用户名: 密码: 验证码:
功能化纳米吸附材料的合成及其在痕量金属离子分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的不断发展,各种环境污染事件层出不穷,大气污染、水体污染、全球变暖、能源匮乏、固体废弃物污染和物种灭绝等问题时刻威胁着我们的生存环境。特别是重金属离子造成的水体、土壤和食品污染已经一次又一次地损害了我们的生活环境。然而,由于分析方法的灵敏度不够以及复杂基质的干扰,对金属离子直接进行分析测定是比较困难的。因此,如何对环境中的金属污染物进行有效治理就成为环境分析化学工作者所面临的一大挑战。本论文以富集分离和测定环境样品中痕量金属元素为目的,设计新的固相萃取吸附剂及分析方法,通过对多壁碳纳米管、埃洛石纳米管和氧化石墨烯进行修饰改性,得到了几种新的固相萃取吸附剂材料,并对材料的选择性吸附性能进行了系统研究。同时,根据氧化石墨烯的特性,建立了荧光传感器,用于直接分析和测定溶液样品中痕量的Th4+。具体工作分为以下五个部分:
     1.紫脲酸铵功能化的埃洛石纳米管对痕量Pd(Ⅱ)的高选择性固相萃取性能研究
     在此工作中,首次成功地合成了一种新型吸附剂(HNTs-Mu),通过FT-IR,XRD,SEM,TEM和BET分析对HNTs-Mu的结构进行了表征。把HNTs-Mu作为固相萃取吸附剂,用于分离和预富集溶液中的痕量Pd(Ⅱ),通过ICP-AES进行测定,研究其分析性能。结果表明,HNTs-Mu对Pd(Ⅱ)具有很好的亲和力、较高的选择性以及好的捕捉能力。在pH=1.0时,痕量Pd(Ⅱ)能够被定量吸附,同时在流速为2.0mL min-1的时候,被吸附的Pd(Ⅱ)可以用2.5mL的0.01molL-1HCl-3%硫脲溶液定量洗脱。在样品溶液最大体积为300mL时,计算得到该方法的最大富集因子为120。HNTs-Mu对Pd(Ⅱ)的最大吸附容量为42.86mgg-1。Pd(Ⅱ)/Cd(Ⅱ),Pd(Ⅱ)/Hg(Ⅱ),Pd(Ⅱ)/Au(Ⅲ),Pd(Ⅱ)/Pt(Ⅳ)和Pd(Ⅱ)/Ir(Ⅳ)的选择性因子分别是3572.6,29.6,13.7,76.3和207。并且HNTs-Mu实验室合成方法简单,耗费较低。该方法被成功用于富集分离实际样品中的痕量Pd(Ⅱ),回收率大于95%。精密度和检出限都令人满意。
     2.水杨酸修饰的埃洛石纳米管对痕量Fe(Ⅲ)的高选择性吸附性能的研究
     使用水杨酸成功修饰埃洛石纳米管(HNTs-HBA),并用FT-IR,XRD,TEM和元素分析对其进行表征。把合成的HNTs-HBA用于溶液样品中痕量Fe(Ⅲ)的选择性分离,并用ICP-AES进行测定。通过静态和动态分析条件,对富集酸度、振荡时间、样品溶液的流速和体积及其洗脱剂等实验条件进行了优化。同时考察了一些常见共存离子对Fe(Ⅲ)的干扰问题。得到的富集因子为75。HNTs-HBA对Fe(Ⅲ)的吸附很快达到平衡。Fe(Ⅲ)的最大吸附容量是45.54mg g-1,方法的检出限是0.21ng mL-1,相对标准偏差是2.7%。把HNTs-HBA用于国家标准样品、生物样品以及环境水样中痕量Fe(Ⅲ)的富集测定,结果令人满意。
     3.2-氨基苯并噻唑修饰的碳纳米管对痕量铅的选择性预富集分离研究
     合成了2-氨基苯并噻唑修饰的多壁碳纳米管(MWCNTs-ABTZ),并把MWCNTs-ABTZ作为一种新的吸附剂,用于选择性富集分离痕量Pb(Ⅱ),实验结果用ICP-AES进行测定。通过静态和动态分析条件,对富集酸度、振荡时间、样品溶液的流速和体积、洗脱条件和共存离子的影响等实验条件进行了优化。得到的富集因子是100。常见的共存离子对痕量Pb(Ⅱ)的富集分离没有影响。MWCNTs-ABTZ对Pb(Ⅱ)的最大吸附容量是60.32mg g-1,方法的检出限是0.27ng mL-1,相对标准偏差是2.7%(n=8)。把MWCNTs-ABTZ用于国家标准样品以及环境水样中痕量Pb(Ⅱ)的分析测定,结果令人满意。
     4.基于氧化石墨烯的荧光效应研究
     我们通过化学方法成功地合成了氧化石墨烯,并且用TEM,UV-Vis,FT-IR和XRD对其结构进行了探究。同时,我们发现氧化石墨烯能够有效地猝灭罗丹明6G水溶液的荧光效应。依据氧化石墨烯的UV-Vis谱图以及罗丹明6G的荧光谱图,我们证明了荧光猝灭是由以下两个原因引起的:第一,罗丹明6G的电子转移到氧化石墨烯表面;第二,罗丹明6G被氧化石墨烯吸附。尽管如此,痕量的Th4+能够使被氧化石墨烯猝灭的罗丹明6G水溶液的荧光信号增强。
     5.二乙烯三胺功能化的氧化石墨烯对痕量Cr(Ⅲ)和Pb(Ⅱ)的吸附性能研究
     合成了二乙烯三胺功能化的氧化石墨烯(GO-DETA),并把GO-DETA用于富集分离溶液中的重金属离子。研究发现,GO-DETA对溶液中Cr(Ⅲ)和Pb(Ⅱ)具有良好的吸附能力。按照分析程序,对实验参数进行了优化。同时证明了常见共存离子对痕量Cr(Ⅲ)和Pb(Ⅱ)的富集分离没有干扰。GO-DETA对Cr(Ⅲ)和Pb(Ⅱ)的最大吸附容量分别是60.9和142.86mg g-1。把GO-DETA用于国家标准样品及环境水样中痕量Cr(Ⅲ)和Pb(Ⅱ)的分离富集和测定,实验结果令人满意。
With the continuous development of the economy, the growing incidence of environmental pollution, air pollution, water pollution, global warming, energy shortages, solid waste pollution and species extinction and other issues have threated our living environment. Especially water, soil and food contamination caused by the heavy metal ions have maken our life destroyed once again. However, because complex matrix interference is complex and the sensitivity of the exsiting methods is not enough, it's difficult to analyze trace and ultra-trace element in actual samples. Thus, it is very important to open efficient methods for detecting metal ions in the environment. In this paper, in order to separate trace metals from the environmental samples, we designed the new SPE adsorbents and analytical methods. Through the modification of multiwall carbon nanotubes, graphene oxide and halloysite nanotubes, we obtained several new SPE adsorbents material, and systematically studied the selective adsorption property of the material. At the same time, according to characteristics of graphene oxide, we developed a fluorescence sensor to directly analysis trace Th4+in the solution samples. Our work is divided into the following five parts:
     1. Highly selective solid-phase extraction of trace Pd(Ⅱ) by murexide functionalized halloysite nanotubes
     The originality on the high efficiency of murexide modified halloysite nanotubes (HNTs-Mu) as a new solid-phase extractant has been reported to preconcentrate and separate Pd(Ⅱ) in solution samples. The structure of HNTs-Mu was confirmed by FT-IR, XRD, SEM, TEM and BET. Effective determination conditions of Pd(Ⅱ) were examined using column procedures before detection by inductive coupled plasma atomic emission spectrometry (ICP-AES). The effects of pH, sample flow rate and volume, amount of adsorbent, elution condition and interfering ions were optimized. Under the optimized conditions, trace Pd(Ⅱ) could be retained on the column at pH1.0and quantitatively eluted by2.5mL of0.01mol L-1HCl-3%thiourea solution at a flow rate of2.0mL min-1.An enrichment factor of120was achieved. Common interfering ions did not interfere in determination and separation. The maximum adsorption capacity of HNTs-Mu at optimum conditions was42.86mg g-1for Pd(II). The detection limit (3a) of the method was0.29ng mL-1, and the relative standard deviation was3.1%(n=11). The method was validated using certified reference material, and then has been applied for the determination of trace Pd(II) in actual samples with satisfactory results.
     2. Functionalized halloysite nanotubes with2-hydroxybenzoic acid for selective solid-phase extraction of trace iron(III)
     Functionalized halloysite nanotubes with2-hydroxybenzoic acid (HNTs-HBA) has been synthesized and characterized by FT-IR, XRD, TEM and Elemental analysis. The capability of HNTs-HBA has been developed for selective separation and preconcentration of trace Fe(III) before detection by ICP-AES. The effects of pH, shaking time, flow rate and volume of the sample, elution condition and interfering ions were examined using column and batch procedures. An enrichment factor of75was obtained. HNTs-HBA exhibited fairly fast kinetics for the adsorption of Fe(Ⅲ) and common coexisting ions did not interfere in the determination. The maximum adsorption capacity of HNTs-HBA for Fe(Ⅲ) was45.54mg g-1at optimum conditions. The detection limit (3σ) of the method was0.21ng mL-1. The relative standard deviation under optimum condition was2.7%(n=11). The developed method has been successfully applied for the determination of trace Fe(Ⅲ) in biological and natural water samples.
     3. Multiwalled carbon nanotubes modified with2-aminobenzothiazole for uniquely selective solid-phase extraction and determination of trace Pb(Ⅱ) ion in water samples
     A solid phase extraction method is presented for the selective preconcentration and/or separation of trace Pb(Ⅱ) by2-aminobenzothiazole modified multiwalled carbon nanotubes (MWCNTs-ABTZ). ICP-AES was used for detection. The effects of pH, shaking time, sample flow rate and volume, elution condition and interfering ions were examined by column and batch procedures. An enrichment factor of100was obtained. Common coexisting ions did not interfere in the determination. The maximum adsorption capacity of MWCNTs-ABTZ for Pb(Ⅱ) was60.32mg g-1. The detection limit (3σ) of the method was0.27ng mL-1. And the relative standard deviation was1.6%(n=8). The method was validated using a certified reference material, and has been applied for the determination of trace Pb(II) in water samples with satisfactory results.
