用户名: 密码: 验证码:
组蛋白去乙酰化酶抑制剂与顺铂联用对口腔鳞癌细胞作用的体外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:以顺铂为代表的铂类化合物由于其显著的抗瘤效应,是治疗口腔鳞状细胞癌(oral squamous cell carcinoma,OSCC)最常用的一类化疗药物。为克服临床上越来越多的病人对顺铂产生的耐药性及减轻由于用药剂量所导致的毒副反应,以顺铂为核心的联合用药方案是目前口腔肿瘤防治领域的研究热点和难点。
     研究目的:本课题首次尝试将新的抗瘤药物,即组蛋白去乙酰化酶抑制剂(histone deacetylase inhibitors,HDACIs)与顺铂进行联合配伍,探索二者联用应用于口腔鳞癌治疗的可能性,特别是观察HDACIs与顺铂联合应用作用于口腔鳞癌细胞后,是否能增强药物在体外的抗瘤效应,并初步探讨二者联用作用于口腔鳞癌细胞的分子机制。
     研究方法:以口腔鳞癌细胞Tea8113及KB为研究对象:(1)采用MTS比色实验研究HDACIs及顺铂单独作用于口腔鳞癌细胞后,对其生长增殖的抑制作用,获得口腔鳞癌细胞对单独使用两种药物的剂量反应;(2)采用westem blotting的方法观察HDACIs作用于口腔鳞癌细胞后,对细胞组蛋白乙酰化水平的影响;(3)结合前面1,2所得实验结果,采用低剂量的HDACIs及顺铂进行联用,运用MTS及克隆形成实验检测药物对口腔鳞癌细胞的毒性作用;(4)采用流式细胞术(flow cytometry,FCM)及TUNEL(terminal deoxynucleotidyltransferase dUTP nick end labeling)检测低剂量的HDACIs与顺铂配伍后是否能诱导口腔鳞癌细胞发生凋亡,并与单独运用这两种药物的细胞相比较;(5)采用westem blotting的方法检测低剂量的HDACIs与顺铂联合应用对以p53为中心的细胞信号通路的影响。
     研究结果:两株口腔鳞癌细胞都对HDACIs及顺铂呈现出较好的敏感性并且HDACIs可以迅速导致Tca8113及KB细胞组蛋白乙酰化水平的提高;与单独运用低剂量的两种药物比较,低剂量的HDACIs及顺铂联用可以使两种药物的细胞毒性作用显著增强(P<0.05),并明显诱导口腔鳞癌细胞发生凋亡(P<0.05);两种药物进行低剂量的联用后,可以诱导p53的表达,活化其下游信号分子BID,细胞色素C(Cytochrome C)从线粒体释放到胞浆中并导致凋亡效应分子Caspase 3发生裂解。
     结论:HDACIs可以有效增强口腔鳞癌细胞对低剂量顺铂的敏感性,在体外实验中呈现了较好的抗癌效应;同时HDACIs对顺铂的协同作用可能是通过重建与顺铂耐药密切相关的p53内源性及外源性凋亡信号通路得以实现。本研究提示我们:HDACIs与顺铂的配伍可能成为口腔鳞癌治疗领域的新策略。
Background
     Platinum-based chemotherapy drug, for example, cisplatin, has been used as the first -line single agent for its powerful therapeutic effects against oral squamous cell carcinoma(OSCC).However, both the resistance to cisplatin and dose-related toxicity remain two of the most crucial issues in the chemotherapy of clinical OSCC treatment. Researches have been seeking a combinative treatment regimen to improve the effect of chemotherapy. In our study, we evaluated the potential combinative effect of histone deacetylase inhibitors (HDACIs) and cisplatin on OSCC cell lines.
     Purpose
     To explore the possible synergistic anticancer efficiency of both HDACIs and cisplatin in OSCC cell line. Molecular mechanisms underlying drug induced apoptosis and activation of apoptosis related proteins in OSCC cell lines are also examined.
     Methods
     By using MTS methods, Tca8113 and KB cells were firstly treated with HDACIs and cisplatin alone and the dose response for single agent was obtained. Then, western blotting was performed to evaluate the acetylated histone level in Tca81113 and KB cells treated with HDACIs. Subsequently, a subtoxic dose of cisplatin and HDACIs was used in combination to compare their activities against OSCC cancer cells. Cell growth and viability were assessed using MTS and colony formation assay, and apoptosis was measured by flow cytometry and DeadEnd~(TM) Fluorometric TUNEL System. At last, to further explore the cellular basis of the synergistic response observed in OSCC cell lines, the analysis of selected p53 related apoptosis network was then performed by western blotting.
