高于连作,短期连作使根面细菌的H降低,连作6年达到最低,而后又稍有增加。总之,大豆生长状况和干物质积累状况的变化规律与根面、根际镰孢霉和土壤中SCN的胞囊数量的增加、根瘤重以及根面细菌H的减少规律具有一定的相关性,可以推断根面、根际镰孢霉和土壤中胞囊数量的增加、根瘤重和细菌多样性(H)的减少均可能为导致连作障碍的主要因素。
Microbial communities in the rhizoplane, rhizosphere and bulk soil were investigated with three soybean cultivars, including a resistant cultivar ( Kangxian 2, K2) to the soybean cyst nematode (SCN) ,a resistant cultivar (Suinong 10, S10) to the soybean root rot (SRR) . and a susceptible cultivar (Hefeng 25, H25) to both SCN and SRR under the controlled conditions by plate counting, direct counting, and a molecule-based method, 16S rDNA-PCR followed by denaturing gradient gel electrophoresis ( DGGE) .The total amount of colony forming units ( CFU ) of bacteria in the rhizoplane and rhizosphere increased gradually with time from trifoliate stage to early filling stage, but decreased dramatically at mature stage after its reaching a peak at the early filling stage. Same trends were observed in the variation of bacterial biomass in the rhizosphere of soybean with time by the acridine orange direct counting method (AODC) .These trends above were similar to the changing pattern of root exudates within the growth stages reported previously. The weight of root nodules of S10 and K2 was significantly higher than that of H25. Compared with the resistant cultivars (S10 and K2) , higher amount of pathogenic microbe ( Fusarium sp. and cyst of Heterodera glycines ) in the rhizoplane and rhizosphere of H25 was found at the mature stage. The DGGE patterns showed that the rhizoplane bacteria community among different soybean cultivars and different growth stages varied greatly. Moreover, the variation among different cultivars was bigger than that among growth stages. These results indicated that the component and amount of root exudates varied among different soybean cultivars, and even different growth stages of the same cultivar; exudates from soybean roots had some selective inhibitory or stimulative effects on microorganisms in the rhizoplane and rhizosphere. This leads to the formation of special microflora in the rhizoplane and rhizosphere.The effects of root exudates from two cultivars (S10, SRR resistant cultivar, and H25, SRR susceptible cultivar) on the variation of microflora in the rhizoplane, rhizosphere and bulk soil were studied by using the soil after planted soybean last year eliminated the residual roots and leaves. The results showed the weight of root nodule of H25 was lower than that of S10 significantly. The bacteria populations in the rhizoplane and rhizosphere of both the resistant cultivar and susceptible cultivar were decreased gradually, but the amount of fungi and fusarium was accumulated with time during the growth stage. Compared with bulk soil, the species of fungi in the rhizoplane and rhizosphere of the two cultivars became more single. These results indicated soybean root exudates had further selective inhibitory or stimulative effects on the microorganisms in the rhizoplane and rhizosphere under continuous monocropping soybean condition.Microbial communities in the rhizoplane, rhizosphere and bulk soil under different rotation andcontinuous monocropping systems in two long-term field plots (plot 1 and plot 2) were also tested byplate counting and 16S rDNA-DGGE methods. The treatments consisted of normal rotation soybean(NRS) , alternation of soybean with other crops (ATS) , continuous monocropping soybean (CS)for 2~9 years. Our data showed that the plant growth and seed commodity quality of NRS were better
