用户名: 密码: 验证码:
生化物质在纳微多孔材料上的吸附、催化及自组钙化行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料及相关技术的应用为当今生物医学、功能材料、能源科学等领域的研究提供了新的技术平台。纳米结构单元构筑的纳米材料在磁性、光电性质、化学活性、催化等方面均表现出常规材料所不具备的性能,目前纳米生物检测、仿生纳米材料合成、生物大分子(如酶,DNA)功能化纳米粒及纳微孔中生物分子受限反应等方面研究已成为研究的热点。本论文将纳米材料、膜制备技术、压电石英晶体传感及其它表面分析技术结合起来,研究了纳微多孔材料上胆红素及牛血清白蛋白吸附、尿素酶及葡萄糖氧化酶在纳微多孔材料上催化行为以及羟基磷灰石仿生钙化等过程,获得了纳微多孔材料上特殊的生化作用规律,对于发展纳米生化检测新技术、实现酶高效固载与催化、合成仿生矿化材料等具有重要意义。论文主要研究工作概括如下:
     一、人体中过量游离胆红素(BR)沉积到各种组织细胞膜上将引发BR代谢紊乱,导致多种疾病。本研究借助于石英晶体微天平(QCM)考察了模拟细胞膜(磷脂双层膜)上BR的沉积过程及影响因素,探讨其致病机理。着重探讨了BR在纳米TiO_2膜上的吸附与光催化降解行为,以期为BR引发疾病的治疗提供新思路。UV-vis和IR光谱研究证实了BR在纳米晶体TiO_2膜上的吸附,QCM测量结果表明溶液的pH、离子强度、浓度以及温度影响BR的吸附。BR的吸附量随着BR浓度的增加而增大;然而温度和离子强度的增加,BR吸附量却明显下降。pH的影响较为复杂,当pH在2-4范围内变动时,BR吸附量略有上升;然而当pH上升到4-8范围内时,吸附量随着pH增大快速增加;当pH大于8时,吸附量则出现下降趋势。UV光照下吸附BR的光催化降解研究表明TiO_2膜能再生并重复使用。目前,纳米TiO_2膜应用于去除BR仍处于实验阶段,实际应用有待进一步研究。
     二、基于溶胶凝胶分子印迹技术,以纳米TiO_2溶胶为基质印迹了牛血清白蛋白和尿素酶分子。石英晶体微天平研究表明纳米TiO_2印迹膜稳定性好,印迹分子在纳米TiO_2非印迹与印迹膜上的吸附分别符合Langmuir和Allosteric吸附模型;印迹分子在纳米TiO_2印迹膜上吸附量随溶液浓度和pH的增加而增大,然而随离子强度的增加而减小。钛丝基体表面修饰一层纳米TiO_2印迹膜,尿素酶固载后构建了一种廉价的、易于微型化的尿素生物传感器;电位响应测量表明该方法制备的尿素生物传感器稳定性好,对尿素检测响应速度快(25s)、线性范围宽(8μM-3 mM)。
     三、采用两步阳极氧化法制备了纳米多孔氧化铝膜,尿素酶固载于氧化铝纳米多孔膜中构筑了压电尿素生物传感器。借助ESPS/FIA传感体系监测酶反应,测量结果表明固载于多孔氧化铝中的酶具有高催化活性。纳米孔中尿素酶固载条件优化如下:2.0 mg/mL尿素溶液(pH 7.5,25℃),固载时间2.5 h,大尺寸氧化铝膜。研究发现戊二醛交联60 min后壳聚糖涂覆构建的压电尿素生物传感器用于尿素检测具有响应速度快(30 s)、低检测限(0.2μM)、宽线性范围(0.5μM-3mM)、高选择性(0.92-1.03)、良好重现性(S.D.=0.02,n=6)及长期贮存稳定性(贮存30天后,酶活性保留了76%)等优点。实际样品测量表明该传感器可用于尿样中尿素快速检测,在临床检验与环境监测等领域具有应用前景。
     四、单酶分子经由表面修饰和原位聚合制备了一种新的无机/有机聚合物网状结构包裹的磁性单酶纳米粒(SENs)。TEM、FTIR和XRD分析表明合成的SENs呈球形、多分散状,直径大约为50 nm,包裹酶的纳米壳由Fe_3O_4/聚(吡咯-N-丙烷基磺酸)复合物组成。电磁测量表明SENs的电导率为2.7×10~(-3)S.cm~(-1),具有超顺磁性,饱和磁强度为14.5 emu.g~(-1),矫顽力为60 Oe。与自由酶相比,包裹酶不仅活性显著增强,而且对溶液pH和温度变化、有机溶剂影响及长期贮存过程都具有良好的稳定性,在生物检测与传感、酶催化工程等领域有着潜在的应用前景。
     五、采用石英晶体微天平(QCM)技术现场研究了纳米TiO_2表面Cu(Ⅱ)、Hg(Ⅱ)的吸附与光化学还原过程。结果表明Cu(Ⅱ)的吸附过程符合准二级动力学反应,反应速率常数约为0.09 g·mmol~(-1)·min~(-1);Hg(Ⅱ)的吸附动力学过程可用准一级方程描述,吸附平衡常数约为3.9×10~5L.mol~(-1)。Cu(Ⅱ)、Hg(Ⅱ)的吸附量均受到溶液pH、浓度和共存阴离子的影响;在pH=4的溶液中,其饱和吸附量分别为1.5和0.85mmol.g~(-1)。UV光照下,Cu(Ⅱ)发生光还原反应,频率逐渐下降;然而光照初始阶段,TiO_2表面水光解产生的质子可使吸附的Hg(Ⅱ)发生脱附,且Hg(Ⅱ)浓度和pH越大,脱附现象越明显,随后Hg(Ⅱ)光还原沉积逐渐占主导地位,频率下降。此外,Cu(Ⅱ)、Hg(Ⅱ)的光还原沉积速率受溶液pH和有机物的影响,pH越高,光沉积速率越大,有机物的加入使光化学还原速率显著加快。
     六、基于Cu(Ⅱ)、Hg(Ⅱ)离子界面物理化学过程的研究,采用SEM、FTIR、XRD、EDX和QCM研究了模拟体液(SBF)中负电荷纳米TiO_2膜上羟基磷灰石矿化动态过程中成核、生长及结晶行为。结果发现羟基磷灰石的形成过程存在两个不同的阶段,在初始阶段,SBF溶液中的Ca~(2+)离子首先结合到负电荷的TiO_2膜表面;随后,在界面上形成的钛酯钙与PO_4~(3-)离子发生作用,并生成了羟基磷灰石核。成核之后,TiO_2膜不再作为成核的中心,初始阶段形成的羟基磷灰石变成了成核与成长的新中心,过饱和SBF溶液中的Ca~(2+)、PO_4~(3-)以及其它微量离子(CO_3~(2-)和Mg~(2+)等)自发沉积到初始阶段形成的羟基磷灰石层上,并最终生成了羟基磷灰石沉淀。根据QCM随时间的频率变化,求得了羟基磷灰石成核与成长的速率常数(K_1和K_2),结果发现对同样浓度的SBF溶液,K_1值高于K_2,说明成核阶段的反应速率高于成长阶段反应速率。
The application of nanomaterial and related technology provides a new platform for the development of current biomedicine, functional material, energy science, and so on. Compared with the bulk materials, nanostructured materials composed of nanostructure building blocks possess unique properties in many aspects, such as magnetism, photoelectricity, chemical activity, catalysis, and so on. At present, nanobiodetection, synthesis of biomineralized material, nanoparticles functionalized by biological macromolecules (i.e., enzyme and DNA) and restricted reaction of biomolecules in nanometer space are the hotspots of current research. In this thesis, piezoelectric quartz crystal sensing combined with nanomaterial, membrane preparation technology and other surface analysis techniques has been employed to study the adsorption of bilirubin and bovine serum albumin, catalysis of urease and glucose oxidase, and biomimetic calcification of apatite on nanoporous materials, and we aim to cognize the special laws of biochemical action on nanoporous materials. The present study is essential for the development of new biochemical measurement technology, realization of high efficiency enzyme immobilization and catalysis, synthesis of biomineralized material, and so on. The main work could be summarized as follows:
     1. Deposition and accumulation of extra free bilirubin(BR) in body tissues will initiate disorders in the metabolism of BR and cause various diseases. The deposition process and affecting factors of BR on mimic cell membranes (phospholipid bilayer) were first investigated using QCM to know its mechanism of causing illness, and then mainly studied the adsorpton and photochemical decomposition of BR at the nanometer TiO_2, the purpose of the work would explore new way to treat these dicreases caused by BR. The adsorption of BR at nanometer TiO_2 was verified with UV/vis and IR spectra. QCM measurements indicated that the amount of adsorbed BR increased with increasing BR concentration and decreased with increasing temperature and ionic strength. The effect of pH was complicated, the amount of BR adsorbed increased slightly in the pH range of 2-4, and then increased rapidly in the pH range of 4-8, finally decreased at pH > 8. The photodegradation of adsorbed BR at nanometer TiO_2 during UV illumination showed that the TiO_2 films could be regenerated and used repeatedly. At present, the removal of BR by naometer TiO_2 films is only referring to laboratory use, and not for practical use.
     2. The bovine serum albumin (BSA) and urease imprinted TiO_2 films were prepared via surface sol-gel process using nano-sized TiO_2 sol as imprinted matrix. QCM study indicated that the imprinted TiO_2 film possessed good stability, the adsorption behavior of imprinted molecules onto non-imprinted and imprinted TiO_2 films fitted into Langmuir and Allosteric model respectively. The adsorption amount of imprinted molecules onto imprinted film increased with the increasing concentration and pH, while decreased with the increase of ionic strength. By immobilizing urease to imprinted TiO_2 film modified at the surface of titanium silk, a cheap and miniaturized urea biosensor was developed. Potential measurements indicated that the obtained urea biosensor had a good stability, and exhibited shorter response time (25 s) and wider linear range (8μM-3 mM).
     3. A novel piezoelectric urea biosensor has been developed for urea determination, based on the immobilization of urease to nanoporous alumina membranes prepared by two-step anodization. The ESPS/FIA monitoring indicated that the enzymes immobilized into porous alumina possessed high activity. Factors affecting urease immobilization were discussed and the optimized immobilization conditions obtained were pH of 7.5, urease concentration of 2.0 mg/mL, temperature of 25℃, immobilization time of 2.5 hours and relatively big pore dimension. In addition, it was observed that the urea biosensor prepared by glutaraldehyde reticulation for 60 min and followed by chitosan coating exhibited shorter response time (30 s), lower detection limit (0.2μM), wider linear range (0.5μM-3 mM), high selectivity (0.92-1.03), better reproducibility (S.D. = 0.02, n = 6) and good long-term storage stability (with about 76% of the enzymatic activity retained after 30 days). The practical application of the urea biosensor not only demonstrated the feasibility of urea detection in urine sample, but also meant that a urea biosensor with low cost and anti-jamming was obtained in our study. Such sensors might be widely applied to medical and environmental fields in the future.
     4. Magnetic single-enzyme nanoparticles (SENs) encapsulated within a composite inorganic/organic polymer network were fabricated via the surface modification and in situ aqueous polymerization of separate enzyme molecule. The analyses of TEM, FTIR and XRD indicated that the synthesized SENs with about 50 nm in diameter were spherical in shape, quite polydisperse and the nanoshell entrapping enzyme was composed of Fe_3O_4/poly(pyrrole-N-propylsulfonic acid) composites. Electrical and magnetic measurements revealed that the magnetic SENs had a conductivity of 2.7×10~(-3)S.cm~(-1), and were superparamagnetic with a saturation magnetization of 14.5 emu.g~(-1) and a coercive force of 60 Oe. Compared with free enzyme, encapsulated enzyme exhibited a strong tolerance to the variation of solution pH and temperature, organic solvent and long-term storage, thus showing significantly enhanced enzyme performance and stability. The magnetic SENs with high activity and stability would find potential applications in many fields, such as biological detection and sensing, enzymatic catalysis and so on.
     5. The adsorption and photochemical reduction process of Cu(Ⅱ) and Hg(Ⅱ) at the surface of nanometer TiO_2 were investigated using in situ quartz crystal microbalance (QCM). It was found that the adsorption of Cu(Ⅱ) onto active sites of nanocrystalline fit the pseudo-second-order reaction reaction, and that the rate constant of the reaction was estimated about 0.09 g·mmol~(-1)·min~(-1); whereas the adsorption equilibrium constant of Hg(Ⅱ) was about 3.9×10~5 L.mol~(-1) based on the pseudo-first-order kinetic model. The adsorption amount of Cu(Ⅱ) and Hg(Ⅱ) depended on pH、concentration and coexisting anions, and the saturated amounts of adsorbed Cu(Ⅱ) and Hg(Ⅱ) were approximately 1.5 and 0.85 mmol·g~(-1) at pH 4, respectively. During UV illumination, the frequency of QCM decreased gradually, which meaned the photoreduction deposition of Cu(Ⅱ) from the solution; whereas as for Hg(Ⅱ), at the initial stage of UV illumination, the protons produced in photodegradative reactions of water could cause the desorption of adsorbed Hg(Ⅱ) from the surface of TiO_2, and the degree of desorption increased with the increase of both the concentration of Hg(Ⅱ) and pH value of solution, then the frequency decreased due to the strength of photochemical deposit reaction of Hg(Ⅱ). In addition, the photodeposition rates of Cu(Ⅱ) and Hg(Ⅱ) increased with increasing pH of solution, and the rate of photoreduction enhanced significantly in the presence of the organisms.
     6. Based on the study of physical and chemical process of Cu(Ⅱ), Hg(Ⅱ) ions at the interface, the nucleation, growth and crystal of apatite induced by negatively charged nanometer TiO_2 coatings soaked in simulated body fluid (SBF) were investigated using SEM, FTIR, XRD, EDX and QCM. Two different stages were clearly observed in the process of apatite formation, indicating two different kinetic processes. At the first stage, the calcium ions in SBF were initially attracted to the negatively charged TiO_2 surface, and then the calcium titanate formed at the interface combined with phosphate ions, consequently forming apatite nuclei. After the nucleation, the TiO_2 surface did not act as the center of nucleation, and the apatite formed at the first stage became the new center of nucleation and growth; the calcium ions, phosphate ions and other minor ions (i.e., CO_3~(2-) and Mg~(2+)) in supersaturated SBF deposited spontaneously on the original apatite coatings to form apatite precipitates. In terms of the in situ frequency shifts, the growth rate constants of apatite (K_1 and K_2) were estimated respectively at two different stages. It was found that the reaction rate at the first stage was obviously higher than that at the second stage.
引文
[1] Bruchez J M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescentbiological labels. Science, 1998, 281: 2013-2016
    