     4. Fluorescence determination based on graphene oxide
     Graphene oxide (GO) has been prepared and the structure of the prepared GO was characterized by XRD, UV-Vis, FT-IR and TEM, respectively. And then we demonstrated that GO could quench the fluorescence of Rhodamine6G (Rh6G) in aqueous solution. According to the UV-vis absorption spectrum of GO and the fluorescence spectrum of Rh6G, we found that GO quenched the fluorescence of Rh6G due to two factors. Firstly, the electrons moved from the Rh6G to the surface GO; secondly, Rh6G adsorbed onto the GO surface. However, trace Th4+enhanced the fluorescent signal of Rh6G, which was quenched by GO prior to metal ions addition.
     5. Adsorption of trace Cr(Ⅲ)and Pb(Ⅱ) by diethylenetriamine functionalized graphene oxide
     Graphene oxide chemically modified with diethylenetriamine (GO-DETA) was fabricated and used to determine trace metal ions in solution. The results showed that the material exhibited a highly selective adsorption of trace Cr(Ⅲ) and Pb(Ⅱ) at pH4. The maximum adsorption capacity of GO-DETA was be60.9mg g-1and142.86mg g-1for Cr(Ⅲ) and Pb(Ⅱ), respectively. The facile chemical route and high adsorption capacity made this material practically useful for waste water treatment.
引文
[1]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:中国环境科学出版社.1988.
    [2]Brodkin, E., Copes, R., Mattman, A., Kennedy, J., Kling, R., Yassi, A. Lead and mercury exposures:interpretation and action [J]. Can. Med. Assoc. J.2007,176 (1):59-63.
    [3]Kong, I.C., Bitton, G., Kooppman, B., Jung, K.H. Heavry metal toxicity testing in environmental samples [J]. Rev. Environ. Contam. Toxicol.1995,142:119-147.
    [4]李广艳.化学重金属元素与人体健康-对城市表层土壤中的重金属元素污染的研究[J].理化生教学研究.2012,40:140.
    [5]周春山.化学分离富集方法及应用[M].长沙:中南工业大学出版社.1997.
    [6]Vasconcellos, M.E., Queiroz, C.A., Abrao, A. Sequential separation of the yttrium-heavy rare earths by fractional hydroxide precipitation [J]. J. Alloys. Compd.2004,374(1-2):405-407.
    [7]陈殿耿,袁玉霞,王皓莹.氢化物发生-原子荧光光谱法(HG-AFS)测定特硬铅合金中硒和碲[J].中国无机分析化学.2012,2(2):38-40.
    [8]吴莉莉,沈兵,应晓虹,孔繁迪.沉淀分离-气相色谱法测定聚氯乙烯塑料制品中的磷酸甲苯酯类增塑剂[J].分析化学.2012,40(4):617-621.
    [9]Yebra, M.C., Enriquez, M.F., Cespon, R.M. Preconcentration flame atomic absorption spectrometry determination of cadmium in mussels by an on-line precipitation dissolution flow system [J]. Talanta.2000,52(4):631-636.
    [10]Thompson, M., Pahlavanpour, B., Walton, S.J., Kirkbright, G.F. Simultaneous determination of trace concentrations of arsenic, antimony, bismuth, selenium and tellurium in aqueous solution by introduction of the gaseous hydrides into an inductively coupled plasma source for emission spectrometry. Part II. Interference studies [J]. Analyst.1978,103(1228):705-713.
    [11]Bispo, M.S., Korn, M.G.A., Costa, A.C.S., Morte, E.S.B., Teixeira, L.S.G., Korn, M. Determination of Pb in river water samples by inductively coupled plasma optical emission spectrometry after ultrasound-assisted co-precipitation with manganese dioxide [J]. Spectrochim. Acta. B.2005,60(5):653-658.
    [12]Doner, G., Ege, A. Determination of copper, cadmium and lead in seawater and mineral water by flame atomic absorption spectrometry after coprecipitation with aluminum hydroxide[J]. Anal. Chim. Acta.2005,547(1):14-17.
    [13]Weisel, C.P., Duce, R.A., Fasching, J.L. Determination of aluminum, lead, and vanadium in North Atlantic seawater after coprecipitation with ferric hydroxide[J]. Anal. Chem.1984,
    56(6):1050-1052.
    [14]Burridge, J.C., Hewitt, I.J. Coprecipitation of microgram amounts of lead and tin with aluminium, using 8-hydroxyquinoline, tannic acid and either thionalide or sodium sulphide[J]. Analyst. 1985,110(7):795-800.
    [15]李吉生,郭爱武,邢谦,李邦民.共沉淀分离-ICP-MS快速测定卤水中稀土元素[J].光谱实验室.2009,26(6):1676-1678.
    [16]韩春玉,郭阳,张颖,吴玉春.火焰原子吸收光谱法测定铝及铝合金中痕量铅的新方法-水合二氧化锰共沉淀分离富集技术在铝工业分析中的应用[J].轻金属.2008,4:66-68.
    [17]Chen, H.W., Jin, J.C., Wang, Y.F. Flow injection on-line coprecipitation preconcentration system using copper(Ⅱ) diethyldithiocarbamate as carrier for flame atomic absorption spectrometric determination of cadmium, lead and nickel in environmental samples [J]. Anal. Chim. Acta.1997,353 (2-3):181-188.
    [18]Elci, L., Sahin, U., Oztas, S. Determination of trace amounts of same metals in samples with high salt content by atomic absorption spectrometry after cobalt-diethyldithiocarbamate coprecipitation [J]. Talanta.1997,44 (6):1017-1023.
    [19]Prasad, K., Gopikrishna, P., Kala, R., Rao, T.P., Naidu, G.R.K. Solid phase extraction vis-a-vis coprecipitation preconcentration of cadmiumand lead from soils onto 5,7-dibromoquinoline-8-ol embedded benzophenone and determination by FAAS [J]. Talanta. 2006,69 (4):938-945.
    [20]Bulut, V.N., Duran, C., Ali, G., Soylak, M., Yildirim, N., Elci, L. A new approach to separation and pre-concentration of some trace metals with co-precipitation method using a triazole [J]. Talanta.2008,76 (2):469-474.
    [21]Da browski, A., Hubicki, Z., Podko scielny, P., Robens, E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method [J]. Chemosphere. 2004,56(2):91-106.
    [22]肖红玺,苏耀东,王玉科,倪亚明,程祥圣.共沉淀分离富集原子吸收光谱法测定氯化物中痕量镉[J].理化检验2化学分册.2003,39(1):18-25.
    [23]Bolto, B.A., Pawlowski, L. Wastewater Treatment by Ion-Exchange[M]. London. E. and F.N. Spoon Ltd.1987.
    [24]Lin, S.H., Kiang, C.D. Chromic acid recovery from waste acid solution by an ion exchange process:equilibrium and column ion exchange modeling[J]. Chem. Eng. J.2003,92(1-3):193-199.
    [25]Lin, S.H., Lai, S.L., Leu, H.G. Removal of heavy metals from aqueous solution by chelating resin in a multistage adsorption process[J]. J. Hazd. Mat.2000,76(1):139-153.
    [26]王巍,余翔,周祥敏,李洪斌.离子交换色谱法测定盐酸二甲双胍片的含量[J].西北药学杂志.2013,28(1):36-37.
    [27]Wang, L., Tian, C.G., Wang, B.L., Wang, R.H, Zhou, W., Fu, H.G. Controllable synthesis of graphitic carbon nanostructures from ion-exchange resin-iron complex via solid-state pyrolysis process[J]. Chem. Commun.2008,42(0):5411-5413.
    [28]Smolik, M., Jakobik-Kolon, A. Determination of Microamounts of Hafnium in Zirconium Using Inductively Coupled Plasma Atomic Emission Spectrometry and Inductively Coupled Plasma Mass Spectrometry during Their Separation by Ion Exchange on Diphonix Chelating Resin[J]. Anal. Chem.2009,81(7):2685-2687.
    [29]Anthemidis, A.N., Zachariadis, G.A., Farastelis, C.G., Stratis, J.A. On-line liquid-liquid extraction system using a new phase separator for flame atomic absorption spectrometric determination of ultra-trace cadmium in natural waters[J]. Talanta.2004,62(3):437-443.
    [30]Motomizu, S., Onoda, M., Oshima, M., Iwachido, T. Spectrophotometric determination of potassium in river water based on solvent extraction of the complex formed with a crown ether and an anionic azo dye using flow injection[J]. Analyst.1988,113(5):743-746.
    [31]Alonso, A., Almendral, M.J., Porras, M.J., Curto, Y., Maria, C.G. Flow injection solvent extraction with and without phase separation:Fluorimetric determination of aluminium in water[J]. Anal. Chim. Acta.2001,447(1-2):211-217.
    [32]Bergamin, H., Medeiros, J.X., Reis B.F., Zagatto, E.A.G. Solvent extraction in continuous flow injection analysis:Determination of molybdenum in plant material[J]. Anal. Chim. Acta. 1978,101(1):9-16.
    [33]Blanco, T., Maniasso, N., Gine, M.F. Liquid-liquid extraction in flow injection analysis using an open-phase separator for the spectrophotometric determination of copper in plant digests[J]. Analyst.1998,123(2):191-193
    [34]Fossey, L., Cantwell, F.F. Characterization of solvent extraction/flow injection analysis with constant pressure pumping and determination of procyclidine hydrochloride in tablets[J]. Anal.Chem.1982,54(11):1693-1697.