     Results
     Both Tca8113 and KB were sensitive to HDACIs and cisplatin alone. HDACIs could rapidly induce accumulation of acetylated histone in OSCC cell lines. Compared with either HDACIs or cisplatin treated alone, co-administration of subtoxic of both drugs synergistically induces cytotoxicity and apoptosis in both Tca8113 and KB cell lines (P<0.05).The increased drug sensitivity observed with co-treatment of the cells with HDACIs is mediated by p53 induction, increased activation of pro-apoptotic protein BID, released of cytochrome C to cytosol, and increased activation of caspase-3.
     Conclusion
     These founding suggest us that concurrent treatment with HDACIs enhances tumor cell sensitivity to subtoxic doses of cisplatin through p53 intrinsic and extrinsic apoptosis pathway that has close relationship with drug resistance. This may be regarded as a novel strategy for treatment of OSCC.
引文
1. Clayman GL, Ebihara S, Terada M et al. Report of the Tenth International Symposium of the Foundation for Promotion of Cancer Research: Basic and clinical research in head and neck cancer. [J] Jap J Clin Oncol 1997; 27(5):361-8.
    2. Qiu WL and Zheng JW. Development of oral maxillofacial oncology in China. [J] Chinese med J-PEKING 2003; 116(4): 1567-73.
    3. Wingo PA, Tong T, Bolden S. Cancer statistics. [J] CA Cancer J Clin 1995; 45(1):8-30.
    4. Takahara PM, Rosenzweig AC, Frederick CA et al. Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. [J] Nature 1995; 377(6550): 649-52.
    5. Cohen SM and Lippard SJ. Cisplatin: from DNA damage to cancer chemotherapy. [J] Prog Nucleic Acid Res Mol Biol 2001; 67(1):93-130.
    6. Wong E and Giandomenico CM. Current status of platinum-based antitumor drugs. [J] Chem Rev 1999; 99(9): 2451-66.
    7. Caponigro F, Rosati G, De Rosa P et al. Cisplatin, raltitrexed, levofolinic acid and 5-fluorouracil in locally advanced or metastatic squamous cell carcinoma of the head and neck: a phase II randomized study. [J] Oncology 2002; 63(3): 232-8.
    8. Gedlicka C, Formanek M, Selzer E, Burian M, Kornfehl J, Fiebiger W, et al. Phase II study with docetaxel and cisplatin in the treatment of recurrent and/or metastatic squamous cell carcinoma of the head and neck. [J] Oncology 2002; 63(2): 145-50.
    9. Orr JA, Hamilton PW. Histone acetylation and chromatin pattern in cancer. [J] A review.Anal Quant Cytol Histol.2007; 29(1):17-31.
    10. Esteller M. Cancer epigenomics: DNA methylomes and histone modification maps. [J] Nat Rev Genet.2007:8(4): 286-98.
    11. Vigushin DM and Coombes RC. Histone deacetylase inhibitors in cancer treatment. [J] Anti-cancer drugs 2002; 13(1): 1-13.
    12. Schering AG. Histone deacetylase inhibitors and cancer: from cell biology to the clinic. [J] Eur J Cell Biol 2005; 84(1): 109-21.
    13. Kelly WK, Marks PA. Drug insight: Histone deacetylase inhibitors-development of the new targeted anticancer agent suberoylanilide hydroxamic acid. [J] Nat Clin Pract Oncol 2005; 2(3): 150-7.
    14. Zhu WG, Lakshmanan RR, Beal MD et al. DNA Methyltransferase Inhibition Enhances Apoptosis Induced by Histone Deacetylase Inhibitors. [J] Cancer Res 2001; 61(4): 1327-33.
    15. Whang YM, Choi EJ, Seo JH et al. Hyperacetylation enhances the growth-inhibitory effect of all-trans retinoic acid by the restoration of retinoic acid receptor beta expression in head and neck squamous carcinoma (HNSCC) cells. [J] Cancer Chemoth Pharm. 2005; 56(5): 543-55.
    16. Kim MS, Blake M, Baek JH et al. Inhibition of Histone Deacetylase increases cytotoxicity to anticancer drugs that targeting DNA. [J] Cancer Res 2003; 63(21): 7291-300.
    17. Marchion DC, Bicaku E, Turner JG et al. Synergistic interaction between histone deacetylase and topoisomerase II inhibitors is mediated through topoisomerase II beta. [J] Clin Cancer Res 2005; 11(23): 8467-75.