    [2] Lin V, Motesharei K, Dancil K, et al. A porous silicon-based opticalinterferometric biosensor. Science, 1997, 278(5339): 840-843
    
    [3] Lisa H, Stephanie A, Martyn C. Probing DNA duplex formation and DNA-druginteractions by the quartz crystal microbalance technique. Langmuir, 2001, 17:8300-8304
    
    [4] Fernando P, Amir L, Itamar W. Amplified microgravimetricquartz-crystal-microbalance assay of DNA using oligonucleotide-functionalliposomes or biotinylated liposomes. J. Am. Chem. Soc, 2000,122: 418-419
    
    [5] Wang Y, Herron N, Manler W, et al. Linear- and nonlinear-optical properties ofsemiconductor clusters. J. Opt. Soc. Am. B, 1989, 6: 808-813
    
    [6] Rosseti R, Ellison J L, Gibson J M, et al. Size efects in the excited electronic statesof small colloidal CdS crystallites. J. Chem. Phys., 1983, 80(9): 4464-4469
    
    [7] Anpo M, Shima T, Kodama S, et al. Photocatalytic hydrogenation of CH_3COHwith H_2O on small-particle TiO_2: size quantization effects and reactionintermediates. J. Phys. Chem., 1987, 91: 4305-4310
    
    [8]范崇政,肖建平,丁建伟.纳米TiO_2的制备与光催化反应研究进展.科学通 报,2001,46(4):256-273
    
    [9]皇林华.锑白在钛白生产中应用探讨.无机盐工业,1997,3:31-33
    
    [10]蒋子铎,刘安华.二氧化钛表面化学该性.现代化工,1991,5(5):14-18
    
    [11]张淑霞,李建保,张波.TiO_2表面无机包裹的研究进展.化学通报,2001, 64(2):71-74
    
    [12] Chen F, Xie Y D, Zhao J C, et al. Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation. Chemosphere, 2001, 44:1159-1168
    
    [13]毛立群,杨建军,李庆霖,等.多孔纳晶TiO_2薄膜光催化剂的研制及其催化 性能.催化学报,2003,24(7):553-557
    
    [14]赵晓兰,张鹏,徐瑞芬,等.纳米TiO_2对甲基橙的吸附及光催化降解.北京 化工大学学报,2003,30(6):10-13
    
    [15] Wahi R K, Yu W W, Liu Y P, et al. Photodegradation of Congo Red catalyzed by??nanosized TiO_2. J. Mol. Catal. A-Chem., 2005,242(1-2): 48-56
    
    [16] Mahmoodi N M, Arami M, Limaee N Y, et al. Nanophotocatalysis usingimmobilized titanium dioxide nanoparticle: Degradation and mineralization ofwater containing organic pollutant: Case study of Butachlor. Mater. Res.Bull., 2007, 42(5): 797-806
    
    [17] Liu S X, Qu Z P, Han X W, et al. A mechanism for enhanced photocatalytic activity of siliver-loaded titanium dioxide. Catal. Today, 2004, (93-95): 877-884
    
    [18]崔鹏,徐南平,时钧.光催化还原法制备载Ag光催化剂.高等化学工程学 报,2002,16(2):222-225
    
    [19] Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal., 2003, 216: 505-516
    
    [20]杨玉华,王九思.二氧化钛光催化降解有机物的研究进展.甘肃科学学报, 2004,16(3):36-39
    
    [21] Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. J. Photoch. Photobio. C, 2000,1(1): 1-21
    