    than those of ATS and CS in the two field plots. Plant growth became worse with the years of continuous monocropping within five years. However, it became better after six years of CS. The sup-oppressiveness of cysts of SCN was found after five years of continuous monoculture of soybean. In plot 1, the numbers of Fusarium in the rhizoplane or rhizosphere of both CS and ATS were higher than that of NRS at the seedling stage. However, the weight of root nodules of NRS was significantly higher than that of CS. At the flowering stage in plot 2, the rhizoplane bacteria diversity of NRS was the richest, and CS the lowest, with that of ATS between them. Moreover, the diversity declined after short-ter
引文
蔡燕飞,寥宗文,董齐,石木标.2002a.番茄青枯病的土壤微生态防治研究.农业环境保护,21(5):417-420
    蔡燕飞,寥宗文.2002b.土壤微生物生态学研究方法进展.土壤与环境,11(2):167-171
    柴丽红,彭谦,徐丽华,姜成林.2003.DGGE技术在微生物生态学研究中的应用.生物技术,4:32-33
    陈华癸.1988.微生物学.北京:农业出版社,130-132
    陈灏.唐小树,林洁,张伯生,任大明.2002.不经培养的农田土壤微生物种群构成及系统分类的初步研究.微生物学报,42(4):478-483
    陈宗泽,殷勤燕,王旭明,杨振明.1999.土壤病原菌对连作大豆的致病性初探.吉林农业大学学报,21(1):29-32
    杜长玉,赵华强,李明琴.2003.大豆连作对植株形态和生理指标的影响.内蒙古农业科技,(4):14-15
    冯洁,陈其英,石磊岩.1991.棉花幼苗根系分泌物与枯萎病关系的研究.棉花学报,3(1):89-96
    付琳林,李海星,曹郁生.2004.生物技术通报.利用变性梯度凝胶电泳分析微生物的多样性,2:38-40
    傅慧兰,杨振明,邹永久.1996.大豆连作对土壤酶活性的影响.植物营养与肥料学报,2(4):374-377
    傅慧兰,邹永久,杨振明,刘金萍,闫飞.1997.大豆连作土壤pH与土壤酶活性.大豆科学,16 (2):156-161
    高同春,周书其,王振荣.1992.大豆根腐病原物的分离、鉴定及致病性测定.安徽农业科学,20(1):79-81
    高子勤,张淑香.1998.连作障碍与根际微生态研究Ⅰ根系分泌物及其生态效应.应用生态学报,9(5):549-554
    郭永霞,刘新军,李国兰.1998.连作对大豆根部酚含量、病害及产量的影响.黑龙江八一农垦大学学报,10(2):1-3
    韩丽梅.2002a.大豆连作的化感作用及化感物质种类的鉴定:[博士学位论文].南京:南京农业大学
    韩丽梅,沈其荣,鞠会艳,闫石,闫飞.2002b.大豆地上部水浸液的化感作用及化感物质的鉴定.生态学报,22(9):1425-1432
    韩丽梅,王树起,鞠会艳,闫雪,闫飞.杨振明.2000.大豆根茬腐解产物的鉴定及化感作用的初步研究.生态学报,20(5):771-778
    韩晓增.1995.土壤条件与重迎茬大豆生长.许艳丽,韩晓增主编.大豆重迎茬研究.哈尔滨:哈尔滨工程大学出版社,33-34
    韩晓增,何志鸿,张增敏.1998.大豆主要病虫害防治技术.大豆通报,(6):5-6
    韩晓增,何志鸿,刘忠堂.1999a.大豆重迎茬减产机理与对策研究—大豆重迎茬减产控制及主要病虫害防治技术专题研究取得重大进展.大豆通报,(1):4-6
    韩晓增,许艳丽.1999b.大豆连作减产主要障碍因素的研究Ⅱ连作大豆土壤有害生物的障碍效应.大豆科学,18(1):47-51
    韩晓增,许艳丽,刘忠堂.1999c.大豆重迎茬减产控制与主要病虫害防治技术.北京:科学出版社,17-34
    何志鸿,刘忠堂,胡立成.1998.大豆重茬减产的主要原因及农艺对策.大豆通报,(3):4-5
    何志鸿,刘忠堂,许艳丽,韩晓增.2003.大豆重迎茬减产的原因及农艺对策研究(?).重迎茬大豆的土壤养分与养分吸收.大豆科学.22(1):40-44
    胡锋,李辉信,史玉英,武心齐,王道军.1998.两种基因型小麦根际土壤生物动态及根际效应.土壤通报,29(3):133-135
    胡江春,王书锦.1993.大豆连作土壤青霉菌891(Penicillum purpurogenumstol 891)毒素的研究.见:土壤微生物研究—理论应用新方法.张宪武主编.沈阳:沈阳出版社,304-309
    胡江春,王书锦.1996.大豆连作障碍研究Ⅰ大豆连作土壤紫青霉菌的毒素作用研究.应用生态学报,7(4):396-400
    贾新民,于泉林,沙永平.1995a.大豆连作土壤多酚氧化酶研究.黑龙江八一农垦大学学报,8(2):40-43
    江修业,王建国,于光华.1995.关于大豆重迎茬问题的探讨.许艳丽,韩晓增主编.大豆重迎茬研究.哈尔滨:哈尔滨工程大学出版社,92-93
    姜岩.1995.非腐解有机物培肥机理的研究—兼论根茬还田效应与新农作制.长春:吉林省土壤学会第六届会员代表大会暨学术年会论文集,7
    焦振泉,刘秀梅.1998.16S rRNA序列同源性分析与细菌系统分类鉴定.国外医学卫生学分册,25(1):12-16
    鞠会艳,韩丽梅,王树起,丛登立.2002.连作大豆根分泌物对根腐病病原菌的化感作用.应用生态学报,13(6):723-727
    乐毅全,郑师章.1990.凤眼莲根际细菌的趋化性研究.复旦学报(自然科学版),29(3):314-319