    [35]Gallignani, M., Ayala, C., Brunetto, M.R., Burguera, J.L., Burguera, M. A simple strategy for determining ethanol in all types of alcoholic beverages based on its on-line liquid-liquid extraction with chloroform, using a flow injection system and Fourier transform infrared spectrometric detection in the mid-IR[J]. Talanta.2005,68(2):470-479.
    [36]Kimura, K., Iketani, S., Sakamoto, H., Shono, T. Applicability of Chromogenic 14-Crown-4 Derivative to Extraction-Spectrophotometric Flow Injection Analysis for Lithium Ion in Blood Serum[J]. Anal. Sci.1988,4(2):221-222.
    [37]Mannila, M., Kim, H., Isaacson, C., Wai, C.M. Optimization of supercritical fluid extraction for the separation of hyperforin and adhyperforin in St. John's wort (Hypericum perforatum L.) [J]. Green Chem.2002,4(4):331-336.
    [38]Bauza, R., Rios, A., Valcarcel, M. Coupling immobilized enzymes flow reactors with supercritical fluid extraction for analytical purposes[J]. Analyst.2002,127(2):241-247.
    [39]Ge,Y.Q., Yan, H., Hui, B.D., Ni, Y.Y., Wang, S.X., Cai, T.Y. Extraction of Natural Vitamin E from Wheat Germ by Supercritical Carbon Dioxide[J]. J. Agric. Food Chem.2002,50(4): 685-689.
    [40]Camel, V. Recent extraction techniques for solid matrices-supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction:their potential and pitfalls[J]. Analyst.2001,126(7):1182-1193.
    [41]Stoll, D.R., Carr, P., Fast, W. Comprehensive Two-Dimensional HPLC Separation of Tryptic Peptides Based on High-Temperature HPLC[J]. J. Am. Chem. Soc.2005,127(14):5034-5035.
    [42]Garceau, Y., Davis, I., Hasegawa, J. Fluorometric TLC determination of free and conjugated propranolol, naphthoxylactic acid, and p-hydroxypropranolol in human plasma and urine[J]. J Pharm Sci.1978,67(6):826-831.
    [43]Handley, J. HPLC gets steamed heat[J]. Anal. Chem.2001,73(17):476A-476A.
    [44]Bhushan, R., Agarwal, C. Direct enantiomeric TLC resolution of dl-penicillamine using (R)-mandelic acid and 1-tartaric acid as chiral impregnating reagents and as chiral mobile phase additive[J]. Biomed. Chromatogr.2008,22(11):1237-1242.
    [45]Perry, J.A., Jupille, T.H., Glunz, L.J. TLC [thin-layer chromatography]. Programmed multiple development [J]. Anal. Chem.1975,47(1):65A-74a.
    [46]Hayen, H., Volmer, D.A. Rapid identification of siderophores by combined thin-layer chromatography/matrix-assisted laser desorption/ionization mass spectrometry[J]. Rapid Commun. Mass Spectrom.2005,19(5):711-720.
    [47]Distler, U., Hiilsewig, M., Souady, J., Dreisewerd, K., Haier, J., Senninger, N., Friedrich, A.W., Karch, H., Hillenkamp, R, Berkenkamp, S., Peter-Katalini, J., Matching IR-MALDI-o-TOF Mass Spectrometry with the TLC Overlay Binding Assay and Its Clinical Application for Tracing Tumor-Associated Glycosphingolipids in Hepatocellular and Pancreatic Cancer[J]. Anal. Chem.2008,80(6):1835-1846.
    [48]Abdullin, I.F., Turova, E.N., Budnikov, G.K. Determination of copper and cadmium by atomic absorption spectrometry with electrochemical and sorption preconcentration[J]. J. Anal. Chem.2000,55(6):567-569.
    [49]Nesbitt, C.A., Yeung, K.K.C. In-capillary enrichment, proteolysis and separation using capillary electrophoresis with discontinuous buffers:application on proteins with moderately acidic and basic isoelectric points[J]. Analyst.2009,134(1):65-71.
    [50]Stalikas, C.D. Micelle-mediated extraction as a tool for separation and preconcentration in metal analysis[J]. Trends Anal. Chem.2002,21(5)343-355.
    [51]Bezerra, M.A., Arruda, M.A.Z., Ferreira, S.L.C. Cloud Point Extraction as a Procedure of Separation and Pre-Concentration for Metal Determination Using Spectroanalytical Techniques:A Review[J]. Appl. Spectrosc. Rev.2005,40(4):269-299.
    [52]Hinze, W.L., Pramauro, E. A Critical Review of Surfactant-Mediated Phase Separations (Cloud-Point Extractions):Theory and Applications[J]. Crit. Rev. Anal. Chem.1993,24 (2):133-177.
    [53]Xu, T.W. Ion exchange membranes:State of their development and perspective[J]. J. Membrane Sci.2005,263(1-2):1-29.
    [54]Fritz, J.S. Analytical Solid-Phase Extraction[M]. NewYork. Wiley-VCH.1999.
    [55]Thurman, E.M., Mills, M.S. Solid Phase Extraction-Principles and Practice[M]. New York: Wiley.1998.
    [56]Poole, C.F. New trends in solid-phase extraction[J]. Trends Anal. Chem.2003,22(6):362.
    [57]Hennion, M.C. Solid-phase extraction:method development, sorbents, and coupling with liquid chromatography[J]. J. Chromatogr. A.1999,856(1-2):3-54.
    [58]Birlik, E., Ersoz, A., Denizli, A., Say, R. Preconcentration of copper using double-imprinted polymer via solid phase extraction[J]. Anal. Chim. Acta.2006,565(2):145.
    [59]Thurman, E.M., Mills, M.S. Solid-Phase Extraction. Principles and Practice[M]. New York: Wiley.1998.
    [60]Pawliszyn, J(Ed.). Sampling and Sample Preparation Techniques for Field and Laboratory[M]. The Netherlands:Elsevier.2002.
    [61]Simpson, N.J.K(Ed.). Solid-Phase Extraction:Principles, Strategies and Applications[M]. New York:Marcel Dekker.2000.
    [62]Senturk, H.B., Gundogdu. A., Bulut. V.N., Bulut, V.N., Duran, C., Soylak, M., Elci, L., Tufekci, M. Separation and enrichment of gold(III) from environmental samples prior to its flame atomic absorption spectrometric determination[J]. J. Hazard. Mater.2007,149(2):317-323.
    [63]Lingeman, H., Hoekstra, O.S.J.F. Particle-loaded membranes for sample concentration and/or clean-up in bioanalysis[J]. J. Chromatogr. B.1997,689(l):221-237.
    [64]Louter, A.J.H., Vreuls, J.J., Brinkman, U.A.T. On-line combination of aqueous-sample preparation and capillary gas chromatography [J] J. Chromatogr. A.1999,842 (1-2):391-426.
    [65]Fritz, J.S., Masso, J. Miniaturized solid-phase extraction with resin disks[J]. J. Chromatogr. A. 2001,909 (1):79-85.
    [66]Thurman, E.M., Snavely, K., Advances in solid-phase extraction disks for environmental chemistry [J]. Trends Anal. Chem.2000,19(1):18-26.
    [67]Plumb, R.S., Dear, G.J., Mallett, D.M., Higton, M., Pleasance, S., Biddlecombe, R.A. Quantitative analysis of Pharmaceuticals in biological fluids using high-performance liquid chromatography coupled to mass spectrometry:a review [J]. Xenobiotica.2001,31:599-617.
    [68]Baltussen, E., Sandra, P., David, F., Cramers, C., Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples:Theory and principles[J]. J. Microcol. Sep. 1999,11(10):737-747.
    [69]Popp, P., Bauer, C., Wennfich, L. Application of stir bar sorptive extraction in combination with column liquid chromatography for the determination of polycyclic aromatic hydrocarbons in water samples[J]. Anal. Chim. Acta.2001,436(1):1-9.
    [70]Lambert, J.P., Mullett, W.M., Kwong, E., Lubda, D. Stir bar sorptive extraction based on restricted access material for the direct extraction of caffeine and metabolites in biological fluids[J]. J Chromatogr. A.2005,1075(1-2):43-49.
    [71]Tan, B.L., Hawker, D.W., Mtiller, J.F., Tremblay, L.A., Chapman, H.F. Stir bar sorptive extraction and trace analysis of selected endocrine disrupters in water, biosolids and sludge samples by thermal desorption with gas chromatography-mass spectrometry [J]. Water Res. 2008,42(1-2):404-412.
    [72]Sandra, P., Tienpont, B., Vercammen, J., Tredoux, A., Sandra, T., David, F. Stir bar sorptive extraction applied to the determination of dicarboximide fungicides in wine[J]. J. Chromatogr. A.2001,928(1):117-126.
    [73]Leon, V.M., Alvarez, B., Cobollo, M.A., Munoz, S., Valor, I. Analysis of 35 priority semivolatile compounds in water by stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry:I. Method optimisation[J]. J. Chromatogr. A.2003, 999(1-2):91-101.
    [74]Fritz, J.S. Analytical Solid-Phase Extraction [M], New York:Wiley-VCH.,1999.
    [75]陈小华,王群杰.固相萃取技术与应用[M].北京:科学出版社.2010.
    [76]翟云会.新型固相萃取材料的制备及其对痕量重金属的分离富集[博士论文].兰州:兰州大学.2008.
    [77]Cox, A.G., Cook, I.G., McLeod, C.W. Rapid sequential determination of chromium(III)-chromium(VI) by flow injection analysis-inductively coupled plasma atomic-emission spectrometry [J]. Analyst,1985,110(4):331-333.
    [78]Vassileva, E., Hadjiinov, K., Stoychev, T, Daiev, C., Chromium speciation analysis by solid-phase extraction on a high surface area TiO2[J]. Analyst,2000,125(4):693-698.
    [79]Masque,N., Marce, R.M., Borrull, F. New polymeric and other types of sorbents for solid-phase extraction of polar organic micropollutants from environmental water[J]. Trends Anal. Chem.1998,17(6):384-394.