    18. Yu C, Rahmani M, Conrad D et al. The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. [J] Blood 2003; 102(10): 3765-74.
    19. Nelson SM, Ferguson LR, Denny WA. DNA and the chromosome- varied targets for chemotherapy. [J] Cell Chromosome 2004; 3(1):2-20.
    20. Boulikas T, Novakova O. Cisplatin and platinum drugs at the molecular level. [J] Oncol Rep. 2003; 10(6): 1663-82.
    21. Yoshida M, Kijima M, Akita M et al. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. [J] J Biol Chem I990; 265(28): 17174-9.
    22.郭莉霞 候青青.细胞活性测定方法研究进展.[J] 重庆工商大学学报(自然科学版).2006;23(6):564-8.
    23. Malich G, Markovic B and Winder C. The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. [J] Toxicology, 1997, 124(3): 179-192.
    24. Franken NA, Rodemond HM, Stap J et al. Clonogenic assay of cell in vitro. [J] Nat Protoc. 2006; 1(5): 2315-9.
    25. Fabregat I, Roncero C, Femandez M. Survival and apoptosis: a dysregulation balance in liver cancer. [J] Liver Int.2007; 27(2): 155-62.
    26. Sedletska Y, Giraud-Panis MJ, Malinnge JM.Cisplatin is a DNA-damaging antitumor compound triggering multifacterial biochemical response in cancer cell: importance of apoptotic pathway. [J] Curr Med Chem Anticancer Agents.2005; 5(3): 251-65.
    27. Ruefli AA, Ausserlechner MJ, Bernhard D et al. The histone deacetylase inhibitor and chemotherapeutic agents suberoylanilide hydroxamic acid(SAHA) induces a cell death pathway characterized by cleavage of Bid and production of reactive oxygen species. [J] Proc Natl Acad Sci U S A 2001; 98(19): 10833-8.
    28. Yu C, Subler M, Rahmani Met al. Induction of apoptosis in BCR/ABL_+ cells by histone deacetylase inhibitors involves reciprocal effects on the RAF/MEK,ERK and JNK pathway. [J] Cancer Biol Ther 2003; 2(5): 544-51.
    29. Yokota T, Matsuzaki Y, Miyazawa K et al. Histone deacetylase inhibitors activate INK4d gene through Sp1 site in its promoter. [J] Oncogene 2004; 23(31): 5340-9.
    30. Soussi T, Lozano G. p53 mutation heterogeneity in cancer. [J] Biochem Biophys Res Commun.2005; 331 (3): 834-42.
    31. Haupt S, Berger M, Goldberg Z et al. Apoptosis - the p53 network. [J] J Cell Sci.2003; 116(20): 4077-85.
    32. Gross A. BID as a double agent in cell life and death. [J] Cell cycle.2006; 5(6):582-4.
    33. Zinkel SS, Hurov KE, Ong C, Abtahi FM, Gross A, Korsmever SJ. A role for proapoptotic BID in the DNA-damage response. [J] Cell 2005; 122(4): 579-91.
    34. Robert J.Resistant to cytotoxic agents. [J] Curr Opin Pharmacol 2001; 1(4): 353-67.
    35. Fisher DE.Apoptosis in cancer therapy: crossing the threshold. [J] Cell 1994; 78(4): 539-42.
    36. Perego P, Righetti SC, Supino R et al. Role of apoptosis and apoptosis-related proteins in the cisplatin-resistant phenotype of human tumor cell lines. [J] Apoptosis 1997; 2(6): 540-8.
    37. Kaufmann SH, Vaux DL. Alterations in the apoptotic machinery and their potential role in anticancer drug resistance. [J] Oncogene 2003; 22(47): 7414-30.
    38. Perego P, Giarola M, Righetti SC et al. Association between cisplatin resistance and mutation of p53 gene and reduced bax expression in ovarian carcinoma cell systems. [J] Cancer Res. 1996; 56(3): 556-62.
    39. Mandic R, Schamberger CJ, Muller JF et al. Reduced cisplatin sensitivity of head and neck squamous cell carcinoma cell lines correlated with mutation affecting the COOH-terminal nuclear localization signal of p53. [J] Clin Cancer Res.2005;11(19 Pt 1):6845-52.
    40. Houldsworth J, Xiao H, Murty VV.Human male germ cell tumor resistance to cisplatin is linked to TP53 gene mutation. [J] Oncogene 1998; 16(18):2435-9.