    李长松,罗瑞梧,干金龙,徐冉.1995.山东省大豆根腐病研究与防治.大豆通报,95(3):7-8
    李长松,赵玖华.杨崇良,尚佑芬,罗瑞梧,辛相启,邢邯,赵经荣.1997.大豆根腐病菌致病力分化的初步研究.植物病理学报,27(2):129-132
    李传涵,王长荣.1991.毛白杨、刺槐混交林丰产机理的研究.湖北林业科技,(1):1-5
    李春花.2001.大豆连作导致植株内源激素比例失调初报.中国林副特产,(3):11
    李红,周友兵,陈炳耀,胡锦矗.2003.分子生物学技术在微生物多样性研究中的应用.河北大学学报(自然科学版),23(4):450-454
    李振高,李良谟.潘映华,吴胜春.1995.小麦苗期根系分泌的对根际反硝化细菌的影响.土壤学报,32(4):408-413
    李振高,潘映华,李良谟.1993.不同基因型小麦根际细菌及酶活性的动态研究.土壤学报, 30(1):1-8
    李振高,万焕楣.1987.水稻根际反硝化细菌生态分布的研究.土壤学报,24(2):120-125
    梁文举,闻大中.2001.土壤生物及其对土壤生态学发展的影响.应用生态学报,12(1):137-140
    刘汉起,商绍刚,霍虹.1985.大豆孢囊线虫病发生危害.大豆科学.4(2):131-136
    刘洪升,宋秋华,李凤民.2002.根分泌物对根际矿物营养及根际微生物的效应.西北植物学报,22(3):693-702
    刘剑锋,杜建珍,梁绍静.2000.重迎茬大豆减产成因及控制对策.中国农学通报,16(4):71-72
    刘丽君,高明杰,杨兆英.1993.大豆重迎茬减产机理和调控技术的研究.黑龙江农业科学(增刊),17-19
    刘佩印.2001. 黑龙江省大豆重迎茬问题的研究概况.黑龙江农业科学.(3):31-35
    刘上峰,傅俊江.2002.变性梯度凝胶电泳的原理、应用及其进展.国外医学遗传学分册,25(2):72-76
    刘为民.姜海燕.2002.大豆重迎茬减产的病虫害等原因及解决办法探讨.植保技术与推广,22(4):14-15
    刘增柱.1990.大豆连、轮作土壤微生物生态分布与大豆胞囊线虫群体动态的研究.大豆科学,9(2):206-211
    刘忠堂,于龙生.2000.重迎茬对大豆产量与品质影响的研究.大豆科学,19(3):229-237
    陆文龙,王敬国.曹一平,张福锁.1998.低分子量有机酸对土壤磷释放动力学的影响.土壤学报,35(4):493-500
    吕士恩.1995.棉花对萎蔫病抗性研究进展.山东植物病理研究.北京:中国农业科学技术出版社,32-34
    罗明.陈新红,李兢,刘平,蔡吉凤,胡云悌,王林霞.2000.种保素对几种根际微生物效应的影响.生态学志,19(3):69-72
    马承铸,顾真荣,钱振官,钱国琛.1994.种植制对大豆胞囊线虫群体密度和真菌区系的影响.上海农业学报,10(2):62-66
    马汇泉,辛惠普.1985.大豆根腐病病原菌种类鉴定及其生物学的研究.黑龙江八一农垦大学学报,2(2):115-121
    马汇泉,赵淑英.1991.大豆重迎茬近根土壤微生物变化动态初报.北京:全国首届根际环境研讨会,96
    马瑞霞,冯怡.李萱.1998.厌氧条件下化感物质对枯草杆菌生长及反硝化作用的影响.化学生态学,2:187-193
    马万里.2004.土壤微生物多样性研究的新方法.土壤学报.41(1):103-107
    马悦欣,Caro la Holm strm, Jeremy Webb, Staffan Kjelleberg. 2003.变性梯度凝胶电泳(DGGE)在微生物生态学中的应用.生态学报,23(8):1561-1569
    莫文英,贾小明,钱泽澍.1985.水稻根际固氮量及根系不同部位的固氮活性.土壤学报,22(1):93-97
    牟金明,李万辉,张凤霞,姜岩.1996.根系分泌物及其作用.吉林农业大学学报,18(4):114-118
    阮维斌.2000.大豆连作障碍机理和调控措施的研究:[博士学位论文].北京:中国农业大学
    中建波,张福锁,毛达如.1998.磷胁迫下大豆根分泌物中低分子量有机酸的动态变化.中国农业大学学报(增刊),3:44-48
    孙漫红,刘杏忠.2000.连作土壤中大豆胞囊线虫种群数量减少的原因探讨.植物病理学报,30(4):353-356
    孙晓璐,杨海莲,陈志和,宋未,白云山.2000.两个品种水稻植株根面细菌的区系组成研究.植物病理学报,30(2):284-285
    汤艳丽.2002.从黑龙江省大豆生产与加工看我国大豆竞争力.现代化农业,(8):64-65
    唐敏.1991.国槐、刺槐幼苗根系固氮酶活性的研究.北京林业大学学报.13(3):15-20
    王光华,许艳丽.1995a.大豆根残体对大豆生长影响.韩晓增,许艳丽主编.大豆重迎茬研究.哈尔滨:哈尔滨工程大学出版社,84-91
    王光华,许艳丽.1995b.大豆根浸提液生化他感现象的研究.韩晓增,许艳丽主编.大豆重迎茬研究.哈尔滨:哈尔滨工程大学出版社,73-77
    王晶英,郑桂萍,张红燕,李国兰.1997.连作大豆根冠比增大原因的研究.大豆科学,16(2):136-142
    于敬国.1993.根际微生物的植物基因型特征.张福锁主编.植物营养生态生理学和遗传学.北京:中国科学技术出版社,322-323
    王树起,韩丽梅,杨振明.2000.大豆根茬腐解液和营养残液对大豆生长发育的自感效应.中国油料学报,22(3):44-47
    王兆荣,刘世英,谷思玉,魏自民,田中艳,李云辉,姜世波,陈仁忠.1999.重迎茬大豆对土壤有机-无机复合胶体及土壤结构的影响.大豆科学,18(1):10-16
    王震宇,王英祥,陈祖仁.1991.重茬大豆生长发育障碍机制初探.大豆科学,10(1):31-36
    吴凤芝,赵凤艳,马凤鸣.2001.酚酸物质及其化感作用.东北农业大学学报,32(4):313-319
    吴辉,赵大君,郑师章.1994.凤眼莲根分泌物对细菌降酚的影响.生态学研究进展,北京:中国科学技术出版社,73-74
    吴建峰,林先贵.2003.土壤微生物在促进植物生长方面的作用.土壤,(1):18-21
    肖金辉.2001.中国大豆市场及其发展趋势研究:[硕士学位论文].北京:中国农业大学,1-40
    辛惠普.1996.大豆主要病虫害研究论文集.密山:黑龙江八一农垦大学出版社,11-13
    熊明彪,何建平,宋光煜.2002.根分泌物对根际微生物生态分布的影响.土壤通报,33(2):145-148
    徐瑞富,任永信.2003.连作花生田土壤微生物群落动态与减产因素分析.农业系统科学与综合研究,19(1):33-35
    徐永华,何志鸿,刘忠堂,许显斌,陈霞,赵伟,刘庆学.1997.重迎茬对大豆化学品质的影响.大豆科学.16(4):319-327
    许艳丽,刘爱群,韩晓增,王光华.1996.黑龙江省黑土区不同茬口对大豆生育及产量和品 质影响的研究.大豆科学,15(1):48-55
    许艳丽,刘晓冰,韩晓增,李兆林,王守宇,何喜云,于莉.1999.大豆连作对生长发育动态及产量的影响.中国农业科学.32(增刊):64-68