    [80]Hennion, M.C., Scribe, P., Barcelo, D (Editor). Environmental Analysis:Techniques, Applications and Quality Assurance [M]. The Netherlands:Elsevier.1993.
    [81]李晓明,彭平安,任曼,张素坤,麦碧娴,盛国英,傅家谟.C18固相萃取圆盘与聚氨酯泡沫(PUF)萃取水体中二噁英的对比性研究[J].分析测试学报.2007,27(2):118-122.
    [82]Jesus, D.S., Carvalho, M.S., Costa, A.C.S., Ferreira, S.L.C. Quantitative separation of zinc traces from cadmium matrices by solid-phase extraction with polyurethane foam[J]. Talanta, 1998,46(6):1525-1530.
    [83]Bulut, V.N., Gundogdu, A., Duran, C., Senturk, H.B., Soylak, M., Elci, L., Tufekci, M.A multi-element solid-phase extraction method for trace metals determination in environmental samples on Amberlite XAD-2000[J]. J. Hazard. Mater.2007,146:155-163.
    [84]Henglein, A. Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles[J]. Chem. Rev.1989,89(8):1861-1873.
    [85]Chandross, E.A., Miller, R.D. Nanostructures:Introduction[J]. Chem. Rev.1999,99 (7):1641-1642.
    [86]Vassileva, E., Proinova, I. Hadjiivanov, K. Solid-phase extraction of heavy metal ions on a high surface area titanium dioxide(anatase) [J]. Analyst.1996,121(5):607-612.
    [87]Mallikarjuna, N.N., Venkataraman, A. Adsorption of Pb2+ ions on nanosized γ-Fe2O3: formation of surface ternary complexes on ligand complexation [J]. Talanta.2003,60(1): 139-147.
    [88]Yang, L.H., Hu, B., Jiang, Z.C., Pan, H.L. On-line separation and preconcentration of trace metals in biological samples using a microcolumn loaded with PAN-modified nanometer-sized Tianium Dioxide, and their determination by ICP-AES, Microchim. Acta.2004,144(4): 227-231.
    [89]Gallego, M., Depena, Y.P., Valcarcel, M. Fullerenes as sorbent materials for metal preconcentration[J]. Anal.Chem.1994,66(22):4074-4078.
    [90]Duran, A., Tuzen, M., Soylak, M. Preconcentration of some trace elements via using multiwalled carbonnanotubes as solid phase extraction adsorbent[J]. J. Hazard. Mater.2009, 169(1-3):466-471.
    [91]Delaunay, N., Pichon, V., Hennion, M.C. Immunoaffinity solid-phase extraction for the trace-analysis of low-molecular-mass analytes in complex sample matrices[J]. J. Chromatogr. B. 2000,745(1):15-37.
    [92]Delaunay, N., Pichon, V., Hennion, M.C. Immunoaffinity solid-phase extraction for the trace-analysis of low-molecular-mass analytes in complex sample matrices[J]. J. Chromatogr. B. 2004,745(15):15-37.
    [93]Stevenson, D. Immuno-affinity solid-phase extraction[J]. J. Chromatogr. B.2000,745:39-48.
    [94]Bertoncini, N.D., Pichon, V., Hennion, M.C. Comparison of Immunoextraction Sorbents Prepared from Monoclonal and Polyclonal AntMsoproturon Antibodies and Optimization of the Appropriate Monoclonal Antibody-Based Sorbent for Environmental and Biological Applications[J]. Chromatographia[J].2001,53(1):S224-S230.
    [95]Polakov, M.V. Adsorption properties and structure of silica gel[J]. Zhur, Fiz. Khim.1931, 2(6):799-805.
    [96]Dickey, F.H. The Preparation of Specific Adsorbents[J]. Proc. Nat. Acad. Sci.,1949, 35(5):227-229.
    [97]Schmidt, R.H., Haupt, K. Molecularly Imprinted Polymer Films with Binding Properties Enhanced by the Reaction-Induced Phase Separation of a Sacrificial Polymeric Poroge[J]. Chem. Mater.2005,17(5):1007-1016.
    [98]Liang, R.N., Zhang R.M., Qin, W. Potentiometric sensor based on molecularly imprinted polymer for determination of melamine in milk[J] Sens. Actuators, B.2009,141(2):544-550.
    [99]Liu, P., Zhang X.H., Xu, W., Guo, C.H., Wang, S.F. Electrochemical sensor for the determination of brucine in human serum basedon molecularly imprinted poly-o-phenylenediamine/SWNTs composite film[J]. Sens. Actuators, B.2012,163(1):84-89.
    [100]Liang, F., Liu Y.J., Tan, Y.Y., Hu, J.M. Biosensor for the determination of sorbitol based on molecularly imprinted electrosynthesized polymers[J]. Biosens. Bioelectron.2004, 19(11):1513-1519.
    [101]Piletsky, S.A., Turner, N.W., Laitenberger, P. Molecularly imprinted polymers in clinical diagnostics-Future potential and existing problems[J]. Med. Eng. Phys.2006,28(10):971-977.
    [102]He, C.Y., Long, Y.Y., Pan, J.L., Li, K.A., Liu, F., Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples[J] J. Biochem. Biophys. Methods.2007,70(2):133-150.
    [103]Carmichael, A.J., Seddon, K.R. Polarity study of some 1-alkyl-3-methylimidazolium ambient-temperature ionic liquids with the solvatochromic dye, Nile Red[J]. J. Phys. Org. Chem.2000,13(10):591-595.
    [104]Fontanals, N., Borrull, F., MarceR.M. Ionic liquids in solid-phase Extraction[J] Trends Anal. Chem.2012,41:15-26.
    [105]Sun, P., Armstrong, D.W. Ionic liquids in analytical chemistry[J]. Anal. Chim. Acta.2010, 661(1):1-16.
    [106]Ho, T.D., Canestraro, A.J., Anderson, J.L. Ionic liquids in solid-phase microextraction:A review[J]. Anal. Chim. Acta.2011,695(1-2):18-43.
    [107]Martinis, E.M., Berton, P., Monasterio, R.P., Wuilloud, R.G. Emerging ionic liquid-based techniques for total-metal and metal-speciation analysis[J]. Trends Anal. Chem.2010,29 (10):1184-1201.
    [108]Han, X.X., Armstrong, D.W. Ionic Liquids in Separation[J]. Chem. Res.2007,40(11): 1079-1086.
    [109]Tian, M.L., Yan, H.Y., Row, K.H. Solid-phase extraction of tanshinones from Salvia Miltiorrhiza Bunge using ionic liquid-modified silica sorbents[J]. J. Chromatogr. B.877(8-9):738-742.
    [110]Tian, M.L., Bi, W.T., Row, K.H. Solid-phase extraction of liquiritin and glycyrrhizic acid from licorice using ionic liquid-based silica sorbent[J]. J. Sep. Sci.2009,32(23-24):4033-4039.
    [111]Bi, W.T., Tian,M.L., Row, K.H. Solid-phase extraction of matrine and oxymatrine from Sophora Flavescens Ait using amino-imidazolium polymer[J]. J. Sep. Sci.2010,33 (12): 1739-1745.
    [112]Ayata, S., Bozkurt, S.S., Ocakoglu, K. Separation and preconcentration of Pb(II) using ionic liquid-modified silica and its determination by flame atomic absorption spectrometry[J]. Talanta.2011,84(1):212-215.
    [113]刘长武,翟广书,买光熙,刘潇威,陈勇.固相萃取技术的原理及进展[J].农业环境与发展.2003,1:42-44.
    [114]Feng, Q.Z., Zhao, L.X., Yan, W., Lin, J.M., Zheng, Z.X. Molecularly imprinted solid-phase extraction combined with high performance liquid chromatography for analysis of phenolic compounds from environmental water samples[J]. J. Hazard. Mater.2009,167(1-3):282-288.
    [115]Tong, C.L., Guo, Y., Liu, W.P. Simultaneous determination of five nitroaniline and dinitroaniline isomers in wastewaters by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection[J]. Chemosphere.2010,81(3):430-435.
    [116]Soylak, M., Ercan, O. Selective separation and preconcentration of copper (II) in environmental samples by the solid phase extraction on multi-walled carbon nanotubes[J]. J. Hazard. Mater.2009,168(2-3):1527-1531.
    [117]Sadeghi, S., Sheikhzadeh, E. Solid phase extraction using silica gel modified with murexide for preconcentration of uranium (VI) ions from water samples [J]. J. Hazard. Mater. 2009,163(2-3):861-868.
    [118]Min, G., Wang, S., Zhu, H.P., Fang, G.Z., Zhang, Y. Multi-walled carbon nanotubes as solid-phase extraction adsorbents for determination of atrazine and its principal metabolites in water and soil samples by gas chromatography-mass spectrometry[J]. Sci. Total Environ. 2008,396(1:79-85.
    [119]Alonso, A., Almendral. M.J., Porras, M.J. Flow-injection solvent extraction with and without phase separation:Fluorimetric determination of aluminium in water [J]. Anal. Chim. Acta.2001,447(1-2):211-217.
    [120]黄武,章晶晶,郁小朴,孙艳波.固相萃高效液相色谱法检测鱼粉中三聚氰胺[J].2010,38(8):192-194.
    [121]Puoci, F., Curcio, M., Cirillo, G., lemma, F., Spizzirri, U.G., Picci, N. Molecularly imprinted solid-phase extraction for cholesterol determination in cheese products[J]. Food Chem.2008,106(2):836-842.
    [122]Quesada, M.C., Claude, B., Garcia, C.A.M. Olmo, I.M., Morin, P. Convenient solid phase extraction of cephalosporins in milk using a molecularly imprinted polymer[J]. Food Chem. 2012,135(2):775-779.
    [123]Ozcan, C.G., Satiroglu, N., Soylak, M. Column solid phase extraction of iron(Ⅲ), copper(Ⅱ), manganese(Ⅱ) and lead(Ⅱ) ions food and water samples on multi-walled carbon nanotubes[J]. Food Chem. Toxicol.2010,48(8-9):2401-2406.