    41. Cabelquenne A, Loriot MA, Stucker I et al. Glutathione-associated enzymes in head and neck squamous cell carcinoma and response to cisplatin -based neoadjuvant chemotherapy. [J] Int J Cancer 2001; 93(5): 725-30.
    42. Bradford CR, Zhu S, Poore J et al. p53 mutation as a prognostic marker in advanced laryngeal carcinoma. Department of Veterans Affairs Laryngeal Cancer Cooperative Study Group. [J] Arch Otolaryngol Head Neck Surg. 1997; 123(6): 605-9.
    43. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. [J] Oncogene. 2003; 22(47): 7265-79.
    44. Achanzar WE, Webber MM, Waalkes MP. Altered apoptotic gene expression and acquired apoptotic resistance in cadmium-transformed human prostate epithelial cells. [J] Prostate 2002; 52(3): 236-44.
    45. Toyozumi Y, Arima N, Izumaru S et al. Loss of caspase-8 activation pathway is a possible mechanism for CDDP resistance in human laryngeal squamous cell carcinoma, HEp-2 cells. [J] Int J Oncol. 2004; 25(3): 721-8.
    46. Chekhun VF, Lukyanova NY, Urchenko OV et al. The role of expression of the components of proteome in the formation of molecular profile of human ovarian carcinoma A2780 cells sensitive and resistant to cisplatin. [J] Exp Oncol. 2005; 27(3): 191-5.
    47. Spierings DC, de Vries EG, Vellenga E et al. Loss of drug-induced activation of the CD95 apoptotic pathway in a cisplatin-resistant testicular germ cell tumor cell line. [J] Cell Death Differ. 2003; 10(7): 808-22.
    48. Isonishi S, Saitou M, Yasuda M et al. Mitochondria in platinum resistant cells. [J] Hum Cell. 2001; 14(3): 203-10.
    49. Sax JK, Fei P, Murphy ME, et al. BID regulation by p53 contributes to chemosensitivity. [J] Nat Cell Biol 2002; 4(11): 842-9.
    1. Cho HS, Park JH, Kim YJ. Epigenomics: novel aspect of genomic regulation. [J] J Biochem Mol Biol. 2007 31; 40(2): 151-5.
    2. Esteller M. Epigenetics provides a new generation of oncogenes and tumour-suppressor genes. [J] Br J Cancer. 2007; 96 (Suppl): R26-30.
    3. Jones PA, Baylin SB. The epigenomics of cancer. [J] Cell. 2007; 128(4):683-92.
    4. Manoharan M, Ramachandran K, Soloway MS et al. Epigenetic targets in the diagnosis and treatment of prostate cancer. [J] Int Braz J Urol. 2007;33(1):11-8.
    5. Goldberg AD, Allis CD, Bernstein E.Epigenetics: a landscape takes shape. [J] Cell. 2007; 128(4):635-8.
    6. Gaudet F, Hodgson JG, Eden A et al.Induction of tumors in mice by genomic hypomethylation. [J] Science. 2003 18; 300(5618):489-92.
    7. Eden A, Gaudet F, Waghmare A et al. Chromosomal instability and tumors promoted by DNA hypomethylation. [J] Science 2003;300(5618):455
    8. Hegi ME, Diserens AC, Godard S et al.Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. [J] Clin Cancer Res. 2004; 10(6): 1871-4.
    9. Esteller M, Sanchez-Cespedes M, Rosell R.Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. [J] Cancer Res. 1999 ; 59(1):67-70.
    10. Friedrich MG, Weisenberger DJ, Cheng JC et al.Detection of methylated apoptosis-associated genes in urine sediments of bladder cancer patients. [J] Clin Cancer Res. 2004; 10(22):7457-65.
    11. Belinsky SA.Gene-promoter hypermethylation as a biomarker in lung cancer. [J] Nat Rev Cancer. 2004; 4(9):707-17.
    12. Reiner SL.Epigenetic control in the immune response. [J] Hum Mol Genet. 2005; 14 (Spec No 1):R41-6.
    13. Richardson BC, Strahler JR, Pivirotto TS et al.Phenotypic and functional similarities between 5-azacytidine-treated T cells and a T cell subset in patients with active systemic lupus erythematosus. [J] Arthritis Rheum. 1992; 35(6):647-62.
    14. Yung RL, Quddus J, Chrisp CE et al.Mechanism of drug-induced lupus. I. Cloned Th2 cells modified with DNA methylation inhibitors in vitro cause autoimmunity in vivo. [J] J Immunol. 1995; 154(6):3025-35.