    许艳丽,王光华,韩晓增.1995a.重迎茬对大豆生长发育及产量和品质影响的研究.韩晓增,许艳丽主编.大豆重迎茬研究.哈尔滨:哈尔滨工程大学出版社,95-100
    许艳丽,王光华,韩晓增.1995b.重迎茬大豆土壤微生物生态分布特征研究.韩晓增,许艳丽主编.大豆重迎茬研究.哈尔滨:哈尔滨工程大学出版社,12-16
    杨起,王林娟.2002.重茬大豆低产原因及对策.黑龙江农业科学,(5):24-26
    杨庆凯,马占峰,李秀文.1994.黑龙江省大豆重迎茬问题及对策.大豆科学,13(2):156-162
    杨庆凯,宁海龙,周育中,许艳丽,刘发,王继安.2001.不同生态条件重迎茬对大豆化学品质的影响.大豆科学,20(3):187-190
    杨苏声.1997.细菌分类学.北京:中国农业大学出版社,145
    于广武.许艳丽,刘小冰,王光华.1993.大豆连作障碍机制研究初报.大豆科学,12(3):237-242
    于贵瑞,陆欣来,韩静淑,王德身.1988.大豆、向日葵等作物连作障碍与轮作效应机理的研究初报.生态学杂志,7(2):1-8
    喻景权,松井佳久.1999.豌豆根系分泌物自毒作用的研究.园艺学报,26(3):175-179
    袁虹霞,李洪连,王烨,房卫平,王振跃.2002.棉花不同抗性品种根系分泌物分析及其对黄萎病菌的影响.植物病理学报,32(2):127-131
    张宝贵,李贵桐.1998.土壤生物在土壤磷有效化中的作用.土壤学报,35(1):105-109
    张德俭,赵九洲,孙长艳,崔丽亚.1996.连作对大豆生长发育动态的影响.大豆科学,15(4):326-331
    张洪勋,王晓谊,齐鸿雁.2003.微生物生态学研究方法.生态学报,22(5):988-995
    张庆平.1994.荞麦根分泌物对小麦全蚀病菌的抑制及根际微生物种群数量观察.内蒙古农业科技,(1):8-9
    赵大君,郑师章.1996a.凤眼莲根分泌物氨基酸组分对根际肠杆菌属F2细菌的趋化作用.应用生态学报,7(2):207-212
    赵大君,郑师章.1996b.凤眼莲根分泌物氨基酸对根际肠杆菌属F2细菌降酶的影响.应用生态学报,7(4):435-438
    赵淑英,赵九洲,陈洁敏.1995.连作对大豆生理生化特性的影响.大豆科学,14(2):113-118
    郑桂萍.郭永霞,李国兰,刘新军.1998.连作对大豆根系酚、糖含量及产量的影响初报.大豆科学,17(4):363-366
    郑桂萍,赵九州,王立发,赵萍.1995.连作大豆根际土及根系、冠部三要素含量变化动态的研究.大豆科学,14(4):310-315
    郑华.欧阳志云,方治国,赵同谦.2004.Biolog在土壤微生物群落功能多样性研究中的应 用.土壤学报,41(3):456-461
    郑师章,何敏.1990.水葫芦根部分泌物对若干细菌作用的研究.生态学杂志,9(5):56-57
    郑师章,乐毅全,吴辉,汪敏,赵大君.1994.凤眼莲及其根际微生物共同代谢和协同降酚机理的研究.应用生态学报,5(4):403-408
    中国科学院南京土壤所微生物室.1985.土壤微生物研究法.北京:科学出版社,45-46
    钟文辉,蔡机聪.2004.土壤微生物多样性研究方法.应用生态学报,15(5):899-904
    朱丽霞,章家恩,刘文高.2003.根系分泌物与根际微生物相互作用研究综述.生态环境,12(1):102-105
    邹永久,韩丽梅,傅慧兰,杨振明,陈宗泽,刘金萍.1996.大豆连作土壤障碍因素研究Ⅰ、连作对土壤腐殖质组分性质的影响.大豆科学,15(3):235-242
    龙岛康夫.1965.连作障碍—自毒作用的研究进展.化学与生物,3:530-535(日文)
    Amann R. I., W. Ludwig and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbial Rev., 59 (1): 143-169
    Bakken L. R. and R. A. OIsen. 1982. Buoyant densities and dry-matter contents of microorganisms: conversion of admeasured biovolume into biomass, Appl. Environ. Microbiol., 45 (4): 1188-1195
    Bano N. and J. T. Hollibaugh. 2002. Phylogenetic Composition of Bacterioplankton Assemblages from the Arctic Ocean. Appl. Environ. Microbiol., 68 (2) : 505-518
    Bennett R. J. and C. M. Breen. 1981. Aluminum toxicity: towards an understanding of how plant root react to the physical environment. Plant Soil Sci., 50: 103-116
    Borneman J., P. W. Skroch, K. M. O'Sullivan, J. A. Palus, N. G. Rumjanek, J. L. Jansen, J. Nienhuis and E. W. Triplett. 1996. Molecular microbial deversity of an agricultural soil in Wisconsin. Appl. Environ. Microbiol., 62: 1935-1943
    Bridge P. and S. Brian. 2001. Soil fungi: Diversity and detection. Plant and Soil, 232: 147-154
    Casamayor E. O., H. Schafer, L. Baneras, C. Pedros-Alioand and G. Muyzer. 2000. Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis, Appl. Environ. Microbiol., 66 (2) : 499-508
    Chou C. H. and L L. Leu. 1992. Allelopathic substances and activities of Delonix regia Raf. Chem. Ecol., 18: 353-367
    Cieslinski G., K. C. J. Van-Rees, A. M. Szmigielska and P. M. Huang. 1997. Low molecular weight organic acids released from roots of durum wheat and flax into sterile nutrient solutions. J. Plant Nutr., 20 (6): 753-764
    Cindy H., Nakatsua, V. Torsvikb and L. Φvreasb. 2000. Soil Science Society of America. Soil Science Society of America Journal, 64: 1382-1388