    [22]贾国正,张林生,张显球.纳米TiO_2光催化降解有机污染物的研究与应用. 化学工程师,2007,138(3):43-45
    
    [23]司士辉,杨政鹏,刘波.光化学还原过程中纳米TiO_2表面Hg(Ⅱ)的吸附与脱 附.中国有色金属学报,2005,15(9):1465-1469
    
    [24]杨政鹏,司士辉.石英晶体微天平技术研究纳米TiO_2表面Cu(Ⅱ)吸附与光化 学还原过程.无机化学学报,2005,21(9):1402-1406
    
    [25]张汝冰,刘宏英,李凤生,等.纳米材料在催化领域的应用及研究进展.化 工新型材料,1999,27(5):3-5
    
    [26]友信.纳米技术将给传统产业带来创新前景.日用化学品科学,2000,1(23): 29
    
    [27] Heller A. Abstracts of the first international conference on TiO_2 photocatalytic pacification and treatment of water and air. London, Ontario, Canada, 1992, 17
    
    [28]赵文宽,方佑龄,董庆华.太阳能光催化降解水面石油的研究.武汉大学学 报,2000,2(46):133-136
    
    [29]赵文宽,覃榆森,方估龄,等.水面石油污染物的光催化降解.催化学报, 1999,20(3):368-372
    
    [30] Villanueva S F, Martfnez S S. TiO_2-assisted degradation of acid orange 7 textile dye under solar light. Sol. Energ. Mat. Sol. C, 2007, 91(15-16): 1492-1495
    
    [31] Yu B B, Zeng J B, Gong L F, et al. Investigation of the photocatalytic degradationof organochlorine pesticides on a nano-TiO2 coated film. Talanta, 2007, 72(5):1667-1674
    
    [32] Gunlazuardi J, Lindu W A. Photocatalytic degradation of pentachlorophenol inaqueous solution employing immobilized TiO_2 supported on titanium metal. J.Photoch. Photobio A, 2005,173(1): 51-55
    
    [33]王铎,陈建秋,苏燕.纳米二氧化钛光催化降解有机磷杀虫剂毒性的研究. 佛山陶瓷,2006,16(6):1-3
    
    [34] Baran W, Makowski A, Wardas W. The effect of UV radiation absorption ofcationic and anionic dye solutions on their photocatalytic degradation in thepresence TiO_2. Dyes Pigments, 2008, 76(1): 226-230
    
    [35] Chen S F, Cao G Y. Photocatalytic degradation of organophosphorus pesticidesusing floating photocatalyst TiO_2/SiO_2 beads by sunlight. Sol. Energ., 2005,79(1): 1-9
    
    [36]孙尚梅,康振晋,魏志仿.TiO_2膜太阳光催化氧化法处理毛纺染料废水.化 工环保,2000,20(1):11-14
    
    [37] Andronic L, Duta A. TiO_2 thin films for dyes photodegradation. Thin Solid Films, 2007, 515(16): 6294-6297
    
    [38]郑柳萍,叶金花,郑彦,等.改性TiO_2膜的制备及其光催化降解染料的研究. 福建师范大学学报(自然科学版),2007,23(1):61-64
    
    [39] Hasnat M A, Uddin M M, Samed A J F, et al. Adsorption and photocatalytic decolorization of a synthetic dye erythrosine on anatase TiO_2 and ZnO surfaces. J. Hazard. Mater., 2007, 147(1-2): 471-477
    
    [40]付宏祥,吕功煊,李树本.Cr(Ⅵ)离子在TiO_2表面的光催化还原机理研究.化 学物理学报,1999,12(1):112-116
    
    [41] Frank S N, Bard A J. Semiconductor electrodes.II.electrochemistry at n-type titanium dioxide electrodes in acetonitrile solutions. J. Am. Chem. Soc, 1975, 97(26): 7427-7433
    
    [42] Chiang K, Amal R, Tran T. Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Adv. Environ. Res., 2002, 6(4): 471-485
    
    [43]张峰,杨建军.TiO_2光催化剂的可见光敏化研究.催化学报,1999,20(3): 329-332
    
    [44] Serpone N, Texier I, Emeline AV, et al. Post-irradiation effect and reductive dechlorination of chlorophenols at oxygen-free TiO_2/water interfaces in the??presence of prominent hole scavengers. J. Photochem. Photobio. A, 2000, 136(3): 145-155
    
    [45]包春磊,符新,王江,等.锐钛矿型纳米二氧化钛的制备及其在抗菌材料中 的应用.热带农业科学,2003,23(6):68-74
    
    [46] Yao K S, Wang D Y, Ho W Y, et al. Photocatalytic bactericidal effect of TiO_2 thin film on plant pathogens. Surf. Coat. Tech., 2007, 201(15): 6886-6888
    
    [47] Kikuchi Y, Sunada K, Iyoda T, et al. Photocatalytic bactericidal effect of TiO_2 thin films: dynamic view of the active oxygen species responsible for the effect. J. Photoch. Photobio. A, 1997, 106:51-56
    
    [48]黄汉生编译.TiO_2光催化剂在涂料中的应用.化工新型材料,1999, 27(5):28-30
    
    [49] Dadjour M F, Ogino C, Matsumura S, et al. Kinetics of disinfection of Escherichia coli by catalytic ultrasonic irradiation with TiO_2. Biochem. Eng. J., 2005,25: 243-248
    
    [50]刘平,王心晨,付贤智.光催化自清洁陶瓷的制备及其特性.无机材料学报, 2000,15(1):88-92
    
    [51]李田,严煦世,黄伟星.固定膜光催化氧化反应器深度净化自来水研究.中 国给水排水,1996,12(3):7-12
    
    [52] Cai R, Hashimoto K, Itoh K, et al. Photokilling of malignant cells with ultra-fineTiO_2 powder. Bull. Chem. Soc. Jpn., 1991, 64:1268-1273
    
    [53] Cai R, Hashimoto K, Kubota Y, et al. Increment of photocatalytic killing ofcancer cells using T1O2 with the aid of superoxide dismutase. Chem. Lett., 1992,21:427-430
    
    [54] Cai R, Sakai H, Hashimoto K, et al. Phagocytosis of titanium dioxide particleschemically modified by hematoporphyrin. Denki Kagaku, 1992, 60:314-321
    
    [55] Sakai H, Baba R, Hashimoto K, et al. Selective killing of a single cancerous T24cell with TiO_2 semiconducting microelectrode under irradiation. Chem. Lett.,1995,24: 185-186
    
    [56] Cai R, Kubota Y, Shuin T, et al. Induction of cytotoxicity by photoexcited TiO_2particles. Cancer Res., 1992, 52: 2346-2348
    
    [57]许秀艳,付国柱,等.纳米TiO_2在涂料中的应用.全面腐蚀控制,2001,15(2): 8-11
    
    [58]祖庸,雷闰盈,俞行.新型防晒剂-纳米二氧化钛.化工新型材料,1998,6: 26-30
    
    [59]于向阳,程继健,杜永娟.二氧化钛光催化材料.化工世界,2000,41(11): 567-570
    
    [60]曹珍元.纳米材料的化工应用与开发.化工新型材料,2000,28(11):3-5
    
    [61] Miyauchi M, Kieda N, Hishita S, et al. Reversible wettability control of TiO_2surface by light irradiation. Surf. Sci., 2002, 511(7): 401-407
    
    [62] Sirghi L, Aoki T, Hatanaka Y. Hydrophilicity of TiO_2 thin films obtained byradio frequency magnetron sputtering deposition. Thin Solid Films, 2004, 422(13): 55-61
    
    [63] Zheng S K, Xiang G, Wang T M, et al. Photocatalytic activity studies of TiO_2thin films prepared by R. F. magnetron reactive sputtering. Vacuum, 2004, 72(8):79-84
    
    [64]饶志明,谢静宜,刘林洁,等.基于TiO_2-Y_2O_3粉体催化发光甲醇气体传感器 的研究.化学学报,2007,65(6):532-536
    
    [65]韩相春,白海莹,关强,等.二氧化钛光催化材料降解汽车尾气的测试系统 设计.东北林业大学学报,2005,33(5):89-91
    
    [66] Anukunprasert T, Saiwan C, Traversa E. The development of gas sensor forcarbon monoxide monitoring using nanostructure of Nb-TiO_2. Science andTechnology of Advanced Materials, 2005, 6(3-4): 359-363
    
    [67] Garzella C, Comini E, Tempesti E, et al. TiO_2 thin films by a novel sol-gelprocessing for gas sensor applications. Sensor. Actuat. B-Chem, 2000, 68(1-3):189-196
    
    [68] Hyun S K, Moon W T, Jun Y K, et al. High H_2 sensing performance in hydrogentrititanate-derived TiO_2. Sensor. Actuat. B-Chem, 2006, 120(1): 63-68
    
    [69]任刚,陈皓明.多孔型阳极氧化铝在纳米结构制备方面的研究和进展.材料 导报,2002,16(10):45-48
    
    [70] Eckert K L, Mathey M, Mayer J, et al. Preparation and in vivo testing of porousalumina ceramics for cell carrier applications. Biomaterials, 2000,21(1): 63-69
    
