用户名: 密码: 验证码:
具有延时作用的基底膜主动耦合模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过研究耳蜗中基底膜运动对不同频率和强度分辨能力,讨论其中外毛细胞自身运动具有的时延效应。为了探索这个问题,我们假设外毛细胞受到听力系统上层传出神经的反馈调控,通过建立具有外毛细胞双向耦合作用的基底膜振动模型,考查加入外毛细胞时延效应后对模型仿真效果的影响,例如基底膜的频率选择性,非线性等特点。
     首先,在大量以往的对听力系统特别是耳蜗内毛细胞运动机制和效果的研究的基础上,根据中枢听觉系统的下行传导通路,也就是上橄榄复核的神经元对耳蜗毛细胞支配作用的认识,我们提出了支配外毛细胞的传出神经在外毛细胞电致运动(电刺激诱发细胞体长度改变)的过程中通过改变这一电致运动的速度,而起到听觉中枢对整个基底膜运动的反馈调控作用。其次,在具有外毛细胞双向耦合作用的基底膜振动模型上,加入外毛细胞电致运动的延时参数来进行建模仿真。通过仿真结果与实验数据进行对比,结果证明修正后的模型符合外毛细胞自身作用机制的生理特征,从一个新的角度诠释了外毛细胞运动对基底膜振动作用的贡献。
In this paper, the delay action of outer hair cells in its electromotility is discussed by investigating the frequency selectivity and intensity discrimination of basilar membrane vibration. To explor this question, we introduce a hypothesis that there is descending feedback of auditory efferent onto outer hair cells by proposing a novel cochlear amplifier model with delay action based on the cochlea's microanatomy, as well as outer hair cell (OHC) motility, to account for the cochlea's characteristic behavior such as the frequency selectivity and nolinear of basilar membrane.
     Firstly, based on the research of auditory system especially the outer hair cells motility, according the descending efferent, as the dominant role of superior olive complex on cochlear hair cells, we propese the feedback control of descending efferent on basilar membrane by changing the speed in the electromotility of OHC. Then, the delay action-based mathematical cochlear model produced responses that are comparable to physiological measurements. The results illustrate a novel understanding of the OHC contribution on basilar membrane's characteristic behavior.
引文
[1]梁之安.听觉感受和辨别的神经机制.1999.上海科技教育出版社
    [2]Bekesy G. von. "Experiments in hearing", McGraw-Hill, (1960).
    [3]Bekesy von G.:1957,'The Ear', Reprint from Scientific American 197(2),1-10.
    [4]Bekesy von G.:1961,'Concerning the Pleasures of Observing, and the Mechanics of the Inner Ear',in A. B. Soner (ed.), Les Prix Nobel en 1961, P. A. Norstedt, Stockholm, pp.184-208.
    [5]Bekesy, von G.:1974,'Some Biophysical Experiments from Fifty Years Ago', Reprint from Annual Review of Physiology 36,1-16.
    [6]R. G. Kessel and R. H. Kardon. Tissues and Organs:A Text-Atlas of Scanning Electron Microscopy. W. H. Freeman, New York,1979
    [7]Barany, E., A contribution to the physiology of bone conduction. Acta Otol.,1938. Suppl. 26
    [8]Bekesy, von G., Experiments in Hearing.1960, New York:John Wiley& Sons.
    [9]Brownell WE, Bader CR, Bertrand D, et al. Evoked mechanical responses of isolated cochlear outer hair cells. Science,1985,227:194-196
    [10]P. Dallos. Overview:Cochlear neurobiology. In P. Dallos, A. N. Popper, and R. R. Fay, editors, The Cochlea, Springer Handbook of Auditory Research. Springer-Verlag, New York,1996.
    [11]E. Kandel, J. Schwartz, and T. Jessell. Principles of Neural Science. Appleton & Lange, 2000.
    [12]Galambos R, Davis H. Action potentials from single auditory fibers. Science,1948.108: 513.
    [13]D. Purves. Neuroscience. Sinauer Associates.