    [124]Qi, X.Y. Development of a matrix solid-phase dispersion-sonication extraction method for the determination of fungicides residues in ginseng extract[J]. Food Chem.2010,121(3):758-762.
    [125]李伟,池玉梅,文红梅,葛庆华,王浩.固相萃取HPLC-MS (TOF)法测定人血浆中雷米普利拉的浓度[J].药物分析杂志.2006,26(2):181-183.
    [126]Ryan, D.P., Supko, J.G., Eder, J.P., Seiden, M.V., Demetri, G., Lynch, T.J., Fischman, A.J., Davis, J., Jimeno, J., Clark, J.W. Phase I and Pharmacokinetic Study of Ecteinascidin 743 Administered as a 72-Hour Continuous Intravenous Infusion in Patients with Solid Malignancies[J]. Clin. Cancer Res.2001,7(2):231-242.
    [127]Freiermuth, M., Plasse, J.C., Determination of morphine and codeine in plasma by HPLC following solid phase extraction[J]. J.Pharm. Biomed. Anal.1997,15(6):759-764.
    [128]Andersson, L.I., Hardenborg, E., Sandberg-Stall, M., Moller, K., Henriksson, J., Bramsby, S.I., Olsson, L.I., Abdel, R.M. Development of a molecularly imprinted polymer based solid-phase extraction of local anaesthetics from human plasma[J]. Anal. Chim. Acta.2004, 526(2):147-154.
    [129]Breadmore, M.C., Wolfe, K.A., Arcibal, I.G., Leung, W.K., Dickson, D., Giordano, B.C., Power, M.E., Ferrance, J.P., Feldman, S.H., Norris, P.M., Landers, J.P. Microchip-Based Purification of DNA from Biological Samples[J]. Anal. Chem.2003,75(8):1880-1886.
    [130]Navare,A., Zhou, M.S., McDonald, J., Noriega, F.G., Sullards, M.C., Fernandez, F.M. Serum biomarker profiling by solid-phase extraction with particle-embedded micro tips and matrix-assisted laser desorption/ionization mass spectrometry[J]. Rapid Commun. Mass Spectrom.2008,22(7):997-1008.
    [131]涂志凤.新型吸附材料的制备及其在痕量金属离子分析中的应用[博士论文].兰州:兰州大学.2012.
    [132]Fassel, V.A. There Must be an Easier Way:Some Reminiscences[J]. Spectrochim. Acta. 1985,40(10-12):1281-1292.
    [133]何晋浙.ICP-AES法在元素分析测试中的应用技术[J].浙江工业大学学报.2006,34(1):48-50.
    [134]Borai, E., Eid, M., Aly, H. Determination of REEs distribution in monazite and xenotime minerals by ion chromatography and ICP-AES [J]. Anal. Bioanal. Chem.2002,372(4):537-541.
    [135]黄云华ICP-OES法测定硅锰、锰铁合金中磷含量[J].福建分析测试.2008,17(2):68-70.
    [136]潘亮.以DDTP为化学改进剂,低温电热蒸发ICP-OES测定环境样品中的钴和镍[J].分析实验室.2006,25(8):45-49.
    [137]Li, Y.J, Hu, B. Sequential cloud point extraction for the speciation of mercury in sea food by inductively coupled plasma optical emission spectrometry [J]. Spectrochim. Acta. Part. B. 2007,62 (10):1153-1160.
    [138]Micro-scale flow system for on-line multielement preconcentration from saliva digests and determination by inductively coupled plasma optical emission spectrometry [J]. Spectrochim. Acta. Part. B.2001,56(10):1917-1925.
    [139]Hua, K.M., Kay, M., Indyk, H.E. Nutritional element analysis in infant formulas by direct dispersion and inductively coupled plasma-optical emission spectrometry [J]. Food Chem. 2000,68(4):463-470.
    [140]Wuilloud, R.G., Salonia, J.A., Olsina, R.A., Martinez, L.D. Determination of vanadium (V) in drinking water by flow injection and pre-concentration in a knotted reactor by inductively coupled plasma optical emission spectrometry with ultrasonic nebulization [J]. Spectrochim. Acta. Part. B.2000,55(6):671-680.
    [1]马智,王金叶,高祥,丁彤,秦永宁.埃洛石纳米管的应用研究现状[J].2012,24(0203):275-283.
    [2]Li,C.P., Liu, J.G., Qu, X.Z, Yang, Z.Z. A general synthesis approach toward halloysite-based composite nanotube [J]. J. Appl. Polym. Sci.2009,112(5):2647-2655.
    [3]Lvov, Y.M., Shchukin, D.G., Mohwald, H. Price, R.R. Halloysite Clay Nanotubes for Controlled Release of Protective Agents [J]. ACS Nano.2008,2(5):814-820.
    [4]Liu, R.C., Zhang, B., Mei, D.D., Zhang, H.Q., Liu, J.D. Adsorption of methyl violet from aqueous solution by halloysite nanotubes[J]. Desalination.2011,268(1-3):111-116.
    [5]Volzone, C., Tholmpson, J.G., Melnitchellko, A., Palethorpe, S.R. Selective gas adsorption by amorphousclay-mineral derivatives[J]. Clays. Clay. Miner.1999,47(5):647-657.
    [6]Luo, P., Zhao, Y.F., Zhang, B., Liu, J.D., Yang, Y, Liu, J.F. Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes[J]. Water Res.2010,44 (5):1489-1497.
    [7]VolzoneA, C., Garrid, L.B. Use of modified hydroxy-aluminumbentonites for chromium(Ⅲ) removal from solutions[J]. J. Environ. Manage.2008,88(4):1640-1648.
    [8]Zhang, Y, Yang, H.M. Halloysite nanotubes coated with magnetic nanoparticles[J]. Appl. Clay. Sci.2012,56:97-102.
    [9]Du, M.L., Guo, B.C., Jia, D.M. Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene)[J]. Eur. Polym. J.2006,42(6):1362-1369.
    [10]Li, C.P., Liu, J.G., Qu, X.Z., Yang, Z.Z. Polymer-Modified halloysite composite nanotubes[J]. J. Appl. Polym. Sci.2008,110(6):3638-3646.
    [11]Shamsi, M.H., Luqman, M., Basarir, F. Plasma-modified halloysite Nanocomposites: Effect of plasma modification on the structure and dynamic mechanical properties of halloysite-polystyrene nanocomposites[J]. Polym. Int.2010,59(11):1492-1498.
    [12]Liu, P., Zhao, M.F. Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP)[J]. Appl. Surf. Sci.2009,255:3989-3993.
    [13]Zatta, L., Gardolinski, J.E.F.C., Wypych, F. Raw halloysite as reusable heterogeneous catalyst for esterification of lauric acid[J]. Appl. Clay. Sci.2011,51(1-2):165-169.
    [14]Tierrablanca, E., Garcia, J.R., Roman'P., Cruz-Silva, R. Biomimetic polymerization of aniline using hematin supported on halloysite nanotubes[J], Appl. Catal., A.2010,381(1-2):267-273.
    [15]类延达,陈锋,刘晓亮,万晶晶,邹全亮,杜明亮,郭宝春,贾德民.硅烷偶联剂改性埃洛石纳米管的表征和增强丁苯橡胶的研究[J].特种橡胶制品.2009,30(1):1-4.
    [16]王今华.埃洛石改性及其对废水中重金属离子的吸附研究[硕士论文].郑州:郑州大学.2010.
    [17]Sanchez, M.M.J., Rodriguez, C.M.S., Andrades, M.S., Camazano, M.S. Efficiency of different clay minerals modified with a cationic surfactant in the adsorption of pesticides: influence of clay type and pesticide hydrophobicity[J]. Appl. Clay. Sci.2006,31(3-4): 216-228.
    [18]Deng, S.Q., Zhang, J.N., Ye, L. Halloysite-epoxy nanocomposites with improved particle dispersion through ball mill homogenisation and chemical treatments[J]. Compos. Sci. Technol.2009,69(14):2497-2505.
    [19]Tang, Y.H., Deng, S.Q., Ye, L., Yang,.C., Yuan, Q., Zhang, J.L., Zhao, C.B. Effects of unfolded and intercalated halloysites on mechanical properties of halloysite-epoxy nanocomposites[J]. Compos. Part A-Appl. S.2011,42(4):345-354.
    [20]Rastegarzadeh, S., Pourreza, N., Kiasat, A.R., Yahyavi, H. Selective solid phase extraction of palladium by adsorption of its 5(p-dimethylaminobenzylidene)rhodanine complex on silica-PEG as a new adsorbent[J]. Microchim. Acta.2010,170 (1-2):135-140.
    [21]Fujiwara, K., Ramesh, A., Maki, T., Hasegawa, H., Ueda, K. Adsorption of platinum (IV), palladium (II) and gold (Ⅲ) from aqueous solutions onto 1-lysine modified crosslinked chitosan resin[J]. J. Hazard. Mater.2007,146(1-2):39-50.
    [22]Farrauto, R.J., Liu, Y., Ruettinger, W., Ilinich, O., Shore, L., Giroux, T. Precious Metal Catalysts Supported on Ceramic and Metal Monolithic Structures for the Hydrogen Economy[J]. Cat. Rev.-Sci. Eng.2007,49 (2):141-196.
    [23]Rao, C.R.M., Reddi, G.S. Platinum group metals (PGM); occurrence, use and recent trends in their determination [J]. Trends Anal. Chem.2000,19 (9):565-586.
    [24]Tokalioglu, S., Oymak, T., Kartal,S. Determination of palladium in various samples by atomic absorption spectrometry after preconcentration with dimethylglyoxime on silica gel[J]. Anal. Chim. Acta.2004,511 (2):255-260.