    15. Lu Q, Kaplan M, Ray DDemethylation of ITGAL (CD11 a) regulatory sequences in systemic lupus erythematosus. [J] Arthritis Rheum. 2002; 46(5):1282-91.
    16. Urnovitz HB, Murphy WH.Human endogenous retroviruses: nature, occurrence, and clinical implications in human disease. [J] Clin Microbiol Rev. 1996; 9(1):72-99.
    17.顾婷婷 张忠明 郑鹏生.DNA甲基化研究方法的回顾与评价.[J] 中国妇幼健康研究.2006;17(6):555-60.
    18. Callinan PA, Feinberg AP.The emerging science of epigenomics. [J] Hum Mol Genet. 2006; 15 (Spec No 1):R95-101.
    19. Chang HW, Ling GS, Wei WI et al.Smoking and drinking can induce p15 methylation in the upper aerodigestive tract of healthy individuals and patients with head and neck squamous cell carcinoma. [J] Cancer 2004; 101(1):125-32.
    20. Kulkarni V, Saranath D.Concurrent hypermethylation of multiple regulatory genes in chewing tobacco associated oral squamous cell carcinomas and adjacent normal tissues. [J] Oral Oncol. 2004; 40(2): 145-53.
    21. Wong TS, Man MW, Lam AK et al.The study of p16 and p15 gene methylation in head and neck squamous cell carcinoma and their quantitative evaluation in plasma by real-time PCR. [J] Eur J Cancer. 2003;39(13):1881-7
    22. Wu CL, Roz L, McKown S et al.DNA studies underestimate the major role of CDKN2A inactivation in oral and oropharyngeal squamous cell carcinomas. [J] Genes Chromosomes Cancer. 1999; 25(1):16-25.
    23. Nakahara Y, Shintani S, Mihara M et al.High frequency of homozygous deletion and methylation of p16(INK4A) gene in oral squamous cell carcinomas. [J] Cancer Lett. 2001; 163(2):221-8.
    24. Maruya S, Issa JP, Weber RS et al.Differential methylation status of tumor-associated genes in head and neck squamous carcinoma: incidence and potential implications. [J] Clin Cancer Res. 2004;10(11l):3825-30
    25. Sanchez-Cespedes M, Esteller M, Wu L.Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. [J] Cancer Res. 2000;60(4):892-5.
    26. Hasegawa M, Nelson HH, Peters E et al.Patterns of gene promoter methylation in squamous cell cancer of the head and neck. [J] Oncogene. 2002; 21(27):4231-6.
    27. Timmermann S, Hinds PW, Munger K. Re-expression of endogenous p16ink4a in oral squamous cell carcinoma lines by 5-aza-2'-deoxycytidine treatment induces a senescence-like state. [J] Oncogene. 1998; 17(26):3445-53.
    28. Cody DT 2nd, Huang Y, Darby CJ.Differential DNA methylation of the p16 INK4A/CDKN2A promoter in human oral cancer cells and normal human oral keratinocytes. [J] Oral Oncol. 1999; 35(5):516-22.
    29. Lee JK, Kim MJ, Hong SP,Inactivation patterns of pl6/INK4A in oral squamous cell carcinomas.Exp Mol Med. 2004; 36(2):165-71.
    30. Nakayama S, Sasaki A, Mese H.The E-cadherin gene is silenced by CpG methylation in human oral squamous cell carcinomas. [J] Int J Cancer. 2001;93(5):667-73.
    31. Yeh KT, Shih MC, Lin TH.The correlation between CpG methylation on promoter and protein expression of E-cadherin in oral squamous cell carcinoma. [J] Anticancer Res. 2002;22(6C):3971-5.
    32. Viswanathan M, Tsuchida N, Shanmugam G.Promoter hypermethylation profile of tumor-associated genes p16, p15, hMLH1, MGMT and E-cadherin in oral squamous cell carcinoma. [J] Int J Cancer. 2003; 105(1):41-6.
    33. Chang HW, Chow V, Lam KY.Loss of E-cadherin expression resulting from promoter hypermethylation in oral tongue carcinoma and its prognostic significance. [J] Cancer. 2002; 94(2):386-92.
    34. Kudo Y, Kitajima S, Ogawa I et al.Invasion and metastasis of oral cancer cells require methylation of E-cadherin and/or degradation of membranous beta-catenin. [J] Clin Cancer Res. 2004; 10(16):5455-63.