    [14]Wever E G. Theory of hearing. Am. J. Psychol.1951,64:626—628
    [15]Rasmussen, G.L., The olivary peduncle and other fiber projections of the superior olivary comples. J Comp Neurol,1946.84:p.141-219
    [16]王坚,姜涛,曾凡钢.听觉科学概论.2005.中国科学技术出版社.P:301
    [17]Villa, A.E., et al., Corticofugal modulation of the information processing in the auditory thalamus of the cat. Exp Brain Res,1991.86(3):p.506—517
    [18]Desmedt, J. E. and K. Mechelse, Suppression of acoustic input by thalamic stimulation. Proc Soc Exp Biol (NY),1958.99:p.772-775
    [19]Sun, X. D., et al., Corticofugal influence on the responses of bat inferior collicular neurons to sound stimulation. Brain Res,1989.495(1):p,1-8
    [20]Jen, PH., Q.C. Chen, and X. D. Sun, Corticofugal regulation of auditory sensitivity in the bat inferior colliculus. J Comp Physiol [A],1998.183(6):p.131-134
    [21]Fex, J., Efferent inhibition in the cochlea related to hair-cell dc activity:study of postsynaptic activity of the crossed olivocochlear fibres in the cat. J Acoust Soc Am, 1967.41(3):p.666-675
    [22]Rajan, R., Electrical stimulation of the inferior colliculus at low rates protects the cochlea from auditory desensitization. Brain Res,1990.506(2):p.192-204
    [23]Xiao, Z. and N. Suga, Modulation of cochlear hair cells by the auditory cortex in the mustached bat. Nat Neurosci,2002.5(1):p.57-63
    [24]Hallin, R. G. and H. E. Torebjork, Electrically induced A and C fiber responses in intact human skin nerves. Exp Brain Res,1973.16(3):p.309-320
    [25]Fitzgerald, M. and C. J. Woolf, Effects of cutaneous nerve and intraspinal conditioning of C-fibre afferent terminal excitability in decerebrate spinal rats. J Physiol,1981.318:p. 25-39
    [26]Gifford, M. L. and J.J.Guinan, Jr., Effects of electrical stimulation of medial olivochlear neurons on ipsilateral and contralateral cochlear responses. Hear Res,1987.29(2-3):p. 179-194
    [27]Wiederhold, M.L. Variations in the effects of electric stimulation of the crossed olivocochlear bundle of cat single auditory nerve fiber responses to tone bursts. J Acoust Soc Am,1970.48:p.966-977
    [28]Wiederhold, M.L. and N.Y. Kiang, Effects of electric stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J Acoust Soc Am,1970. 48(4):p.950-965
    [29]Yan, J. and G. Ehret, Corticofugal modulation of midbrain sound processing in the house mouse. Eur J Neurosci,2002.16(1):p.119-128.