    Claudia S. G., P. Guadalupe, L. Werner and R. Sabine. 2001. An advanced molecular strategy to identify bacterial communities on art objects. J. Microbiol. Meth., 45: 77-87
    Cocolin L., M. Manzano and C. Cantoni. 2001. Denaturing gradient gel electrophoresis analysis of the 16S rRNA gene V1 region to monitor dynamic changes in the bacterial population during fermentation of Italian sausages. Appl. Environ. Microbiol., 67 (11): 5113-5121
    Dah ll F. I., H. Baillie and S. Kjelleberg. 2000. rpoB-based microbial community analysis avoids lim itations inherent in 16S rRNA gene intraspecies heterogeneity. Appl. Environ. Microbiol., 66 (8): 3376-3380
    Darrah P. R. and K. A. Jung. 1991. Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol. Fertil. Soils., 3: 199-204
    Duineveid B. M., A. S. Rosado, J. D. Elsas and J. A. Veen. 1998. Analysis of the dynamics of bacterial communities in the rhizophere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl. Environ. Microbiol., 64 (12): 4950-4957
    Duineveld B. M., G. A. Kowalchuk, A. Keijzer and J. D. Elsas. 2001. Analysis of Bacterial Communities in the Rhizosphere of Chrysanthemum via Denaturing Gradient Gel Electrophoresis of PCR-Amplified 16S rRNA as Well as DNA Fragments Coding for 16S rRNA. Appl. Envir. Micro., 172-178
    Dunbar J., S. Takala, S. M. Barns, J. A. Davis and C. R. Kuske. 1999. Levels of bacteria community diversity in four arid soils compared by cultivation and gene cloning. Appl. Environ. Microbiol., 65: 1662-1669
    Elroy A. C. 1986. The Rhizosphere. Spring-Verlag Berlin, Heidelber
    Ferris M. J., G. Muyzer and D. M. Ward. 1996. Denaturing gradient gel electrophoresisprofiles of 16S rRNA-defined populations inhabiting a hot spring microbial matcommunity, Appl. Environ. Microbiol., 62 (2) : 340-346
    Ferris M. J. and D. M. Ward. 1997. Seasonal distributions of dominant 16S rDNA defined populations in a hot spring microbialmat examined by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol., 63 (4): 1375-1381
    Fisher S. G. and L. S. Lerman. 1983. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with theory. Proc. Natl. Acad. Sci. USA, 80: 1579-1583
    Garland J. L. 1996b. Analytical approaches to the characterization of sample microbial communities using patterns of potential C source utilization. Soil Biol. Biochem., 28: 213-221
    Garland, J. L. 1996a. Patterns of potential C source utilization by rhizosphere communities. Soil Biol. Biochem., 28: 223-230
    Geisomino A., A. C. Keijzer-Wolters, G. Cacco and J. D. Elasas. 1999. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J. Microbiol. Meth., 38: 1-15
    Giovannoni, S. J., T. B. Britschgi, C. L. Moyer and K. G. Field. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature, 345: 60-63
    Granato, T. C., W. L Banwart and P. M. Porter. 1983. Effect of variety and stage of growth on potenail allelopathic compounds in soybean roots. J. Chem. Ecol., 9 (8) : 1201-1230
    Grayston, S. J., S. Q. Wang, C. D. Campbell and A. C. Edwards. 1998. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem., 30: 369-378.