    35. Esteller M, Hamilton SR, Burger PC.Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. [J] Cancer Res. 1999;. 59(4):793-7.
    36. Rosas SL, Koch W, da Costa Carvalho MG et al. Promoter hypermethylationpatternsofp1606-methylguanine-DN A-methyltransferas e,and death-associated protein kinase in tumors and saliva of head and neck cancer patients. [J] Cancer Res. 2001; 61 (3):939-42.
    37. Ogi K, Toyota M, Ohe-Toyota M. Aberrant methylation of multiple genes and clinicopathological features in oral squamous cell carcinoma. [J] Clin Cancer Res. 2002;8(10):3164-71.
    38. Shaw R. The epigenetics of oral cancer. [J] Int J Oral Maxillofac Surg. 2006;35(2):101-8.
    39. Wong TS, Kwong DL, Sham JS et al.Quantitative plasma hypermethylated DNA markers of Undifferentiated nasopharyngeal carcinoma[J].Clin Cancer Res. 2004; 10(7):2401-6.
    40. Lopez M, Aguirre JM, Cuevas N.Gene promoter hypermethylation in oral rinses of leukoplakia patients-a diagnostic and/or prognostic tool? [J] Eur J Cancer. 2003; 39(16):2306-9.
    41.Smiraglia DJ, Smith LT, Lang JC.Differential targets of CpG island hypermethylation in primary and metastatic head and neck squamous cell carcinoma (HNSCC). [J] J Med Genet. 2003; 40(1):25-33.
    42. Momparler RL, Ayoub J et al.Potential of 5-aza-2'-deoxycytidine (Decitabine) a potent inhibitor of DNA methylation for therapy of advanced non-small cell lung cancer. [J] Lung Cancer. 2001; 34 Suppl 4:S111-5.
    43. Momparler RL, Eliopoulos N, Ayoub J. Evaluation of an inhibitor of DNA methylation, 5-aza-2'-deoxycytidine, for the treatment of lung cancer and the future role of gene therapy. [J] Adv Exp Med Biol. 2000; 465: 433-46.
    44. Oki Y, Kantarjian HM, Gharibyan V et al. Phase II study of low-dose decitabine in combination with imatinib mesylate in patients with accelerated or myeloid blastic phase of chronic myelogenous leukemia. [J] Cancer. 2007; 109(5):899-906.
    45. Coombes MM, Briggs KL, Bone JR et al. Resetting the histone code at CDKN2A in HNSCC by inhibition of DNA methylation. [J] Oncogene. 2003; 22(55): 8902-11.
    46. Gilbert J, Gore SD, Herman JG. The clinical application of targeting cancer through histone acetylation and hypomethylation. [J] Clin Cancer Res. 2004; 10(14):4589-96.
    47. Marshall JL, Rizvi N, Kauh J et al. A phase I trial of depsipeptide (FR901228) in patients with advanced cancer. [J] J Exp Ther Oncol. 2002; 2(6):325-32.
    48. Sandor V, Bakke S, Robey RW et al. Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. [J] Clin Cancer Res. 2002;8(3): 718-28.
    49. Shaker S, Bernstein M, Momparler LFPreclinical evaluation of antineoplastic activity of inhibitors of DNA methylation (5-aza-2'-deoxycytidine) and histone deacetylation (trichostatin A, depsipeptide) in combination against myeloid leukemic cells. [J] Leuk Res. 2003; 27(5): 437-44.
    1. Robert J. Resistant to cytotoxic agents. [J] Curr Opin Pharmacol 2001; 1(4):353-67.
    2. Mesner PW Jr, Budihardjo II, Kaufmann SH.Chemotherapy-induced apoptosis. [J] Adv Pharmacol. 1997; 41:461-99.
    3. Li X, Gong J, Feldman E et al.Apoptotic cell death during treatment of leukemias. [J] Leuk Lymphoma. 1994; 13 Suppl 1:65-70.
    4. Kaufmann SH.Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: a cautionary note. [J] Cancer Res. 1989; 49(21):5870-8.
    5. Houghton JA.Apoptosis and drug response. [J] Curr Opin Oncol. 1999; 11(6):475-81.
    6. Tillman DM, Petak I,Houghton JA.A Fas-dependent component in 5-fluorouracil/leucovorin-induced cytotoxicity in colon carcinoma cells. [J] Clin Cancer Res. 1999; 5(2):425-30.
    7. Petak I, Tillman DM, Houghton JA.p53 dependence of Fas induction and acute apoptosis in response to 5-fluorouracil-leucovorin in human colon carcinoma cell lines. [J] Clin Cancer Res. 2000; 6(11):4432-41.