    [30]Brown, M. C., A.L. Nuttall, and R.I. Masta, Intracellular recordings from cochlear inner hair cells:Effects of stimulation of the crossed olivocochlear efferents.. Science,1983. 222:p.69-72
    [31]Murugasu, E. and I.J. Russell, The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J Neurosci,1996.16(1):p. 325-332
    [32]Russell, I.J. and E. Murugasu, Medial efferent inhibition suppresses basilar membrane responses to near characteristic frequency tones of moderate to high intensities. J Acoust Soc Am,1997.102(6):p.1734-1738
    [33]Dolan, D.F., M.H. Gou, and A.L. Nuttall, Frequency-dependent enhancement of basilar membrane velocity during olivocochlear bundle stimulation. J Acoust Soc Am,1997. 102(3):p.3587-3596
    [34]Cody, A.R. and B.M. Johnstone, Reduced temporary and permanent hearing losses with multiple tone exposures. Hear Res,1982,6(3):p.291-301
    [35]Xie, D.H. and O.W. Henson, Jr., Tonic efferent-induced cochlear damping in roosting and echolocating mustached bats. Hear Res,1998.124(1-2):p.60-68
    [36]Rajan, R., Centrifugal pathways protect hearing sensitivity at the cochlear in noisy environments that exacerbate the damage induced by loud sound. J Neurosci,2000. 20(17):p.6684-6693
    [37]Xiao, Z. and N. Suga, Modulation of cochlear hair cells by the auditory cortex in the mustached bat. Nat Neurosci,2002.5(1):p.57-63
    [38]Gold, T., Hearing. The physical basis of the action of the cochlear. Proc R Soc Lond B Biol Sci,1948.135:p.492-498
    [39]Rhode, W.S., Some observations on cochlear mechanics. J Acoust Soc Am,1978.64(1):p. 158-176
    [40]Kemp. D.T., Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am,1978.64:p.1386-1391
    [41]Neely, S.T. and D.O. Kim, An active cochlear model showing sharp tuning and high sensitivity. Hear Res,1983.9(2):p.123-130
    [42]Allen, J.B., Modeling of noise damaged cochlear, in The Mechanics and Biophysics of Hearing. P. Dallos, et al., Editors,1990, Springer-Verlag:Berlin, p.324-332.
    [43]Lyon R F, Mead C. An analog electronic cochlea [J]. Acoustics, Speech, and Signal Processing,1988,36(7):1119-1134
    [44]Patterson R D, Moore B C J. Auditory filters and excitation patterns as representations of frequency resolution [C]//Frequency selectivity in Hearing. London:Academic Press, 1986:123-177.
    [45]Johannesma P I M. The pre-response stimulus ensemble of neuron in the cochlea nucleus [C]//Proc of the Symposium on Hearing Theory. Eindhoven, Netherlands:IPO,1972: 58-69.
    [46]陈伟兵,周凌宏,肖中举《耳蜗基底膜振动模型的建立与应用》中国医学物理学杂志第24卷第3期,2007.
    [47]C. D. Geisler, "A cochlear model using feedback from motile outer hair cells," Hearing Research, vol.54, pp.105-117,1991.
    [48]S. T. Neely, "A model of cochlear mechanics with outer hair cell motility," J. Acoust. Soc. Am., vol.94, pp.137-146,1993.
    [49]P. J. Kolston, M. A. Vierever, E. de Boer, and R. J. Diependaal, "Realistic mechanical tuning in a micromechanical cochlear model," J. Acoust. Soc. Am., vol.72, pp. 1441-1449,1989.
    [50]Andrew Bell. Tuning the cochlea:wave-mediated positive feedback between cells. Biol Cybern (2007) 96:421-438
    [51]Bo Wen and Kwabena Boahen, "A Linear Cochlear Model with Active Bi-directional Coupling", Proceedings of the 25" Annual International Conference of the IEEE EMBS, Cancun, Mexico September 17-21,2003
    [52]谢鼎华.基础与应用听力学.2003.湖南科学技术出版社
    [53]W. S. Rhode. Observations of the vibration of the basilar membrane in squirrel monkeys using the M ossbauer technique. Journal of the Acoustical Society of America, 49:1218-1231,1971.
    [54]C. R. Steele. Behavior of basilar-membrane with pure-tone excitation. Journal ofthe Acoustical Society of America,55(1):148-162,1974.
    [55]M. Ulfendahl, S. M. Khanna, A. Fridberger, A. Flock, B. Flock, and W. Jger. Mechanical response characteristics of the hearing organ in the low-frequency regions of the cochlea. Journal of Neurophysiology,76(6):3850-3862,1996
    [56]K. E. Nilsen and J. Russell. The spatial and temporal representation of a tone on the Guinea pig basilar membrane. Proceedings of National Academic Society, 97(22):11751-11758,2000.
    [57]C. D. Geisler. From Sound to Synapse:Physiology of the Mammalian Ear. Oxford University Press, New York,1998.
    [58]G. von B'ek'esy. Experiments in Hearing. McGraw-Hill, New York,1960.