    Griffiths B. S., K. Ritz, N. Ebblewhite and G. Dobson. 1999. Soil microbial community structure: effects of substrate loading rates. Soil boil. biochem., 31 (1): 145-153
    Guckert J. B. and D. C. White. 1986. Phospholipid ester-linked fatty acid analysis in microbial ecology. In: Megusar F. and G. Gantar eds. Perspectives in Microbial Ecology. Proceedings of the 4th International Symposium on Microbial Ecology, Ljubljana, Slovenia, 455-459
    Haack S. K., H. Garchow, M. J. Klug and L. J. Forney. 1995. Analysis of factors affecting the accuracy reproducibility and interpretation of microbial community carbon source utilization patterns. Appl. Environ. Microbiol., 61: 1458-1468
    Head I. M., J. R. Saunders and R.. W. Pickup. 1998. Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microbial Ecology, 35: 1-21
    Helal H. M. and D. Sauerbeck. 1986. Effect of plant roots on carbon metabolism of soil microbial biomass. Z. Pflanzenernaehr Bodenkd., 149: 181-188
    Heuer H. and K. Smalla. 1997. Evaluation of community level catabolic profiling using Biolog GN microplates to study microbial community changes in potato philosopher. J. Microbiol. Meth., 30: 49-61
    Heuer H., M. Krsek, P. Baker K. Smalla and E. M. Wellington. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel electrophoresis separation in denaturing gradients. Appl. Environ. Microbiol., 63: 3233-3241
    Hilter L 1904. Uber neuere Erfahrungen und probleme aufdem gebiet der bodenbakteriologie und unter besonderer berucksichtigung dergrundungung der Grung und Brache. Arb Dtsch Land Wirt. Ges., 98: 59-78
    Hobble J. E., R. J. Daley and S. Jasper. 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol., 33 (5) : 1225-1228
    Hugenholtz P., B. M. Goebel and N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol., 180: 6793-6774
    James E. M. S., B. Stephan, P. C. Justin and G. B. Richard. 2001. PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods. FEMS Microbiol. Ecol., 36: 139-151
    John W. D. and J. J. Alice. 1996. Methods for assessing soil quality. SSSA special publication number 49, Soil Science Society of America, Inc. Madison, Wisconsin, USA. 203-272
    Kloepper J. W., M. N. Schroth and T. D. Miller. 1980. Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato yield and development. Phytopathol., 70: 1078-1082
    Komatsoulis G. A. and M. S. Waterman. 1997. A new computational method for detection of chimeric 16S rRNA artifacts generated by PCR amplification from mixed bacterial populations. Appl. Environ. Microbiol., 63 (6): 2338-2346
    Kowalchuk G. A., J. R. Stephen, W. De Boer, J. I. Prosser, T. M. Embley, J. W. Woldendorp, J. Kozdroj and J. D. Elsas. 2000. Application of polymerase chain reaction-denaturing gradient gel electrophoresis for comparison of direct and indirect extraction methods of soil DNA used for microbial community fingerprinting. Biol. Fertil. Soils, 31: 372-378
    Kowalchuk G. A., J. R. Stephen, W. D. Boer, J. I. Prosser, T. M. Embley and J. W. Woldendorp. 1997. Analysis of ammonia-oxidizing bacteria of the β-subdivision of the class proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol., 63 (4): 1489-1497
    Kraffczyk I., G. Trolldenier and H. Beringer. 1984. Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biol .Biochem., 16: 315-322
    Lavelle P. 2000. Ecological challenges for soil science. Soil Sci., 165: 73-86
    Lerman LS., S. G. Fischer, I. Hurley, K. Silverstein and N. Lumelsky. 1984. Sequence-determined DNA separations. Annu. Rev. Biophys. Bioeng., 13: 399-423
    Liljeroth, E., S. L. G. E. Burgers and J. A. Van Veen. 1991. Changes in bacterial populations along roots of wheat seedlings. Biol. Fertil. Soils, 10: 276-280.