    8. Schwartzberg LS, Petak I, Stewart C et al.Modulation of the Fas signaling pathway by IFN-gamma in therapy of colon cancer: phase I trial and correlative studies of IFN-gamma, 5-fluorouracil, and leucovorin. [J] Clin Cancer Res. 2002; 8(8): 2488-98.
    9. Fulda S, Sieverts H, Friesen C et al. The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. [J] Cancer Res. 1997; 57(17): 3823-9.
    10. Fulda S, Scaffidi C, Pietsch T. Activation of the CD95 (APO-1/Fas) pathway in drug- and gamma-irradiation-induced apoptosis of brain tumor cells. [J] Cell Death Differ. 1998; 5(10): 884-93.
    11. Fulda S, Sieverts H, Friesen C et al. The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. [J] Cancer Res. 1997; 57(17):3823-9
    12. Friesen C, Herr I, Krammer PH et al. Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. [J] Nat Med. 1996; 2(5): 574-7.
    13. Fulda S, Los M, Friesen C et al. Chemosensitivity of solid tumor cells in vitro is related to activation of the CD95 system.Int J Cancer. 1998; 76(1): 105-14. [J] Int J Cancer. 1998; 76(1): 105-14.
    14. Villunger A, Egle A, Kos M et al. Drug-induced apoptosis is associated with enhanced Fas (Apo-1/CD95) ligand expression but occurs independently of Fas (Apo-1/CD95) signaling in human T-acute lymphatic leukemia cells. [J] Cancer Res. 1997; 57(16): 3331-4.
    15. Adjei AA, Charron M, Rowinsky EK. Effect of pyrazoloacridine (NSC 366140) on DNA topoisomerases I and II. [J] Clin Cancer Res. 1998; 4(3):683-91.
    16. Glaser T, Wagenknecht B, Groscurth P et al. Death ligand/receptor-independent caspase activation mediates drug-induced cytotoxic cell death in human malignant glioma cells. [J] Oncogene. 1999; 18(36):5044-53.
    17. Shain KLandowski TH, Buyuksal I. Clonal variability in CD95 expression is the major determinant in Fas-medicated, but not chemotherapy-medicated apoptosis in the RPMI 8226 multiple myeloma cell line. Leukemia. [J] 2000; 14(5):830-40.
    18. Brookes PS, Morse K,Ray D et al. The triterpenoid 2-cyano-3,12-dioxooleana-l,9-dien-28-oic acid and its derivatives elicit human lymphoid cell apoptosis through a novel pathway involving the unregulated mitochondrial permeability transition pore. [J] Cancer Res. 2007; 67(4): 1793-802.
    19. Nazarewicz RR, Zenebe WJ, Parihar A. Tamoxifen induces oxidative stress and mitochondrial apoptosis via stimulating mitochondrial nitric oxide synthase. [J] Cancer Res. 2007; 7(3): 1282-90.
    20. Lopes RB, Gangeswaran R, McNeish IA et al. Expression of the IAP protein family is dysregulated in pancreatic cancer cells and is important for resistance to chemotherapy. [J] Int J Cancer. 2007; 120(11): 2344-52.
    21. Gu Q, Wang JD, Xia HH. Activation of the caspase-8/Bid and Bax pathways in aspirin-induced apoptosis in gastric cancer. [J] Carcinogenesis. 2005; 26(3): 541-6.
    22. Garnett TO, Filippova M, Duerksen-Hughes PJ. Bid is cleaved upstream of caspase-8 activation during TRAIL-mediated apoptosis in human osteosarcoma cells. [J] Apoptosis. 2007 Mar 13; [Epub ahead of print] .
    23. O'Connor PM, Jackman J, Bae I.Characterization of the p53 tumor suppressor pathway in cell line of the National Cancer Institute anticancer drug screen and correlations with the growth inhibitory potency of 123 anticancer agents. [J] Cancer Res 1997; 57(21): 4285-300.
    24. Bradford CR, Zhu S, Poore J et al. p53 mutation as a prognostic marker in advanced laryngeal carcinoma. Department of Veterans Affairs Laryngeal Cancer Cooperative Study Group. [J] Arch Otolaryngol Head Neck Surg. 1997; 123(6): 605-9.
    25. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. [J] Oncogene. 2003; 22(47): 7265-79.