    [59]L. Robles and M. A. Ruggero. Mechanics of the mammalian cochlea. Physiological Reviews,81(3):1305-1352,2001.
    [60]B. M. Johnstone, R. Patuzzi, and G. K. Yates. Basilar-membrane measurements and the traveling wave. Hearing Research,22(1-3):147-153,1986.
    [61]K. Yamaguchi and H. Ohmori. Voltage-gated and chemically gated ionic channels in the cultured cochlear ganglion neurone of the chick. Journal of Physiology,420:185-206, 1990.
    [62]C. J. Kros. Physiology of mammalian cochlear hair cells. In P. Dallos, A. N. Popper, and R. R. Fay, editors, The Cochlea, Springer Handbook of Auditory Research. Springer-Verlag, New York,1996.
    [63]P. Dallos. The active cochlea. Journal of Neuroscience,12:4575-4585,1992.
    [64]W. E. Brownell. Observation on a motile response in isolated hair cells. In W. R. Webster and L. M. Aiken, editors, Mechanism of Hearing, pages 5-10. Monash University Press, Melbourne, Australia,1983
    [65]W. E. Brownell, C. R. Bader, D. Bertrand, and Y. De Ribaupierre. Evoked mechanical responses of isolated cochlear outer hair cells. Science,227:194-196,1985.
    [66]P. Dallos, D. Z. He, B. N. Evans, and B. Clark. Dynamic characteristics of outer hair cell motility. In H. Duifhuis, J. W. Horst, P. van Dijk, and S. M. van Netten, editors, Biophysics of Hair Cell Sensory Systems, pages 167-174. World Scientific, Singapore, 1993.
    [67]J. F. Ashmore. A fast motile response in Guinea-pig outer hair cells—the cellular basis of the cochlear amplifier. Journal of Physiology (London),388:323-347,1987.
    [68]D. C. Mountain and A. E. Hubbard. Rapid force production in the cochlea. Hearing Research,42(2-3):195-202,1989.
    [69]I. J. Russell and P. M. Sellick. Low-frequency characteristics of intracellularly recorded receptor potentials in Guinea-pig cochlear hair cells. Journal of Physiology (London), 338:179-206,1983.
    [70]P. Dallos and M. A. Cheatham. Nonlinearities in cochlear receptor potentials and their origins. Journal of the Acoustical Society of America,86(5):1790-1796,1989.
    [71]I. J. Russell, A. R. Cody, and G. P. Richardson. The responses of inner and outer hair cells in the basal turn of the Guinea-pig cochlea and in the mouse cochlea grown in vitro. Hearing Research,22:199-216,1986.
    [72]J. Santos-Sacchi. On the frequency limit and phase of outer hair cell motility:Effects of the membrane filter. Journal of Neuroscience,12:1906-1916,1992.
    [73]K. Lim and C. R. Steele. A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method. Hearing Research,170:190-205,2002.
    [74]L. Robles and M. A. Ruggero. Mechanics of the mammalian cochlea. Physiological Reviews,81(3):1305-1352,2001.
    [75]N. P. Cooper and W. S. Rhode. Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea. Journal of Neurophysiology, 78:261-270,1997.
    [76]A. L. Nuttal and D. F. Dolan. Two-tone suppression of inner hair cell and basilar membrane responses in the Guinea pig. Journal of the Acoustical Society of America, 93:393-400,1993.
    [77]M. A. Ruggero, N. C. Rich, S. S. Narayan, and L. Robles. Basilar membrane responses to tones at the base of the chinchilla cochlea. Journal of the Acoustical Society of America, 101(4):2151-2163,1997.
    [78]N. B. Slepecky. Structure of the mammalian cochlea. In P. Dallos, A. N. Popper, and R. R. Fay, editors, The Cochlea, Springer Handbook of Auditory Research. Springer-Verlag, New York.1996.
    [79]S. T. Neely and D. O. Kim. An active cochlear model showing sharp tuning and high sensitivity. Hearing Research,9(2):123-130,1983.