    [25]Limbeck, A., Rendl, J., Puxbaum, H. ETAAS determination of palladium in environmental samples with on-line preconcentration and matrix separation [J]. J. Anal. At. Spectrom.2003,18(2):161-165.
    [26]Daniel, S., Gladis, J.M., Rao, T.P. Synthesis of imprinted polymer material with palladium ion nanopores and its analytical application[J]. Anal. Chim. Acta.2003,488 (2):173-182.
    [27]Ravindra, K., Bencs, L., Grieken, R.V. Platinum group elements in the environment and their health risk[J]. Sci. Total Environ.2004,318(1-3):1-43.
    [28]Krishna, M.V. B., Ranjit, M., Chandrasekaran, K., Venkateswarlu, G., Karunasagar, D. On-line preconcentration and recovery of palladium from waters using polyaniline (PANI) loaded in mini-column and determination by ICP-MS; elimination of spectral interferences [J]. Talanta.2009,79(5):1454-1463.
    [29]Shamsipur, M., Shokrollahi, A., Sharghi, H., Eskandari, M.M. Solid phase extraction and determination of sub-ppb levels of hazardous Hg2+ ions[J]. J. Hazard. Mater.2005,117 (2-3):129-133.
    [30]Escudero, L.A., Cerutt, S., Olsina, R.A., Salonia, J.A., Gasquez, J.A. Factorial design optimization of experimental variables in the on-line separation/preconcentration of copper in water samples using solid phase extraction and ICP-OES determination[J]. J. Hazard. Mater.2010,183(1-3):218-223.
    [31]Margui, E., Queralt, I., Hidalgo, M. Application of X-ray fluorescence spectrometry to determination and quantitation of metals in vegetal material [J].Trends Anal. Chem.2009, 28 (3):362-372.
    [32]Ek, K.H., Morrison, G.M., Rauch, S. Environmental routes for platinum group elements to biological materials-a review[J]. Sci. Total Environ.2004,334-335:21-38.
    [33]Myasoedova, G.V., Antokol'skaya, I.I., Savvin, S.B. New chelating sorbents for noble metals [J]. Talanta.1985,32(12):1105-1112.
    [34]Guibal, E. Interactions of metal ions with chitosan-based sorbents:a review[J].Sep. Purif. Technol.2004,38(1):43-74.
    [35]Sadeghi, S., Sheikhzadeh, E. Solid phase extraction using silica gel modified with murexide for preconcentration of uranium (VI) ions from water samples [J]. J. Hazard. Mater.2009,163(2-3):861-868.
    [36]Laxen, D.P.H., Harrison, R.M. Cleaning methods for polythene containers prior to the determination of trace metals in fresh water samples[J]. Anal. Chem.1981,53(2):345-350.
    [37]Vansant, E.F., Van Der Voort, P., Vrancken, K.C. Characterization and chemical modification of the silica surface[M]. New York:Elsevier.1995.
    [38]Yuan, P., Southon, P.D., Liu, Z.W., Green, M.E.R., Hook, J.M., Antill, S.J., Kepert, C.J. Functionalization of Halloysite Clay Nanotubes by Grafting with y-Aminopropyltriethoxysilane[J]. J. Phys. Chem. C.2008,112(40):15742-15751.
    [39]Li, Z.H., Zhang, L., Zang, Z.P., Chang, X.J., Zou, X.J. Attapulgite modified with 2-hydroxy-1-naphthaldehyde as selective solid-phase extractant for determination of copper(II) in environmental samples by ICP-OES[J]. Microchim. Acta.2010,171 (1-2):161-168.
    [40]Tang, H.T. Organic Compound Spectra Determination, Publishing house of Beijing University[M]. Beijing.1992,124-159.
    [41]Dong, Q.N. IR Spectrum Method, Publishing house of the Chemical Industry[M]. Beijing: 1979,104-168.
    [42]Pereira, A.S., Ferreira, G., Caetano, L., Martines, M.A.U., Padilha, P.M., Santos, A., Castro, G.R. Preconcentration and determination of Cu(Ⅱ) in a fresh water sample using modified silica gel as a solid-phase extraction adsorbent [J]. J. Hazard. Mater.2010, 175(1-3):399-403.
    [43]Lu, Y.Q., Den, Z.H. Practical IR Speactra Method, Publishing house of Electrical Industry[M]. Beijing,1989,191.
    [44]Wang, J.H., Zhang, X., Zhang, B., Zhao, Y.F., Zhai, R., Liu, J.D., Chen, R.F. Rapid adsorption of Cr(VI) on modified halloysite nanotubes[J]. Desalination.2010,259(1-3):22-28.
    [45]Hubicki, Z., Wolowicz, A., Leszczynska, M. Studies of removal of palladium(II) ions from chloride solutions on weakly and strongly basic anion exchangers [J]. J. Hazard. Mater.2008,159(2-3):280-286.
    [46]Ghassary, P., Vincent, T., Marcano, J.S., Macaskie, L.E., Guibal, E. Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives [J]. Hydrometallurgy.2005,76(1-2):131-147.
    [47]He, Q., Hu, Z., Jiang, Y, Chang, X.J., Tu, Z.F., Zhang, L.N. Preconcentration of Cu(II), Fe(III) and Pb(II) with 2-((2-aminoethylamino)methyl)phenol-functionalized activated carbon followed by ICP-OES determinationOriginal Research Article[J]. J. Hazard. Mater. 2010,175 (1-3):710-714.
    [48]Ezoddin, M., Shemirani, F., Abdi, K., Saghezchi, M.K., Jamali, M.R. Application of modified nano-alumina as a solid phase extraction sorbent for the preconcentration of Cd and Pb in water and herbal samples prior to flame atomic absorption spectrometry determination[J]. J. Hazard. Mater.2010,178 (1-3):900-905.
    [49]Maquieira, A., Elmahadi, H.A.M., Puchades, R. Immobilized Cyanobacteria for Online Trace Metal Enrichment by Flow Injection Atomic Absorption Spectrometry[J]. Anal. Chem.1994,66(21):3632-3638.
    [50]Santos, M.R.M.C., Airoldi, C. Urea Derivatives Anchored on Silica Gel[J]. J. Colloid Interface Sci.1993,183(2):416-423.
    [51]Machado, R.S.A., Fonseca, J.M.G., Arakaki, L.N.H., Espinola, J.G.P., Oliveira, S.F. Silica gel containing sulfur, nitrogen and oxygen as adsorbent centers on surface for removing copper from aqueous/ethanolic solutions[J]. Talanta.2004,63(2):317-322.
    [52]Long, G.L., Winefordner, J.D. Guidelines for data acquisition and data quality evaluation in environmental chemistry[J]. Anal. Chem.1980,52(14):2242-2249.
    [53]Uheida, A., Iglesias, M., Fontas, C., Hidalgo, M., Salvado, V., Zhang, Y., Muhammed, M. Sorption of palladium(II), rhodium(Ⅲ), and platinum(Ⅳ) on Fe3O4 nanoparticles[J]. J. Colloid. Interface. Sci.2006,301(2):402-408.
    [54]Hang, C.Z., Hu, B., Jiang, Z.C., Zhang, N. Simultaneous on-line preconcentration and determination of trace metals in environmental samples using a modified nanometer-sized alumina packed micro-column by flow injection combined with ICP-OES[J]. Talanta. 2007,71(3):1239-1245.
    [55]Zhang, S.M., Pu, Q.S., Liu, P., Sun, Q.Y., Su, Z.X. Synthesis of amidinothioureido-silica gel and its application to flame atomic absorption spectrometric determination of silver, gold and palladium with on-line preconcentration and separation [J]. Anal. Chim. Acta. 2002,452 (2):223-230.
    [56]Jamal, M.R., Assadi, Y., Shemirani, F., Niasari, M.S. Application of thiophene-2-carbaldehyde-modified mesoporous silica as a new sorbent for separation and preconcentration of palladium prior to inductively coupled plasma atomic emission spectrometric determination[J]. Talanta.2007,71(4):1524-1529.
    [57]Lee, M.L., Tolg, G. Preconcentration of palladium, platinum and rhodium by on-line sorbent extraction for graphite furnace atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry [J]. Anal. Chim. Acta 1993,272(2):193-203.
    [1]Madrakian,T., Zolfigol, M.A., Solgi, M. Solid-phase extraction method for preconcentration of trace amounts of some metal ions in environmental samples using silica gel modified by 2,4,6-trimorpholino-1,3,5-triazin[J]. J. Hazard. Mater.2008,160(2-3):468-472.
    [2]Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., Delvaux, B. Halloysite clay minerals-A review[J]. Clay Minerals,2005,40:383-426.
    [3]Zhao, M.F., Liu, P. Adsorption behavior of methylene blue on halloysite nanotubes[J]. Micropor. Mesopor. Mater.2008,112(1-3):419-422.
    [4]Luo, P., Zhao, Y.F., Zhang, B., Liu, J.D., Yang, Y., Liu, J.F. Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes[J]. Water Res.2010,44 (5):1489-1497.
    [5]Guerra, D.L., Silva, E.M., Airoldi, C. Application of modified attapulgites as adsorbents for uranyl uptake from aqueous solution-Thermodynamic approach[J]. Process Saf. Environ. Prot.2010,88(1):53-61.
    [6]Soylak, M., Dogan, M. Separation and Enrichment of Zinc, Iron, Copper, Cadmium, Cobalt and Nickel from Urine with Amberlite XAD-16 Resin[J]. Trace Elem. Electrolytes.1996, 13(3):130-132.
    [7]Cai, Y.Q., Jiang, G.B., Liu, J.F., Zhou, Q.X. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A,4-nnonylphenol, and 4-tert-octylphenol[J]. Anal. Chem.2003,75(10):2517-2521.
    [8]Chen, J.P., Lin, M. Surface charge and metal ion adsorption on an H-type activated carbon: experimental observation and modeling simulation by the surface complex formation[J]. Carbon.2001,39(10):1491-1504.