    26. Kemp CJ, Sun S, Gurley KE. p53 induction and apoptosis in response to radio- and chemotherapy in vivo is tumor-type-dependent. [J] Cancer Res. 2001; 61(1): 327-32.
    27. Miyashita T, Reed JC. Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. [J] Blood. 1993 J; 81(1): 151-7.
    28. Ohi Y, Kim R, Toge T et al. Overcoming of multidrug resistance by introducing the apoptosis gene, bcl-Xs, into MRP-overexpressing drug resistant cells. [J] Int J Oncol. 2000; 16(5): 959-69.
    29. Lebedeva I, Rando R, Ojwang J et al. Bcl-xL in prostate cancer cells: effects of overexpression and down-regulation on chemosensitivity. [J] Cancer Res. 2000; 60(21): 6052-60.
    30. Amundson SA, Myers TG, Scudiero D et al. An informatics approach identifying markers of chemosensitivity in human cancer cell lines. [J] Cancer Res. 2000; 60(21): 6101-10.
    31. Zhang L, Yu J, Park BH et al. Role of BAX in the apoptotic response to anticancer agents. [J] Science. 2000; 290(5493): 989-92.
    32 Beale PJ, Rogers P, Boxall F et al.BCL-2 family protein expression and platinum drug resistance in ovarian carcinoma. [J] Br J Cancer 2000; 82(2): 436-40.
    33. Friesen C, Fulda S, Debatin KM. Cytotoxic drugs and the CD95 pathway. [J] Leukemia. 1999; 13(11): 1854-8.
    34. Landowski TH, Gleason-Guzman MC, Dalton WS. Selection for drug resistance results in resistance to Fas-mediated apoptosis. [J] Blood. 1997; 89(6): 1854-61.
    35. Cullen KV, Davey RA, Davey MW. Drug resistance does not correlate with resistance to Fas-mediated apoptosis. [J] Leuk Res. 2001; 25(1):69-75.
    36. Jarvis WD, Grant S. The role of ceramide in the cellular response to cytotoxic agents[J].Curr Opin Oncol. 1998; 10(6): 552-9.
    37. Arlt A, Gehrz A, Muerkoster S et al. Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death[J].Oncogene. 2003 May; 22(21): 3243-51.
    38. Kaufmann SH, Vaux DL. Alterations in the apoptotic machinery and their potential role in anticancer drug resistance [J] .Oncogene. 2003; 22(47): 7414-30.
    39. Merritt JA, Roth JA, Logothetis CJ et al. Clinical evaluation of adenoviral-mediated p53 gene transfer: review of INGN 201 studies. [J] Semin Oncol. 2001; 28(5 Suppl 16): 105-14.
    40. Du CH, Wu Z, Xu J. The combination of recombinant rAd-p53 and adriamycin for management of primary drug resistance in chemotherapy of lung squamous cell cancer. [J] Zhonghua Jie He He Hu Xi Za Zhi. 2006; 29(9) :622-4.
    41. Quist SR, Wang-Gohrke S, Kohler T et al. Cooperative effect of adenoviral p53 gene therapy and standard chemotherapy in ovarian cancer cells independent of the endogenous p53 status. [J] Cancer Gene Ther.2004; 11(8): 547-54.
    42. Bykov VJ, Issaeva N, Shilov A et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. [J] Nat Med. 2002; 8(3): 282-8.
    43. Salvesen GS, Duckett CS. IAP proteins: blocking the road to death's door. [J] Nat Rev Mol Cell Biol. 2002; 3(6): 401-10.
    44. Pei Z, Chu L, Zou W. An oncolytic adenoviral vector of Smac increases antitumor activity of TRAIL against HCC in human cells and in mice. [J] Hepatology 2004; 39(5): 1371-81.
    45. Fulda S, Wick W, Weller M et al. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. [J] Nat Med. 2002; 8(8): 808-15.
    46. Gautschi O, Zangemeister-Wittke U, Stahel RA. Comment on "A pilot trial of G3139, a bcl-2 antisense oligonucleotide, and paclitaxel in patients with chemorefractory small-cell lung cancer", by C. M. Rudin et al. (Ann Oncol 2002; 13: 539-545). [J] Ann Oncol. 2003; 14(1): 170.
    47. Vieira HL, Boya P, Cohen I et al. Cell permeable BH3-peptides overcome the cytoprotective effect of Bcl-2 and Bcl-X(L). [J] Oncogene. 2002 27; 1(13): 1963-77.
    48. Tzung SP, Kim KM, Basanez G et al. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3.Nat Cell Biol.[J] 2001; 3(2):183-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700