    [80]S. T. Neely and D. O. Kim. A model for active elements in cochlear biomechanics. Journal of the Acoustical Society of America,79(5):1472-1480,1986
    [81]R. S. Chadwick. What should be the goals of cochlear modeling? Journal of the Acoustical Society of America,102(5):3054,1997.
    [82]C. D. Geisler and C. Sang. A cochlear model using feed-forward outer-hair-cell forces. Hearing Research,86:132-146,1995.
    [83]T. Fukazawa. How can the cochlea amplifier be realized by the outer hair cells which have nothing to push against? Hearing Research,172(1):53-61,2002.
    [84]K. Lim and C. R. Steele. A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method. Hearing Research,170:190-205,2002.
    [85]E. de Boer. On equivalence of locally active models of the cochlea. Journal of the Acoustical Society of America,98:1400-1409,1995.
    [86]L. Voldrich. Mechanical properties of basilar membrane. Acta Otolaryngologica, 86(5-6):331-335,1978.
    [87]R. C. Naidu and D. C. Mountain. Longitudinal coupling in the basilar membrane. Journal of Association for Research in Otolaryngology,2(3):257-267,2001.
    [88]A. Hubbard. A traveling-wave amplifier of the cochlea. Science,259:68-71,1993.
    [89]T. S. A. Jaffer, H. Kunov, and W. Wong. A model cochlear partition involving longitudinal elasticity. Journal of the Acoustical Society of America,112(2):576-589,2002.
    [90]L. Voldrich. Experimental and topographical morphology in cochlear mechanics. In E. de Boer and M. A. Viergever, editors, Mechanics of Hearing. Delft University Press, Delft, Netherlands,1983.
    [91]K. M. Lim. Physical and Mathematical Cochlear Models. Ph.D. thesis, Stanford University, Stanford, California,2000.
    [92]K. D. Karavitaki and D. C. Mountain. Experimental evidence does not support feed-forward outer hair cell forces. In Association for Research in Otolaryngology MidWinter Meeting Abstracts,1999.
    [93]Y. Raphael, M. Lenoir, R. Wroblewski, and R. Pujol. The sensory epithelium and its innervation in the mole rat cochlea. Journal of Comparative Neurology,314:367-382, 1991.
    [94]P. Dallos. The active cochlea. Journal of Neuroscience,12:4575-4585,1992.
    [95]F. Kalinec and B. Kachar. Structure of the electromechanical transduction mechanism in mammalian outer hair cells. In A Flock, D. Ottoson, and M. Ulfendahl, editors, Active Hearing, pages 181-193. Pergamon, Kidlington, UK,1995.
    [96]F. Mammano and J. F. Ashmore. Reverse transduction measured in the isolatedcochlea by laser interferometry. Nature,365:838-841,1993.
    [97]Nadol J B, Burgess BJ. Supranuclear efferent synapses on out hair cells and Deiters'cells in the human organ Of Corti[J]. Hear Res,1994,81(1-2):49—56.
    [98]Cody A R, Johnstone B M. Acoustically evoked activity of single efferent neurons in the guinea pig cochlea[JJ. J Acoust Soc Am,1982,72(1):280-282.
    [99]Wangemann P, Takeuchi S. Maxi-K+channel in single isolated cochlear efferent nerve terminals[J]. Hear Res,1993,66(2):123-129.
    [100]L.Watts, "Cochlear Mechanics. Analysis and Analog VLSI." Pasadena:California Institute of Technology,1993.
    [101]S. T. Neely. Finite-difference solution of a two-dimensional mathematical model of the cochlea. Journal of the Acoustical Society of America,69(5):1386-1393,1981.
    [102]E. de Boer and E.Vanbienema. Solving cochlear mechanics problems with higher-order differential-equations. Journal of the Acoustical Society of America, 72(5):1427-1434,1982.
    [103]D. D. Greenwood. A cochlea frequency-position function for several species—29 years later. Journal of the Acoustical Society of America,87(6):2592-2605,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700