    [9]Hennion, M.C. Solid-phase extraction:method development, sorbents, and coupling with liquid chromatography[J]. J. Chromatogr A.1999,856(1-2):3-54.
    [10]Yuan, P., Southon, P.D., Liu, Z.W., Green, M.E.R., Hook, J.M., Antill, S.J., Kepert, C.J. Functionalization of Halloysite Clay Nanotubes by Grafting with γ-Aminopropyltriethoxysilane[J]. J. Phys. Chem. C.2008,112(40):15742-15751.
    [11]Rooj, S., Das, A., Thakur, V., Mahaling, R.N., Bhowmick, A.K., Heinrich, G. Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes[J]. Mater. Des.2010,31(4):2151-2156.
    [12]Martin, J.H., Fritzwater, S.E. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic[J]. Nature,1998,331:341-343.
    [13]Laxen, D.P.H., Harrison, R.M. Cleaning methods for polythene containers prior to the determination of trace metals in fresh water samples Anal. Chem.1981,53(2):345-350.
    [14]Liu, Y.W., Chang, X.J., Guo, Y., Meng, S.M. Biosorption and preconcentration of lead and cadmium on waste Chinese herb Pang Da Hai[J]. J. Hazard. Mater. B.2006, (1-3):135,389-394.
    [15]Miranda, C.E.S., Reis, B.F., Baccan, N., Packer, A.P., Gine, M.F. Automated flow analysis system based on multicommutation for Cd, Ni and Pb on-line pre-concentration in a cationic exchange resin with determination by inductively coupled plasma atomic emission spectrometry[J]. Anal. Chim. Acta.2002,453:301-310.
    [16]Vansant, E.F., Van Der Voort, P., Vrancken, K.C. Characterization and chemical modification of the silica surface[M]. New York:Elsevier.1995.
    [17]Tang, H.T. Organic Compound Spectra Determination, Publishing house of Beijing University[M]. Beijing.1992,124-159.
    [18]Dong, Q.N. IR Spectrum Method, Publishing house of the Chemical Industry[M]. Beijing: 1979,104-168.
    [19]Zhou, Q.X., Zhao, X.N., Xiao, J.P. Preconcentration of nickel and cadmium by TiO2 nanotubes as solid-phase extraction adsorbents coupled with flame atomic absorption spectrometry [J]. Talanta.2009,77(5):1774-1777.
    [20]Ghaedi, M., Niknam, K., Taheri, K., Hossainia, H., Soylak, M. Flame atomic absorption spectrometric determination of copper, zinc and manganese after solid-phase extraction using 2,6-dichlorophenyl-3,3-bis(indolyl)methane loaded on Amberlite XAD-16 [J]. Food Chem. Toxicol.2010,48(3):891-897.
    [21]Ghaedi, M., Shokrollahi, A., Kianfar, A.H., Mirsadeghi, A.S., Pourfarokhi, A., Soylak, M. The determination of some heavy metals in food samples by flame atomic absorption spectrometry after their separation-preconcentration on bis salicyl aldehyde,1,3 propan diimine (BSPDI) loaded on activated carbon[J]. J. Hazard. Mater.2008,154(1-3):128-134.
    [22]Sharma, R.K., Pant, P. Preconcentration and determination of trace metal ions from aqueous samples by newly developed gallic acid modified Amberlite XAD-16 chelating resin[J]. J. Hazard. Mater.2009,163(1):295-301.
    [23]Zang, Z.P., Hu, Z., Li, Z.H., He, Q., Chang, X.J. Synthesis, characterization and application of ethylenediamine-modified multiwalled carbon nanotubes for selective solid-phase extraction and preconcentration of metal ions[J]. J. Hazard. Mater.2009,172 (2-3):958-963.
    [24]Filho, N.L.D., Costa, R.M., Marangoni, F. Adsorption of transition-metal ions in ethanol solution by a nanomaterial based on modified silsesquioxane Colloids Surf. A.2008,317(1-3):625-635.
    [25]Mahmoud, M.E., Saadi, M.S.M.A. Selective solid phase extraction and preconcentration of iron(Ⅲ) based on silica gel-chemically immobilized purpurogallin[J]. Anal. Chim. Acta 2001, 450(1-2):239-246.
    [26]Bag, H., Tiirker, A.R., Lale, M. Determination of Cu, Zn, Fe, Ni and Cd by flame atomic absorption spectrophotometry after preconcentration by Escherichia coli immobilized on sepiolite[J]. Talanta.51(5):1035-1043.
    [27]Zhu, X.B., Chang, X.J., Cui,Y.M., Zou, X.J., Yang, D., Hu, Z. Solid-phase extraction of trace Cu(II) Fe(III) and Zn(II) with silica gel modified with curcumin from biological and natural water samples by ICP-OES[J]. Microchem. J.2007,86(2):189-194.
    [28]Li, Z.H., Chang, X.J., Zou, X.J., Zhu, X.B., Nie, R., Hu, Z., Li, R.J. Chemically-modified activated carbon with ethylenediamine for selective solid-phase extraction and preconcentration of metal ions[J]. Anal. Chim. Acta.2009,632(2):272-277.
    [1]Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., Smalley, R.E. C60:Buckminsterfullerene [J]. Narure.1985,318(6042):162-163.
    [2]Iijima, S. Helical microtubes of graphitic carbon[J]. Nature.1991,354(6348):56-58.
    [3]Bethune, D.S., Kiang, C.H., Devries, M.S. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls[J]. Nature.1993,363:605-607.
    [4]Iijima, S., Ichihashi, T. Single-shell carbon nanotubes of 1 nm diameter[J]. Nature.1993, 363:603-605.
    [5]高盐生,董江庆,徐晓燕.纳米技术在生物传感器中的研究应用[J].江苏化工.2008,36(3):4-6.
    [6]朱赞赞.功能化碳纳米管复合材料的构筑及在电催化中的应用[硕士论文].兰州:兰州大学.2008.
    [7]成会明.纳米碳管制备、结构、物性及应用[M].北京:化学工业出版社.2002.
    [8]侯鹏翔,白朔,成会明.碳纳米管提纯的研究进展[J].碳素技术.2001,4:30-33.
    [9]Yacaman, M. J., Yoshida, M. M., Rendon, L. Catalytic growth of carbon microtubules with fullerene structure, [J]. Appl.Phys.Lett.1993,62(2):202-204.
    [10]宋维君,张宁.碳纳米管的纯化进展[J].广东化工.2006,33(1):50-53.
    [11]Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M. Exceptionally high young's modulus observed for individual carbon nanotubes [J]. Nature.1996,381:678-680.
    [12]Ma, R. Z., Liang, J., Wei, B.Q., Zhang, B., Xu,C.L., Wu, D.H. Study of electrochemicalca-pacitors utilizing carbon nanotube electrodes [J]. J. Power Sources.1999,84(1):126-129.
    [13]Kim, P., Lieber, C.M. Nanotube nanotweezers [J]. Science.1999,286(5447):2148-2150.
    [14]Dillon, A.C., Jones, K.M., Bekkedahl,T.A., Kiang, C.H., Bethune, D.S., Heben, M.J. Storage of hydrogen in single-walled carbon nanotubes[J]. Nature,1997,386(6623):377-379.
    [15]Darkrim, F.D. Monte carlo simulations of hydrogen adsorption ins ingle-walled carbon nanotubes [J]. J. Chem. Phys.1998,109(12):4981-4984.
    [16]Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M., Dresselhaus, M.S. Hydrogen storage in single-walled carbon nanotubes at room temperature[J]. Science.1999,286(5442):1127-1129.
    [17]王敏炜,李凤仪,彭年才.碳纳米管-新型的催化剂载体[J].新型碳材料.2002,17:75-79.
    [18]Planeix, J.M., Coustel, N., Coq, B., Bretons, V., Kumbhar, P.S., Dutartre, R., Geneste, P., Bernier, P., Ajayan, P. M. Application of carbon nanotubes as supports in heterogeneous catalysis[J]. J. Am. Chem. Soc.1994,116(17):7935-7936.
    [19]Lu, C., Chiu, H., Liu, C. Removal of zinc(Ⅱ) from aqueous solution by purified carbon nanotubes:kinetics and equilibrium studies[J]. Ind. Eng. Chem. Res.2006,45(8):2850-2855.
    [20]Lu, C., Chiu, H. Adsorption of zinc(II) from water with purified carbon nanotubes[J]. Chem.Eng. Sci.2006,61(4):1138-1145.
    [21]Liang, P., Liu, Y., Guo, L., Zeng, J., Lu, H. Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry[J]. J. Anal. At. Spectrom.2004, 19(11):1489-1492.
    [22]Teixeira-Tarley, C.R., Barbosa, A.F., Gava-Segatelli, M., Costa-Figueiredo, E., Orival-Luccas, P. Highly improved sensitivity of TS-FF-AAS for Cd(II) determination at ng L-1 levels using a simple flow injection minicolumn preconcentration system with multiwall carbon nanotubes [J]. J. Anal. At. Spectrom.2006,21(11):1305-1313.
    [23]Perez-Aguilar, N. V, Diaz-Flores, P.E., Rangel-Mendez, J.R. The adsorption kinetics of cadmium by three different types of carbon nanotubes[J]. J. Colloid Interface Sci.2011, 364(2):279-287.
    [24]Liang, P., Ding, Q., Song, F. Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples[J]. J Sep Sci.2005, 28(17):2339-2343.
    [25]Chen, S.Z., Liu, C., Yang, M., Lu, D.B., Zhu, L., Wang, Z. Solid-phase extraction of Cu, Co and Pb on oxidized single-walled carbon nanotubes and their determination by inductively coupled plasma mass spectrometry[J]. J. Hazard. Mater.2009,170(1):247-251.
    [26]Shawky, H.A., El-Aassar, A.H. M., Abo-Zeid, D.E. Chitosan/carbon nanotube composite beads:Preparation, characterization, and cost evaluation for mercury removal from wastewater of some industrial cities in Egypt[J]. J. Appl. Polym. Sci.2012,125(21):93-101.