    [71] Khan H R, Petrikowski K. Magnetic and structural properties of theelectrochemically deposited arrays of Co and CoFe nanowires. J. Magn. Magn.Mater., 2002, 249(3): 458-461
    
    [72] Wang X W, Fei G T, Tong P, et al. Structural control and magnetic properties ofelectrodeposited Co nanowires. J. Cryst. Growth, 2007, 300(2): 421-425
    
    [73] Ross C A, Hwang M, Shima M, et al. Magnetic properties of arrays ofelectrodeposited nanowires. J. Magn. Magn. Mater., 2002, 249(1-2): 200-207
    
    [74] Daimon H, Kurobe Y. Size reduction of PtRu catalyst particle deposited on carbon support by addition of non-metallic elements. Catal. Today, 2006, 111(3-4): 182-187
    
    [75]王成伟,彭勇,潘善林,等.α-Fe纳米线阵列膜磁各向异性的穆斯堡尔谱研 究.物理学报,1999,48(11):2146-2150
    
    [76]于冬亮,杨绍光,都有为.Co纳米孔洞模板的制备和磁性.物理学报,2002, 51(8):1784-1787
    
    [77]于冬亮,都有为.NiFe_2O_4纳米线阵列的制备与磁性.物理学报,2005,54(2): 930-934
    
    [78]于冬亮,都有为.CoFe_2O_4纳米线阵列的制备与磁性.功能材料,2006,37(8): 1210-1212
    
    [79] Routkevitch D, Bigioni T, Moskovits M, et al. Electrochemical fabrication ofCdS nanowire arrays in porous anodic aluminum oxide templates. J. Phys.Chem., 1996,100(33): 14037-14047
    
    [80] Li Y, Meng G W, Zhang L D, et al. Ordered semiconductor ZnO nanowire arraysand their photoluminescence properties. Appl. Phys. Lett., 2000, 76(15):2011-2013
    
    [81]李梦轲,王成伟,力虎林.用模板法制备取向Si纳米线阵列.科学通报, 2001,46(14):1 172-1175
    
    [82] Sochinskiin N V, Abellan M, Gonzalez M M, et al. Vapour growth of Cd(Zn)Tecolumnar nanopixels into porous alumina. Nucl. Instrum. Meth. A, 2006, 568(1):455-458
    
    [83] Li M K, Wang C W, Li H L. Synthesis of ordered Si nanowire arrays in porousanodic aluminum oxide templates. Chinese Sci. Bull., 2001, 46(21): 1793-1796
    
    [84] Foss C A, Martin C R. Template-synthesized nanoscopic gold particles: opticalspectra and the effects of particle size and shape. J. Phys. Chem., 1994, 98:2963-2971
    
    [85] Sandrock M L, Foss C A. Synthesis and linear optical properties of nanoscopicgold particle pair structures. J. Phys. Chem. B, 1999, 103: 11398-11406
    
    [86] Basu S, Chatterjee S, Saha M, et al. Study of electrical characteristics of porousalumina sensors for detection of low moisture in gases. Sensor. Actuat.B-Chem., 2001, 79(2-3): 182-186
    
    [87] Perez G P, Crooks R M. Pore-bridging poly(dimethylsiloxane) membranes asselective interfaces for vapor-phase chemical sensing. Anal.Chem., 2004, 76:??4137-4142
    
    [88] Lv Y, Zhang S C, Liu G H, et al. Development of a detector for liquidchromatography based on aerosol chemiluminescence on porous alumina. Anal.Chem., 2005, 77(5): 1518-1525
    
    [89] Parthasarathy R V, Martin C R. Synthesis of polymeric microcapsule arrays andtheir use for enzyme immobilization. Nature, 1994, 369(6478): 298-301
    
    [90] Darder M, Aranda P, Hernandez-Velez M, et al. Encapsulation of enzymes inalumina membranes of controlled pore size. Thin Solid Films, 2006, 495:321-326
    
    [91]姚守拙.压电化学与生物传感器.长沙:湖南师范大学出版社,1998
    
    [92] Sauerbrey G. The use of quartz oscillators for weighting thin layers and formicroweighting. Z Physic, 1959, 155: 206 -222
    
    [93] Schneider O, Bund A, Ispas A, et al. An EQCM study of theelectropolymerization of benzene in an ionic liquid and ion exchangecharacteristics of the resulting polymer film. J. Phys. Chem. B, 2005, 109(15):7159-7168
    
    [94] Rickert J, Brecht A, Gopel W. QCM operation in liquids: constant sensitivityduring formation of extended protein multilayers by affinity. Anal. Chem., 1997,69(7): 1441-1448
    
    [95] Ha T H, Kim S, Lim G, et al. Influence of liquid medium and surfacemorphology on the response of QCM during immobilization and hybridization ofshort oligonucleotides. Biosens. Bioelectron., 2004, 20(2): 378-389
    
    [96] Hayden O, Dickert F L. Selective microorganism detection with cell surfaceimprinted polymers. Adv. Mater., 2001, 13: 1480-1483
    
    [97] Bund A, Schwitzgebel G. Viscoelastic properties of low-viscosity liquids studiedwith thickness- shear mode resonators. Anal. Chem., 1998, 70: 2584-2588
    
    [98] Kanazawa K K, Gordon J G. The oscillation frequency of a quartz resonator incontact with liquid. Anal. Chim. Acta, 1985, 175:99-105
    
    [99] Martin S J, Granstaff V E, Frye G C. Characterization of a quartz crystalmicrobalance with simultaneous mass and liquid loading. Anal. Chem., 1991,63(20): 2272-2281
    
    [100] Yao S Z, Zhou T A. Dependence of the oscillation frequency of a piezoelectric crystal on the physical parameters of liquids. Anal. Chim. Acta, 1988, 212: 61-72
    [101] Burgess J D, Hawkridge F M. Octadecyl mercaptan sub-monolayers on silver electrodeposited on gold quartz crystal microbalance electrodes. Langmuir, 1997, 13(14): 3781-3786
    [102] Hwang B J, Shieh D T, Chieh W C, et al. Electropolymerization of pyrrole and 4-(3-Pyrrolyl)butane-sulfonate on Pt substrate: An in situ EQCM study. Thin Solid Films, 1997,301(1-2): 175-182
    [103] Tatsuma T, Ozaki M, Oyama N. Electrochemically induced mass transfer and rheological changes of Nafion coatings fully loaded with [Os(bpy)_3]~(2+). J. Electroanal. Chem., 1999,469(1): 34-42
    [104] Buttry D A, Ward M D. Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev., 1992, 92(6): 1355-1379
    [105] García-Jare(n|~)o J J, Gabrielli C, Perrot H. Validation of the mass response of a quartz crystal microbalance coated with Prussian Blue film for ac electrogravimetry. Electrochem. Commun., 2000,2(3): 195-200
    [106] Chen Z Y, Zakipour S, Persson D, et al. Combined effects of gaseous pollutants and sodium chloride particles on the atmospheric corrosion of copper. Corrosion, 2005, 61(11): 1022-1034
    [107] Seo M, Ishikawa Y, Kodaira M, et al. Cathodic reduction of the duplex oxide films formed on copper in air with high relative humidity at 60 degrees C. Corros. Sci., 2005,47(8): 2079-2090
    [108] Itoh J, Sasaki T, Ishikawa S T. In situ simultaneous measurement with ir-ras and qcm for investigation of corrosion of copper in a gaseous environment. Corros. Sci., 1997,39(1): 193-197
    [109] Zucchi F, Fonsati M, Trabanelli G, et al. Corrosion and corrosion inhibition of nickel in HClO_4 solutions using the EQCM technique. J. App. Electrochem., 1999, 29(3): 347-353
    [110] Schmutz P, Landolt D. In-situ microgravimetric studies of passive alloys: potential sweep and potential step experiments with Fe-25Cr and Fe-17Cr-33Mo in acid and alkaline solution. Corros. Sci., 1999, 41(11): 2143-2163
    [111] Sz(o|¨)cs E, Vastag G, Shaban A, et al. Electrochemical behaviour of an inhibitor film formed on copper surface. Corros. Sci., 2005, 47(4): 893-908
    [112] Zhang Y Y, Fung Y S, Sun H, et al. Study of protein adsorption on polymer??coatings surface by combining quartz crystal microbalance with electrochemical impedance methods. Sensor. Actuat. B- Chem., 2005, 108(1-2): 933-942
    
    [113] Lin T Y, Hu C H, Chou T C. Determination of albumin concentration by MIP-QCM sensor. Biosens. Bioelectron., 2004,20(1): 75-81
    
    [114]王存嫦,王桦,吴朝阳,等.纳米金自组装膜的IgM压电免疫传感器的研究. 化学学报,2003,61(4):608-613
    
    [115] Li J, He X, Wu Z, et al. Piezoelectric immunosensor based on magneticnanoparticles with simple immobilization procedures. Anal. Chim. Acta, 2003,48: 191-198.
    