    Maidax B. L, G. J. Olsen and N. Larsen. 1997. The ribosomal database project. Nucleic Acids Research, 25: 109-111
    Marschner E. R. P., D. E. Crowley and R. M. Higashi. 1997. Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L.) . Plant and Soil, 189: 11-20
    Martinei-toledo M. V. 1988. Root exudates of zea mays and production of auxins, gibberellins and cytokinins by Azotobacter chroococcum. Plant and Soil, 110: 149-155
    McCaig A. E., S. J. Grayston, J. I. Prosser and L. A. Glover. 2001. Impact of cultivation on characterization of species composition of soil bacterial communities. FEMS Microbiol Ecol., 35: 37-48
    Moeseneder M., J. S. M. Arrieta, G. Muyzer, C. Winter and G. J. Herndl. 1999. Optimization of Terminal -Restriction Fragment Length Polymorphism Analysis for Complex Marine Bacterioplankton Communities and Comparison with Denaturing Gradient Gel Electrophoresis. Appl. Environ. Microbiol., 65 (8) : 3518-3525
    Muarry A. H. 1996. Effect of simple phenolic compounds of heather (Calluna vulgaris) on rumen microbial activity in Vitro. J Chem. Ecol., 22: 1493-1505
    Muyzer G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion Microbiol, 2: 317-322
    Muyzer G., E. C. DeWaal and A. G. Uitterlinden. 1993. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16S rRNA. Appl. Environ. Microbiol., 59 (3): 695-700
    Myers R. M., S. G. Fisher, L. S. Lerman and T. Maniatis. 1985. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res., 13 (9) : 3131-3145
    Nakatsu C. H., V. Torsvik and L. Vreas. 2000. Soil Community Analysis Using DGGE of 16S rDNA Polymerase Chain Reaction Products. Soil Sci. Soc. Am. J., 64: 1382-1388
    Neal J. L., T. G. Atkinson Jr. and R. I. Larson. 1970. Changes in the rhizosphere microflora of spring wheat induced by disomic substitution of a chromosome. Canadian J. Microbiol., 16: 153-158
    Norby R. J. 1987. Carbon of pimcsecinata seeding grown under CO_2 enrichment. Tree Physiol., (3): 203-210
    Olsen R. A. and L R. Bakken. 1987. Viability of soil bacteria: optimization of plate-counting technique and comparison between total counts and plate counts within different size groups. Microbiol. Ecol., 13: 59-74
    Omar N. B., F. Ampe, M. Raimbault, J. P. Guyot and P. Tailliez. 2000. Molecular diversity of lactic acid bacteria from cassava sour starch (Colombia) .Syst. appl. Microbiol., 23 (2): 285-291
    Palleroni N. J. 1997. Prokaryotic diversity and the importance of culturing. Antonie van Leeuwenhoek, 72: 3-19
    Pennanen T., L. Paavolainen and J. Hantula. 2001. Rapid PCR-based method for the direct analysis of fungal communities in complex environmental samples. Soil Biol. and Biochem., 33: 697-699
    Petersen S. O., K. Debosz, P. Schjonning, B. T. Christensen and S. Elmholt. 1997. Phospholipid fatty acid profiles and C availability in wet-stable macro-aggregates from conventionally and organically farmed soils. Geoderma, 78: 181-196
    Pfender W. F., V. P. Fieland, L M. Ganio and R. J. Seidler. 1996. Microbial community structure and activity in wheat straw after inoculation with biological control organism. Appl Soil Ecol., 3: 69-78
    Rice E L. 1984. Allelopathy (2nd edition). New York: Academic Press. 1-50
    Richard A. Hurt, Y. Q. Xiao, Y. W. Li, Yul Rob, A. V. Palumbo, J. M. Tiedje and J. Z. Zhou. 2001. Simultaneous Recovery of RNA and DNA from Soils and Sediments. Appl. Environ. Microbiol., 67 (10): 4495-4503
    Santegoeds C. M., S. Nold and D. M. Ward. 1996. Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat. Appl. Environ. Microbiol., 62 (11): 3922-3928
    Schortemeyer M., H. Santrckova and M. J. Sandowsky. 1997. Relationship between root length density and soil microorganisms in the rhizospheres of white clover and perennial ryegrass. Commun. Soil Sci, Plant Anal., 28: 1675-1682
    Sekiguchi H., M. Watanabe, T. Nakahara, B. H. Xu and H. Uchiyama. 2002. Succession of Bacterial Community Structure along the Changjiang River Determined by Denaturing Gradient Gel Electrophoresis and Clone Library Analysis, Appl. Environ. Microbiol., 68 (10): 5142-5150
    Smalla K., G. Wieland, A. Buchner, A. Zock, J. Parzy, S. Kaiser, N. Roskot, H. Heuer and G. Berg. 2001. Bulk and Rhizosphere Soil Bacterial Communities Studied by Denaturing Gradient Gel Electrophoresis: Plant-Dependent Enrichment and Seasonal Shifts Revealed. Appl. Environ. Microbiol., 67 (10): 4742-4751