    [116] Tajima I, Asami O, Sugiura E. Monitor of antibodies saliva using apiezoelectric quartz crystal biosensor. Anal.Chim.Acta, 1999, 365: 147-149
    
    [117] Cheng T J, Lin T M, Wu T H, et al. Determination of heparin levels in bloodwith activated partial thromboplastin time by a piezoelectric quartz crystalsensor. Anal. Chim. Acta, 2001,432: 101-111
    
    [118] Suri C R, Jain P K. Development of piezoelectric crystal based microgravimetric immunoassay for determination of insulin concentration. Biotechnol, 1995, 39(1): 27-32
    
    [119]刘栗加,胡继明,裴仁军,等.压电免疫传感器用于B因子的测定.高等学 校化学学报,1999,20(6):887-889
    
    [120] Alfonta L, Winner I, Throckmorton D J, et al. Electrochemical and quartzcrystal microbalance detection of the cholera toxin employing horseradishperoxidase and GM1-functionalized liposomes. Anal. Chem., 2001, 73:5287-5295
    
    [121] Harteveld J, Nieuwenhuizen M S, Wils E R G. Detection of staphylococcalenterotoxin employing a piezoelectric crystal immunosensor. Biosensor.Bioelectron., 1997,12(7): 661-665
    
    [122] Uttenthaler E, Olinger C K, Drost S. Quartz crystal biosensorfor detection of theAfrican Swine Fever disease. Anal. Chim. Acta, 1998, 362: 91-100
    
    [123] Konig B, Gratzel M. A novel immunosensor for herpes viruses. Anal. Chem.,1994,66:341-344
    
    [124] Sung J H, Ko H J, Park T H. Piezoelectric biosensor using olfactory receptorprotein expressed in Escherichia coli. Biosensors Bioelectron., 2006, 21(10): 1981-1986
    
    [125] Deng L, He F J, Jiang T J, et al. A goat-anti-human IgG modified piezoimmunosensor for Staphylococcus aureus detection. J. Microb. Technol., 1995,23:229-234
    [126] Wu V C H, Chen S H, Lin C S. Real-time detection of Escherichia coli O157:H7 sequences using a circulating-flow system of quartz crystal microbalance. Biosens. Bioelectron., 2007,22(12): 2967-2975
    [127] Su X L, Li Y B. A QCM immunosensor for Salmonella detection with simultaneous measurements of resonant frequency and motional resistance. Biosens. Bioelectron., 2005,21(6): 840-848
    
    [128] Zhang J, Wei W, Mao Y, et al. Monitoring of bio-oxidation process of ferrous ion by using piezoelectric impedance analysis. Curr. Microbiol., 2001, 43: 83-88
    
    [129] Wu Y, Xie Q J, Zhou A H, et al. Detection and analysis of bacillus growth with piezoelectric quartz crystal impedance based on starch hydrolysis. Anal. Biochem., 2000, 285: 50-54
    
    [130] Bao L L, Su X L, Yao S Z, et al. Protein denaturation piezoelectric frequency shift method for determination of microorganism. Microchem. J., 1999, 62: 291-296
    
    [131] Yamaguchi S, Shimomura T, Tatsuma T, et al. Adsorption, immobilization, and hybridization of DNA studied by the use of quartz crystal oscillators. Anal. Chem., 1993,65:1925-1927
    
    [132] Lvov Y, Ariga K, Ichinosel, et al. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J. Am. Chem. Soc, 1995, 117: 6117-6123
    
    [133] Murray B S, Cros L. Adsorption of beta-lactoglobulin to metal-surfaces and their removol by a nonionic surfactant as monitored via a quartz-crystal microbalance. Colloids Surf. B:Biointerfaces, 1998, 10: 227-241
    [134] Ebato H, Gentry C A, Herron J N, et al. Investigation of specific binding of antifluorescyl antibody and Fab to fluorescein lipids in Langmuir-Blodgett deposited Films using quartz crystal microbalance methodology. Anal. Chem., 1994, 66: 1683-1689
    [135] Tian L, Wei W, Mao Y. Kinetic studies of the interaction between antitumor antibiotics and DNA using quartz crystal microbalance. Clin. Biochem., 2004, 37: 120-127
    [136] Yokoyama K J, Ikebukuro K, Tamiya E. Highly sensitive quartz crystal immunosensors for multisample detection of herbicides. Anal. Chim. Acta, 1995, 304(2): 139-145
    [137] Steegborn C, Skladal P. Construction and characterization of the direct piezoelectric immunosensor for atrazine operating in solution. Biosens. Bioelectron., 1997,12(1):19-27
    [138] Horacek J, Petr Skladal. Improved direct piezoelectric biosensors operating in liquid solution for the competitive label-free immunoassay of 2,4-dichlorophenoxyacetic acid. Anal. Chim. Acta, 1997, 347(1-2): 43-50
    [139] Plomer M, Guilbault G G, Hock B. Development of a piezoelectric immunosensor for the detection of enterobacteria. Enzyme Microb. Tech., 1999, 14(3): 230-235
    [140] Ostrow J D. Bile Pigments and Jaundice. Metabolic and Medical Aspects. New York: Marcel Dekker Press, 1986
    [141] Avramescu M E, Sager W F C, Borneman Z, et al. Adsorptive membranes for bilirubin removal. J. Chromatogr. B, 2004, 803: 215-223
    [142] Wang X, Chowdhury J R, Chowdhury N R. Bilirubin metabolism: Applied physiology. Current Paediatrics, 2006,16: 70-74
    [143] Andreu Y, Ostra M, Ubide C, et al. Study of a fluorometric-enzymatic method for bilirubin based on chemically modified bilirubin-oxidase and multivariate calibration. Talanta, 2002, 57: 343-353
    [144] Wu G M, Brown G R. Adsorption of bilirubin by amine-containing polyacrylamide resins. React. Polym., 1991, 14: 49-61
    [145] Huggins M T, Lightner D A. A C-H…O=C hydrogen bond? Intramolecular hydrogen bonding in a novel semirubin. J. Org. Chem., 2001, 66: 8402-8410
    [146] Khan M M, Tayyab S. Understanding the role of internal lysine residues of serum albumins in conformational stability and bilirubin binding. Biochim. Biophys. Acta, 2001,1545: 263-277
    [147] Steven M S. Bilirubin toxicity in the developing nervous system. Pediatr Neurol, 2003, 29: 410-421
    [148] Kaplan M, Hammerman C. Understanding severe hyperbilirubinemia and preventing kernicterus: Adjuncts in the interpretation of neonatal serum bilirubin. Clin. Chim. Acta, 2005, 356: 9-21
    [149] Sackmann E. Supported membranes: scientific and practical applications. Science, 1996,271:43-48
    [150] Reviakine I, Bergsma-Schutter W, Brisson A. Growth of protein 2-D crystals on supported planar lipid bilayers imaged in situ by AFM. J. Struct. Biol., 1998, 121:356-361
    [151] Nunalee F N, Shull K R, Lee B P, et al. Quartz crystal microbalance studies of polymer gels and solutions in liquid environments. Anal. Chem., 2006, 78: 1158-1166
    [152] Adányi N, Váradi M, Kim N, et al. Development of new immunosensors for determination of contaminants in food. Curr. Appl. Phys., 2006, 6: 279-286
    [153] Nomura T, Yanagihara T, Mitsui T. Electrode-separated piezoelectric quartz crystal and its application as a detector for liquid chromatography. Anal. Chim. Acta, 1991,248: 329-335
    [154] Johan J R S, Per M C, Torbj(o|¨)rn W. Adsorption of liposomes and emulsions studied with a quartz crystal microbalance. Adva. Colloid Interface Sci., 2001, 89-90: 383-394
    [155] Bonnett R, Davis J E, Hurstyouse M B. Structure of bilirubin. Nature, 1976, 262(5566): 327-328
    [156] Chapman D. Biomembranes and new hemocompatible materials. Langmuir, 1993,9:39-45
    [157] McDonagh A F, Phimister A, Boiadjiev S E, et al. Dissociation constants of carboxylic acids by ~(13)C-NMR in DMSO/water. Tetrahedron Lett., 1999, 40: 8515-8518
    [158] Boiadjiev S E, Watters K, Wolf S, et al. pK_a and aggregation of bilirubin: titrimetric and ultracentrifugation studies on water-soluble pegylated conjugates of bilirubin and fatty acids. Biochem., 2004,43: 15617-15632
    [159] Desseyn H O, Clou K, Keuleers R, et al. The effect of pressure and temperature on the vibrational spectra of different hydrogen bonded systems. Spectrochim. Acta Part A, 2001, 57: 231-246
    [160] Kaposi A D, Fidy J, Manas E S, et al. Horseradish peroxidase monitored by infrared spectroscopy: effect of temperature, substrate and calcium. Biochim. Biophys. Acta, 1999, 1435(1-2): 41-50
    [161] Xia B L, Zhang G L, Zhang F B. Bilirubin removal by Cibacron Blue F3GA attached nylon-based hydrophilic affinity membrane. J. Menbr. Sci., 2003, 226: 9-20
    [162] Glasm(a|¨)star K, Larsson C, H(o|¨)(o|¨)k F, et al. Protein adsorption on supported phospholipid bilayers. J. Colloid Interf. Sci., 2002, 246: 40-47
    [163] Sri R A, Das P K, Balaram P. Binding constant measurement by hyper-rayleigh scattering: bilirubin-human serum albumin binding as a case study. J. Phys. Chem. B, 2005,109: 5950-5953
    [164] Vreman H J, Wong R J, Stevenson D K. Phototherapy: Current methods and future directions. Semin. Perinatol., 2004, 28: 326-333
    [165] Lindblom N, H(a|¨)t(o|¨)nen T, Laakso M L, et al. Bright light exposure of a large skin area does not affect melatonin or bilirubin levels in humans. Biol. Psychiatry, 2000,48: 1098-1104
    [166] Morishita K, Yokoyama H, Inoue S, et al. Selective visceral and renal perfusion in thoracoabdominal aneurysm repair. Eur. J. Cardio-thorac, 1999, 15(4): 502-507
    [167] Sideman S, Mor L, Mihich M, et al. Resin hemoperfusion for unconjugated bilirubin removal. Contrib. Nephrol, 1982,29: 90-100
    [168] Bihari D, Hugher R D, Gimson A E S, et al. Effects of serial resin hemoperfusion in fulminant hepatic failure. Int. J. Artif. Organs, 1983, 6(6): 299-302
    [169] Xu C X, Tang X J, Niu Z, et al. Studies of adsorbents for hemoperfusion in artificial liver support. I. Preparation and in vitro studies of cross-linked agarose beads entrapped activated charcoal (CAAC). Int. J. Artif. Organs, 1981, 4(4): 200-204
    [170] Fu G G, Li H Y, Yu H F, et al. Synthesis and lipoprotein sorption properties of porous chitosan beads grafted with poly (acrylic acid). React. Funct. Polym., 2006, 66(2): 239-246
    [171] Liu J X, Yang D Z, Shi F, et al. Sol-gel deposited TiO_2 film on NiTi surgical alloy for biocompatibility improvement. Thin Solid Films, 2003, 429: 225-230
    [172] Topoglidis E, Campbell C J, Cass A E G, et al. Factors that affect protein adsorption on nanostructured titania films. A novel spectroelectrochemical application to sensing. Langmuir, 2001, 17(25): 7899-7906
    [173] Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO_2 surface: principles mechanisms and selected results. Chem. Rev., 1995, 95(3): 735-758
    [174] Ma S Z, Liao F H, Xu M Y, et al. Effect of microstructure, grain size, and rare earth doping on the electro heological performance of nanosized particle materials. J. Mater. Chem., 2003,13(12): 3096-3102
    [175] Chang H, Tsung T T, Chen L C, et al. TiO_2 nanoparticle suspension preparation using ultrasonic vibration-assisted arc-submerged nanoparticle synthesis system (ASNSS). Mater. Trans., 2004,45(3): 806-811
    [176] Topoglidis E, Lutz T, Willis R L, et al. Protein adsorption on nanoporous TiO_2 films: a novel approach to studying photoinduced protein/electrode transfer reactions. Faraday Discuss, 2000,116: 35-46
    [177] Zhang L, Jin G. Bilirubin removal from human plasma by Cibacron Blue F3GA using immobilized microporous affinity membranous capillary method. J. Chromatogr. B, 2005, 821: 112-121
    [178] Shi W, Zhang F B, Zhang G L. Adsorption of bilirubin with polylysine carrying chitosan-coated nylon affinity membranes. J. Chromatogr. B, 2005, 819: 301-306
    [179] Zilberman G, Tsionsky V, Gileadi E. Solvent structure at the metal/solution interface and the response of the EQCM. Electrochim. Acta, 2000, 45: 3473-3482
    [180] Daikhin L, Gileadi E, Tsionsky V, et al. Slippage at adsorbate-electrolyte interface. Response of electrochemical quartz crystal microbalance to adsorption. Electrochim. Acta, 2000,45: 3615-3621
    [181] Si S H, Huang K L, Wang X G, et al. Investigation of photoelectrochemical oxidation of Fe~(2+) ions on porous nanocrystalline TiO_2 electrodes using electrochemical quartz crystal microbalance. Thin Solid Films, 2002, 422: 205-210
    [182] McDonagh A F, Phimister A, Boiadjiev S E, et al. Dissociation constants of carboxylic acids by ~(13)C-NMR in DMSO/water. Tetrahedron Lett., 1999, 40: 8515-8518
    [183] Diebold U. Structure and properties of TiO_2 surfaces: a brief review. Appl. Phys. A-Mater., 2003, 76(5): 681-687
    [184] Broderson R. In: J.D. Ostrow (Ed.), Bile Pigments and Jaundice: Molecular, Metabolic and Medical Aspects, part VI. New York: Dekker Press, 1987
    [185] Shi W, Zhang F B, Zhang G L, et al. Adsorption of bilirubin on poly-L-lysine-containing nylon membranes: applications in affinity chromatography. Polym. Int., 2005, 54(5): 790-795
    [186] Haupt K, Mosbach K. Molecularly imprinted polymer and their use in biomimetic sensors. Chem. Rev., 2000, 100: 2495-2504
    
    [187] Whitcombe M J, Vulfson E N. Imprinted polymers. Adv. Mater., 2001, 13:467-478
    
    [188] Zhang L Y, Cheng G X, Fu C. Synthesis and characteristics of tyrosineimprinted beads via suspension polymerization. React. Funct. Polym., 2003,56: 167-173
    
    [189] Say R, Birlik E, Ersoz A, et al. Preconcentration of copper on ion-selectiveimprinted polymer microbeads. Anal. Chim. Acta., 2003,480: 251-258
    
    [190] Bossi A, Piletsky S A, Piletska E V. Surface-grafted molecularly imprintedpolymers for protein recognition. Anal. Chem., 2001, 73: 5281-5286
    
    [191] Lu Y K, Yan X P. An imprinted organic-inorganic hybrid sorbent for selectiveseparation of cadmium from aqueous solution. Anal. Chem., 2004, 76:453-457
    
    [192] Kunitake T, Lee S W. Molecular imprinting in ultrathin titania gel films viasurface sol-gel process. Anal. Chim. Acta., 2004, 504: 1-6
    
    [193] Lee S W, Yang D H, Kunitake T. Regioselective imprinting of anthracenecarboxylic acids onto TiO_2 gel ultrathin films: an approach to thin film sensor. Sens. Actuators B, 2005, 104: 35-42
    
    [194] Lahav M, Kharitonow A B, Katz O, et al. Tailored chemosensors forchloromatic acids using molecular imprinted TiO_2 thin films on ion-sensitivefield-effect transistors. Anal. Chem., 2001, 73: 720-723
    
    [195] Lu J R, Su T J, Thomas R K, et al. Binding of sodium dodecyl sulfate tobovine serum albumin layers adsorbed at the silica-water interface. Langmuir,1998, 14: 6261-6268
    
    [196] Cao J L, Leng W H, Zhang J Q, et al. Adsorption behavior and photooxidationkinetics of OH~- at TiO_2thin film electrodes. Acta Phys. Chim. Sin., 2004, 20:735-739
    
    [197] Syu M J, Nian U M. An allosteric model for the binding of bilirubin to thebilirubin imprinted poly(methacrylic acid-co-ethylene glycol dimethylacrylate).Anal. Chim. Acta., 2005, 539: 97-106
    
    [198] Glacomelli C E, Avena M J, de Pauli C P. Adsorption of bovine serum albuminonto TiO_2 particles. J Colloid Interf. Sci., 1997, 188: 387-395
    
    [199]郭天瑛,夏永清,郝广杰,等.蛋白质分子印迹技术的研究进展.化工进 展,2003,22:713-716
    
    [200]李彦锋,李军荣,伏莲娣.固定化酶的制备及应用.高分子通报,2001,(2):??13-17
    
    [201]何永红,高志贤.分子印迹仿生传感器的研究进展.分析化学评述与进展, 2004,32:1407-1412
    
    [202]刘志航,宦双燕,蒋国平.基于分子印迹的电化学传感器研究进展.化学 传感器,2005,25:1-8
    
    [203]吴灵,谭怡光,钟科军,等.绿原酸分子印记聚合物压电模拟生物传感器 的研制.温州师范学院学报(自然科学版),2004,25:19-24
    
    [204] Panasyuk-Delaney T, Mirsky V M, Ulbritch M, et al. Impedometric herbicidechemisensors based on molecularly imprinted polymers. Anal. Chim. Acta.,2001,435:157-162
    
    [205] Panasyuk-Delaney T, Mirsky V M, Wolfbeis O S. Capacitive creatinine sensorbased on a photografted molecularly imprinted polymer. Electroanalysis, 2003,14: 221-224
    
    [206] Panasyuk-Delaney T, Campo Dall'Orto V, Marrazza G, et al. Molecularimprinted polymers prepared by electropolymerization ofNi-(protoporphyrinIX). Anal. Lett., 1998, 31: 1809-1824
    
    [207]刘志航,宦双燕,沈国励,等.以分子印迹电聚合膜为仿生受体检测辛可 宁.高等学校化学学报,2005,26:1049-1051
    
    [208] Saunders G D, Foxon S P, Walton P H, et al. A selective uranium extractionagent prepared by polymer imprinting. Chem. Commun., 2000,4: 273-274
    