    Smiley R. W. and R. J. Cook. 1973. Relationship between take-all of wheat and rhizosphere pH in soils fertilized with ammonium vs. Nitrate-nitrogen. Phytopothol., 63: 882-890
    Smit E., P. Leeflang, S. Gommans, J. van Broek, S. van Mil and K. Wernars. 2001. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl. Environ. Microbiol., 67 (5): 2284-2291
    Teske A., P. Sigalevich, Y. Cohen and G. Muyzer. 1996. Molecular identification of bacteria from a coculture by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments as a tool for isolation in pure cultures. Appl. Environ. Microbiol., 62 (11): 4210-4215
    Tiedje J. M., S. Asuming-Brempong, K. Nusslein, T. L. Marsh and S. J. Flynn. 1999. Opening the black box of soil microbial diversity. Applied Soil Ecology, 13: 1109-1122
    Torsvik V. L. 1980. Isolation of bacteria DNA from soil. Soil Biol. Biochem., 12: 15-21
    Torsvik V. L., J. Goksoyr and L. Daaef. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol., 56: 782-787
    Tsai Y. L. and B. H. Olson. 1992. Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl. Environ. Microbiol., 58: 2292-2295
    Turner S. M., E. I. Newman and L. L. R. CAML PBE. 1985. Microbial population of ryegrass root sufaces: influence of nitrogen and phosphorus supply. Soil Biol. Biochem., 17: 711-715
    Ueda T., Y. Suga and T. Matsuguchi. 1995. Molecular phylogenetic analysis of a soil microbial community in a soybean field. Eur. J. Soil Sci., 46: 415-421
    Vahjen W., J. C. Munch and C. C. Tebbe. 1995. Carbon source utilization of soil extracted microorganisms as a tool to detect the effect of soil supplemented with genetically enginecred and non-engineered Corynebacterium gutamicum and arecombinant peptide at the community level. FEMS Microbiol. Ecol., 18: 317-328
    Vaino E J. and J. Hantula. 2000. Direct analysis of wood inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol. Res., 104 (8): 927-936
    Vallaeys T., E Topp, G. Muyzer, V. Macheret, G. Laguerre, A. Rigaud and G. Soulas. 1997. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiol. Ecol., 24: 279-285
    Van Elsas J. D., G. F. Duarte, A. Keijzer-Wolters and E. Smit. 2000. Analysis of the dynamics of fungal communities in soil via fungal specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J. M icrobiol. Meth., 43: 133-151
    Van Elsas J. D., J. T. Trevors and E. M. H. Wellington (ed.). 1997. Modern soil microbiology. Marcel Dekker Inc., New York, N. Y.
    Viaud M., A. Pasquier and Y. Brygoo. 2000. Diversity of soil fungi studied by PCR-RFLP of ITS. Mycol. Res., 104 (9): 1027-1032
    Von Wintzingerode F., U. B. Goebel and E. Stackebrandt. 1997. Determination of microbial diversity in environmental samples: pit fails of PCR based rRNA analysis. FEMS Microbiol. Rov., 21 (3): 213-229
    Wang J. G. and L. R. Bakken. 1997. Competition for nitrogen during mineralization of plant residues in soil: microbial response to C and N availability, Soil Biol. Biochem., 29 (2): 163-170
    Wang T. S. C., M. M. Kao and S. W. Li. 1984. The exploration and im-provement of the yield decline of monoculture sugarcane inTaiwan, In: Chou, C. H. (ed) . Taipei, Taiwan: Tropical Plant, 1-9
    Ward D. M., M. J. Ferris, S. C. Nold and J. D. van Elsas. 1998. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities, Microbiol. Nol. Biol. Rev., 62 (4): 1353-1370
    Warembourg F. R. and G. Billers. 1979. Estimating carbon transfers in the plant rhizosphere. In: Harley J L and R. S. Russell, eds. The Soil Root Interface. London: Academic Press, 183-196
    Wawer C., M. S. M. Jetten and G. Muyzer. 1997. Genetic diversity and expression of the [NiFe] hydrogenase large-subunit gene of Desulfovibrio splIn environmental samples. Appl. Environ. Microbiol., 63 (11): 4360-4369
    Whittaker R. H. and P. P. Feeny. 1971. Allelochemicals: Chemical interactions between species. Sci. 171: 757-770
    Yamane A., H. Nishimura and J. Mizutani. 1992. Allelopathy of yellowfield cress: Identification and characterization of phyto-toxic constituents. Chem. Ecol., 18: 683-691
    Yang C. H. and D. E. Crowley. 2000. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl. Environ. Microbiol., 66 (1) : 345-351
    Yu, J. Q. and Y. Matsui. 1994. Phyto-toxic substances in root exudates of cucumber. Chem. Ecol., 20: 21-31
    Zhou, J., M. A. Bruns and J. M. Tiedje. 1996. DNA recovery from soil of diverse composition. Appl. Environ. Microbiol. 62, 316-322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700