    [209] Biju V M, Gladis J M, Rao T P. Ion imprinted polymer particles: synthesis,characterization and dysprosium ion uptake properties suitable for analyticalapplication. Anal. Chim. Acta, 2003, 478: 43-51
    
    [210] Huan S Y, Jiao C X, Shen G L, et al. Enantioselective recognition of amino acidby differential-pulse voltammetry in molecularly imprinted monolayersassembled on Au electrodes. Electroanalysis, 2004, 16: 1019-1023
    
    [211] Hirsch T, Kettenberger H, Wolfbeis S O, et al. A simple strategy for preparationof sensor arrays: molecularly structured monolayers as recognition elements.Chem. Commun., 2003, (3): 432-433
    
    [212]张娟,徐静娟,陈烘渊.基于SiO_2纳米粒子固定辣根过氧化物酶的生物传 感器.高等学校化学学报,2004,4:614-617
    
    [213] Sousa S R, Moradas-Ferreira P, Saramago B, et al. Human serum albumin adsorption on TiO_2 from single protein solutions and from plasma. Langmuir, 2004, 20: 9745-9754
    [214] Rodriguez-Mozaz S, Marco M P, de Alda M J L, et al. Biosensors for environmental applications: Future development trends. Pure Appl. Chem., 2004, 76:723-752
    [215] Bornscheuer U T. Immobilizing enzymes: How to create more suitable biocatalysts. Angew. Chem., Int. Ed., 2003,42: 3336-3337
    [216] Manta C, Ferraz N, Betancor L, et al. Polyethylene glycol as a spacer for solid-phase enzyme immobilization. Enzyme Microb. Tech., 2003, 33(7): 890-898
    [217] Lakard B, Herlem G, Lakard S, et al. Urea potentiometric biosensor based on modified electrodes with urease immobilized on polyethylenimine films. Biosens. Bioelectron., 2004,19: 1641-1647
    [218] Tischer W, Wedekind F. Immobilized enzymes: Methods and applications. Top. Curr. Chem., 1999, 200: 95-126
    [219] Sanjay G, Sugunan S. Glucoamylase immobilized on montmorillonite: Synthesis, characterization and starch hydrolysis activity in a fixed bed reactor. Catal. Commun., 2005, 6: 525-530
    [220] Lei J, Fan J, Yu C Z, et al. The trapping and decomposition of toxic gases such as hydrogen cyanide using modified mesoporous silicates. Micropor. Mesopor. Mater., 2004, 73: 121-128
    [221] Reshmi R, Sanjay G, Sugunan S. Enhanced activity and stability of α-amylase immobilized on alumina. Catal. Commun., 2006, 7: 460-465
    [222] Mitchell D T, Lee S B, Trofin L, et al. Smart nanotubes for bioseparations and biocatalysis. J. Am. Chem. Soc, 2002, 124: 11864-11865
    [223] Lamas-Ardisana P J, Costa-García A. Behaviour of the series resonant frequency in electrolyte solutions. Sens. Actuators B, 2006,115: 567-574
    [224] Shen D Z, Zhu W H, Nie L H, et al. Behaviour of a series piezoelectric sensor in electrolyte solution: Part I. Theory. 1993, Anal. Chim. Acta, 276: 87-97
    [225] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72: 248-254
    [226] Myler S, Collyer S D, Bridge K A, et al. Ultra-thin-polysiloxane-film-composite membranes for the optimisation of amperometric oxidase enzyme electrodes. Biosens. Bioelectron., 2002, 17: 35-43
    [227] Takhistov P. Electrochemical synthesis and impedance characterization of??nano-patterned biosensor substrate. Biosens. Bioelectron., 2004, 19: 1445-1456
    
    [228] Brown G E, Henrich V E, Casey W H, et al. Metal oxide surfaces and theirinteractions with aqueous solutions and microbial organisms. Chem. Rev., 1999,99: 77-174
    
    [229] Koncki R, Leszczynski P, Hulanicki A, et al. Urea sensors based on glass pH electrodes with physically immobilized urease. Anal. Chim. Acta, 1992, 257: 67-72
    
    [230] Krajewska B. Application of chitin- and chitosan-based materials for enzymeimmobilizations: a review. Enzyme Microb. Technol., 2004, 35: 126-139
    
    [231] Yiu H H P, Wright P A, Botting N P. Enzyme immobilisation using siliceousmesoporous molecular sieves. Micropor. Mesopor. Mater., 2001, 44-45:763-768
    
    [232] Wang Y J, Caruso F. Enzyme encapsulation in nanoporous silica spheres. Chem.Commun., 2004,4(13): 1528-1529
    
    [233] Kurakay I, Ozyoruk H, Yildiz A. Potentiometric enzyme electrode for ureadetermination using immobilized urease in poly(vinylferrocenium) film. Sensor.Actuat. B-Chem., 2005,109: 194-199
    
    [234] Arica M Y, Hasirrci V. Immobilization of glucose oxidase: a comparison ofentrapment and covalent bonding. J. Chem. Technol. Biotechnol., 1993, 58(3):287-292
    
    [235] He D L, Cai Y, Wei W Z, et al. α-Amylase immobilized on bulk acoustic-wavesensor by UV-curing coating. Biochem. Eng. J., 2000, 6: 7-11
    
    [236] Singhal R, Gambhir A, Pandey M K, et al. Immobilization of urease onpoly(N-vinyl carbazole)/stearic acid Langmuir-Blodgett films for application tourea biosensor. Biosens. Bioelectron., 2002, 17: 697-703
    
    [237] Palmer T. Understanding Enzymes, 3rd ed. New-York: Ellis Horwood Press,1991
    
    [238] Lee W Y, Kim S R, Kim T H, et al. Sol-gel-derived thick-film conductometricbiosensor for urea determination in serum. Anal. Chim. Acta, 2000, 404:195-203
    
    [239] de Melo J V, Cosnier S, Mousty C, et al. Urea biosensors based onimmobilization of urease into two oppositely charged clays (laponite and Zn-Allayered double hydroxides). Anal. Chem., 2002, 74: 4037-4043
    
    [240] Cho W J, Huang H J. An amperometric urea biosensor based on a polyaniline-perfluorosulfonated ionomer composite electrode. Anal. Chem., 1998,70:3946-3951
    [241] West J L, Halas N J. Applications of nanotechnology to biotechnology. Curr. Opin. Biotechnol., 2000,11: 215-217
    [242] Curtis A, Wilkinson C. Nanotechniques and approaches in biotechnology. Trends Biotechnol., 2001,19: 97-101
    [243] Stavroyiannis S, Panagiotopoulos I, Niarchos D, et al. CoPt/Ag nanocomposites for high density recording media. Appl. Phys. Lett., 1998, 73: 3453-3455
    [244] Yang H H, Zhang S Q, Chen X L, et al. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem., 2004, 76: 1316-1321
    [245] Tsang S C, Yu C H, Gao X, et al. Silica-encapsulated nanomagnetic particle as a new recoverable biocatalyst carrier. J. Phys. Chem. B, 2006, 110: 16914-16922
    [246] Arnold F H. Combinatorial and computational challenges for biocatalyst design. Nature, 2001,409: 253-257
    [247] Gao X, Yu K M K, Tam K Y, et al. Colloidal stable silica encapsulated nano-magnetic composite as a novel bio-catalyst carrier. Chem. Commun., 2003, (24): 2998-2999
    
    [248] Tsang S C, Caps V, Paraskevas I, et al. Magnetically separable, carbon-supported nanocatalysts for the manufacture of fine chemicals. Angew Chem. Int. Ed., 2004,43: 5645-5649
    [249] Xu X Q, Deng C H, Yang P Y, et al. Immobilization of trypsin on superparamagnetic nanoparticles for rapid and effective proteolysis. J. Proteome Res., 2007, 6: 3849-3855
    [250] Herdt A R, Kim B S, Taton T A. Encapsulated magnetic nanoparticles as supports for proteins and recyclable biocatalysts. Bioconjugate Chem., 2007, 18: 183-189
    [251] Mavré F, Bontemps M, Ammar-Merah S, et al. Electrode surface confinement of self-assembled enzyme aggregates using magnetic nanoparticles and its application in bioelectrocatalysis. Anal. Chem., 2007, 79: 187-194
    [252] Huang S H, Liao M H, Chen D H. Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol. Prog., 2003, 19: 1095-1100
    [253] Chen J P, Su D R. Latex particles with thermo-flocculation and magnetic properties for immobilization of R-chymotrypsin. Biotechnol. Prog., 2001, 17: 369-375
    [254] Dupeyron D, Gonzalez M, Slaez V, et al. Nano-encapsulation of protein using an enteric polymer as carrier. IEE Proc. Nanobiotechnol., 2005,152: 165-168
    [255] Ramanavi(c|ˇ)ius A, Kau(s|ˇ)ait(e|.) A, Ramanavi(c|ˇ)ien(e|.) A. Polypyrrole-coated glucose oxidase nanoparticles for biosensor design. Sens. Actuators B, 2005, 111-112: 532-539
    [256] Frenkel-Mullerad H, Avnir D. Sol-gel materials as efficient enzyme protectors: preserving the activity of phosphatases under extreme pH conditions. J. Am. Chem. Soc., 2005,127: 8077-8081
    [257] Itoh T, Ishii R, Ebina T, et al. Encapsulation of myoglobin with a mesoporous silicate results in new capabilities. Bioconjugate Chem., 2006,17: 236-240
    [258] Kumar R, Maitra A N, Patanjali P K, et al. Hollow gold nanoparticles encapsulating horseradish peroxidase. Biomaterials, 2005,26: 6743-6753
    [259] Kim J, Grate J W. Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Letters, 2003, 3: 1219-1222
    [260] Yan M, Ge J, Liu Z, et al. Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability. J. Am. Chem. Soc, 2006, 128: 11008-11009
    
    [261] Rajesh, Kaneto K. A new tyrosinase biosensor based on covalent immobilization of enzyme on N-(3-aminopropyl) pyrrole polymer film. Curr. Appl.Phys., 2005, 5: 178-183
    [262] Nguyen M T, Diaz A. A novel method for the preparation of magnetic nanoparticles in a polypyrrole powder. Adv. Mater., 1994, 6: 858-860
    [263] Wang P, Sergeeva M V, Lim L,et al. Biocatalytic plastics as active and stable materials for biotransformations. Nat. Biotechnol., 1997, 15: 789-793
    [264] Deng J G, He C L, Peng Y X, et al. Magnetic and conductive Fe_3O_4-polyaniline nanoparticles with core-shell structure. Synth. Metals, 2003, 139: 295-301
    [265] Chen W, Li X W, Xue G, et al. Magnetic and conducting particles: preparation of polypyrrole layer on Fe_3O_4 nanospheres. Appl. Surf. Sci., 2003, 218: 215-221
    
    [266] Craik D J. Magnetic Oxides, Part 2. New York: Wiley, 1981
    [267] Mary M. Scientific and clinical applications of magnetic carriers; Hafeli U, Schutt W, Zborowski M, Eds. New York: Plenum Press, 1997
    [268] Gorman L A S, Dordick J S. Organic solvents strip water off enzymes. Biotechnol. Bioeng., 1992, 39: 392-397
    
    [269] Camp R T. Water and Its Impurities.2nd ed. New York: Reinhold, 1964
    [270] Litter M I. Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl. Catal. B, 1999,23(2): 89-114
    [271] Namasivayam C, Periasamy K. Bicarbonate-treated peanut hull carbon for mercury(II) removal from aqueous solution. Water Res., 1993, 27(11): 1663-1668
    [272] Osteen A B, Bibler J. Treatment of radioactive laboratory waste for mercury removal. Water Air Soil Pollut., 1991, 56(1): 63-74
    [273] Ghazy S E. Removal of cadmium, lead , mercury , tin ,antimony , and arsenic from prinking and seawaters by colloid precipitate flotation. Sep. Sci. Technol., 1995, 30(3): 933-947
    [274] Calatayud M, Markovits A, Menetrey M, et al. Adsorption on perfect and reduced surfaces of metal oxides. Catal. Today, 2003, 85(2): 125-143
    [275] Raskó J, Kecskés T, Kiss J. Adsorption and reaction of formaldehyde on TiO_2-supported Rh catalysts studied by FTIR and mass Spectrometry. J. Catal., 2004,226(1): 183-191
    [276] Jiang D L, Zhao H J, Zhang S Q, et al. Photoelect rochemical measurement of phthalic acid adsorption on porous TiO_2 film electrodes. J. Photoch. Photobio. A, 2003, 156(3): 201-206
    [277] Wang X L, Pehkonen S O, Ajayk K, et al. Photocatalytic reduction of Hg (II) on two commercial TiO_2 catalysis. Electrochim. Acta, 2004,49(9): 1435-1444
    [278] Butty D A, Ward M D. Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance, Chem. Rev., 1992, 92(6): 1355-1379
    [279] Lyon L A, Hupp J T. Energetics of semiconductor electrode/solution interfaces: EQCM evidence for charge-compensating cation adsorption and intercalation during accumulation layer formation in the titanium dioxide/aletonitrice system. J. Phys. Chem., 1995, 99(43): 15718-15720
    [280] Si S H, Fung Y S, Si L, et al. Study of adsorption behavior of bilirubin on human-albumin monolayer using piezoelectric crystal. J. Colloid Interf. Sci., 2002, 253(1): 47-52
    [281] Lemon B I, Hupp J T. Photochemical quartz crystal microbalance study of the nanocrystalline titanium dioxide semiconductor electrode/water interface: simultaneous photoaccumulation of electrons and protons. J. Phys. Chem., 1996, 100(35): 14578-14580
    [282] Hug S J, Sulzberger B. In situ fourier transform infrared spectroscopic evidence for the formation of several different surface complexes of oxalate on TiO_2 in the aqueous phase. Langmuir, 1994,10(10):3587-3597
    [283] Oliva F Y, Avalle L B, Cámara O R, et al. Adsorption of human serum albumin (HSA) onto colloidal TiO_2 particles, Part I. J. Colloid Interf. Sci., 2003, 261(2): 299-311
    [284] Yang Z P, Si S H, Fung Y S. Bilirubin adsorption on nanocrystalline titania films. Thin Solid Films, 2007, 515: 3344-3351
    [285] Liu X Y, Zhao X B, Fu R K Y, et al. Plasma-treated nanostructured TiO_2 surface supporting biomimetic growth of apatite. Biomaterials, 2005, 26: 6143-6150
    [286] Song W H, Jun Y K, Han Y, et al. Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials, 2004,25: 3341-3349
    [287] Lin C M, Yen S K. Biomimetic growth of apatite on electrolytic TiO_2 coatings in simulated body fluid. Mater. Sci. Eng. C, 2006,26: 54-64
    [288] Kasuga T, Kondo H, Nogami M. Apatite formation on TiO_2 in simulated body fluid. J. Cryst. Growth, 2002,235: 235-240
    [289] Paddon C A, Marken F. Hemoglobin adsorption into TiO_2 phytate multi-layer films: particle size and conductivity effects. Electrochemistry Communications, 2004, 6(12): 1249-1253
    [290] Liu S, Chen A. Coadsorption of horseradish peroxidase with thionine on TiO_2 nanotubes for biosensing. Langmuir, 2005, 21: 8409-8413
    [291] Wang C X, Wang M, Zhou X. Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedance spectroscopy study. Biomaterials, 2003, 24: 3069-3077
    [292] Kokubo T, Kim H M, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials, 2003,24: 2161-2175
    [293] Keshmiri M, Troczynski T. Apatite formation on TiO_2 anatase microspheres. J Non-Cryst. Solids, 2003, 324: 289-294
    [294] Cao X Y, Li S P, Zhang R, et al. Effect on the hepatocellular arcinoma cell proliferation and cell cycle treated with hydroxyapatite nanoparticles. China J. Cancer Prev. Treat., 2003, 10(3): 256-258
    [295] Cui C X, Liu H, Li Y C, et al. Fabrication and biocompatibility of nano-TiO_2/titanium alloys biomaterials. Mater. Lett., 2005, 59: 3144-3148
    [296] Hayakawa S, Osaka A. Biomimetic deposition of calcium phosphates on oxides soaked in a simulated body fluid. J. Non-Cryst. Solids, 2000,263: 409-415
    [297] Wang X X, Yan W, Hayakawa S, et al. Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid. Biomaterials, 2003,24:4631-4637
    [298] Tanahashi M, Kokubo T, Matsuda T. Quantitative assessment of apatite formation via a biomimetic method using quartz crystal microbalance. J. Biomed. Mater. Res., 1996, 31: 243-249
    [299] Zhu P X, Masuda Y, Yonezawa T, et al. Investigation of apatite deposition onto charged surfaces in aqueous solutions using a quartz-crystal microbalance. J. Am. Ceram. Soc., 2002, 86: 782-790
    [300] Gu Y W, Tay B Y, Lim C S, et al. Biomimetic deposition of apatite coating on surface-modified NiTi alloy. Biomaterials, 2005, 26: 6916-6923
    [301] Liu X Y, Ding C X, Chu P K. Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials, 2004,25: 1755-1761
    [302] Yamashita K, Oikawa N, Umegaki T. Acceleration and deceleration of bone-like crystal growth on ceramic hydroxyapatite by electric poling. Chem. Mater., 1996,8:2697-2700
    [303] Dutta P K, Ray A K, Sharma V K, et al. Adsorption of arsenate and senite on titanium dioxide suspensions. J. Colloid Interf. Sci., 2004, 278: 270-275
    [304] Zhang H Z, Perm R L, Hamers R J, et al. Enhanced adsorption of molecules on surfaces of nanocrystalline particles. J. Phys. Chem. B, 1999, 103: 4656-4662
    [305] Xie Y T, Liu X Y, Chu P K, et al. Nucleation and growth of calcium-phosphate on Ca-implanted titanium surface. Surf. Sci., 2006, 600: 651-656
    [306] Joos P. Kinetic equations for transfer-controlled adsorption kinetics. J Colloid Interf. Sci., 1995, 171: 399-405
    [307] Lori J A, Hanawa T. Characterization of adsorption of glycine on gold and titanium electrodes using electrochemical quartz crystal microbalance. Corros. Sci., 2001,43:2111-2120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700