    [27]Tuzen, M., Saygi, K.O., Soylak, M. Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes[J]. J. Hazard. Mater.2008, 152(2):632-639.
    [28]Ghaseminezhad, S., Afzali, D., Taher, M.A. Flame atomic absorption spectrometry for the determination of trace amount of rhodium after separation and preconcentration onto modified multiwalled carbon nanotubes as a new solid sorbent[J]. Talanta.2009,80 (1):168-172.
    [29]Chen, C.L., Hu, J., Xu, D., Tan, X.L., Meng, Y.D., Wang, X.K. Surface complexation modeling of Sr(II) and Eu(III) adsorption onto oxidized multiwall carbon nanotubes[J]. J. Colloid. Interface. Sci.2008, (1):33-41.
    [30]Liang, P., Guo, L., Liu, Y., Determination of trace rare earth elements by inductively coupled plasma atomic emission spectrometry after preconcentration with multiwalled carbon nanotubes[J], Spectrochim. Acta Part B 2005,60 (10):125-129.
    [31]Li, Y.H., Wang, S., Luan, Z., Ding, J., Xu, C., Wu, D. Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes[J]. Carbon.2003,41(5):1057-1062.
    [32]Xu, Y.J., Rosa, A., Liu, A.X., Su, D.S. Characterization and use of functionalized carbon nanotubes for the adsorption of heavy metal anions[J]. New Carbon Mater.2011,26(1)57-62.
    [33]Zang Z.P., Hu Z., Li Z.H., He, Q., Chang, X.J. Synthesis, characterization and application of ethylenediamine-modified multiwalled carbon nanotubes for selective solid-phase extraction and preconcentration of metal ions[J]. J. Hazard. Mater.2009,172(2-3):958-963.
    [34]Wu, S.H. Studies of the equilibrium and thermodynamics of the adsorption of Cu2+ onto as-produced and modified carbon nanotubes[J]. J. Colloid Interface Sci.2007,311(2):338-346.
    [35]Kosa, S.A., Al-Zhrani, G., Salam, M.A. Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline[J]. Chem. Eng. J. 2012,181-182:159-168.
    [36]Feria, S.L., Valcarcel, C.M. One step carbon nanotubes-based solid-phase extraction for the gas chromatographic-mass spectrometric multiclass pesticide control in virgin olive oils [J]. J. Chromatogr. A.2009,1216 (43):7346-7350.
    [37]Fang G.Z., He J.X., Wang S. Multiwalled carbon nanotubes as sorbent for on-line coupling of solid-phase extraction to high-performance liquid chromatography for simultaneous determination of 10 sulfonamides in eggs and pork[J]. J. Chromatogr. A.2006,1127(1-2):12-17.
    [38]Peng, X.J., Li, Y.H., Luan, Z.K. Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes[J]. Chem. Phys. Lett.2003,376(1-2):154-158.
    [39]Cai, Y.Q., Jiang, G.B., Liu, J.F., Zhou, Q.X. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A,4-nnonylphenol, and 4-tert-octylphenol[J]. Anal. Chem.2003,75(10):2517-2521.
    [40]Zhang, H., Ma, D.S., Xie, Q.L., Chen, X.L. An approach to studying heavy metal pollution caused by modern city development in Nanjing[J]. China Environ Geol.1999,38(3):223-228.
    [41]WHO (2004) WHO guidelines for drinking-water quality,3rd edn. WHO, Geneva.
    [42]Laxen, D.P.H., Harrison, R.M. Cleaning methods for polythene containers prior to the determination of trace metals in fresh water samples[J]. Anal. Chem.1981,53(2):345-350.
    [43]Liu, Y.W., Chang, X.J., Guo, Y., Meng, S.M. Biosorption and preconcentration of lead and cadmium on waste Chinese herb Pang Da Hai[J]. J. Hazard. Mater. B.2006,135(1-3):389-394.
    [44]Li, J., He, W.D., Yang, L.P., Sun, X.L., Hua, Q. Preparation of multi-walled carbon nanotubes grafted with synthetic ploy (L-lysine) through surface-initiated ring-opening polymerization[J]. Polymer 2007,48(15):4352-4360.
    [45]Wang, G.J., Guo, J.L., Qu, Z.H. Influence of carbon nanotubes modified with ethylenediamine on mechanic properties of epoxy resin[J]. FRP/CM.2006,34:16-19.
    [46]Tang, H.T. Organic Compound Spectra Determination[M]. Beijing:Publishing house of Beijing University.1992.
    [47]Dong, Q.N. IR Spectrum Method[M]. Beijing:Publishing house of the Chemical Industry. 1979.
    [48]Tu, Z.F., He, Q., Chang, X.J., Hu, Z., Gao, R., Zhang, L.J., Li, Z.H. 1-(2-Formamidoethyl)-3-phenylurea functionalized activated carbon for selective solid-phase extraction and preconcentration of metal ions[J]. Anal. Chim. Acta.2009,649(2):252-257.
    [49]Maquieira, A., Elmahadi, H.A.M., Puchades, R. Immobilized cyanobacteria for online trace metal enrichment by Flow Injection Atomic Absorption Spectrometry[J]. Anal. Chem.1994, 66(21):3632-3638.
    [50]Imamoglu, M., Tekir, O. Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks[J]. Desalination.2008, 228(1-3):108-113.
    [51]Xie, F.Z., Lin, X.C., Wu, X.P., Xie, Z.H. Solid phase extraction of lead (II), copper (II), cadmium (II) and nickel (II) using gallic acid-modified silica gel prior to determination by flame atomic absorption spectrometry[J]. Talanta 2008,74(4):836-843.
    [52]Ibrahim, M.N.M., Ngah, W.S.W., Norliyana, M.S., Daud, W.R.W., Rafatullah, M., Sulaiman, O., Hashim, R. A novel agricultural waste adsorbent for the removal of lead (Ⅱ) ions from aqueous solutions[J]. J. Hazard. Mater.2010,182(1-3):377-385.
    [53]Bulut, V.N., Gundogdu, A., Duran, C., Senturk, H.S., Soylak, M., Elci, L., Tufekcib, M. A multi-element solid-phase extraction method for trace metals determination in environmental samples on Amberlite XAD-2000[J]. J. Hazard. Mater.2007,146(1-2):155-163.
    [54]Yin, J., Jiang, Z.C., Chang, G., Hu, B. Simultaneous on-line preconcentration and determination of trace metals in environmental samples by flow injection combined with inductively coupled plasma mass spectrometry using a nanometer-sized alumina packed micro-column[J]. Anal. Chim. Acta.2005,540(2):333-339.
    [1]Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films[J]. Science,2004, 306(5696):666-669.
    [2]Li, D., Kaner, R.B. Graphene-Based MaterialsScience[J].2008,320(5880):1170-1170.
    [3]Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., SonBinh, T., Nguyen, Rodney, S.R. Preparation and characterization of graphene oxide paper [J]. Nature.2007,448:457-460.
    [4]Xu, Y.F., Liu, Z.B., Zhang, X.L., Wang, Y.S., Tian, J.Q., Hu, Y, Ma, Y.F., Zhang, X.Y., Chen, Y.S. A Graphene Hybrid Material Covalently Functionalizedwith Porphyrin:Synthesis and Optical Limiting Property[J]. Adv Mater.2009,21:1275-1279.
    [5]Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S. The structure of suspended graphene sheets[J]. Nature.2007,446:60-63.
    [6]Lerf, A., He, H.Y., Forster, M., Klinowski, J. Structure of graphite oxide revisited [J]. J Phy Chem B.1998,102(23):4477-4482.
    [7]Rourke, J.P., Pandey, P.A., Moore, J.J., Bates, M., Kinloch, I.A., Young, R.J., Wilson, N.R. The real graphene oxide revealed:Stripping the oxidative debris from the graphene-like sheets [J]. Angew. Chem.-Int. Edit.2011,50(14):3173-3177.
    [8]曹也文.功能化石墨烯的制备及在高性能高分子材料中的应用[博士论文].上海:复旦大学.2012.
    [9]Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Alonso, M.H., Adamson, D.H., Prud'homme, R.K., Car, R., Saville, D.A., Aksay, I.A. Functionalized single grapheme sheets derived from splitting graphite oxide[J]. J. Phys. Chem B.2006,110(17):8535-8539.
    [10]Hummers, J.W.S., Offeman, R.E. Preparation of graphitic oxide[J]. J Am Chem Soc.1958, 80(6):1339-1339.
    [11]Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z.Z., Slesarev,A., Alemany, L.B., Lu, W., Tour, J.M. Improved Synthesis of Graphene Oxide[J]. ACS Nano,2010,4 (8):4806-4814.
    [12]Kulkarni, D.D., Choi, I., Singamaneni, S.S., Tsukruk, V.V. Graphene Oxide-Polyelectrolyte Nanomembranes[J]. ACS Nano.2010,4(8):4667-4676.
    [13]Lu, Z.Y., Zhu, J.X., Sim, D.H., Zhou, W.W., Shi, W.H., Hng, H.H., Yan, Q.Y. Synthesis of Ultrathin Silicon Nanosheets by Using Graphene Oxide as Template[J]. Chem. Mater. 2011,23(24):5293-5295.
    [14]Arriagada, D.C., Sanhueza, L., Wrighton, K. Removal of 4-Chlorophenol using Graphene, Graphene Oxide, and A-Doped Graphene (A=N,B):A Computational Study[J]. DOI:10.1002/qua.24416,2013.
    [15]Su, C.L., Loh, K.P. Carbocatalysts:Graphene Oxide and Its Derivatives[J]. Acc. Chem. Res. A.2012,DOI:10.1021/ar300118v.
    [16]Liu, Y., Yu, D.S., Zeng, C., Miao,Z.C., Dai, L.M. Biocompatible Graphene Oxide-Based Glucose Biosensors[J]. Langmuir.2010,26 (9):6158-6160.
    [17]Wan, Y, Wang, Y, Wu, J.J., Zhang, D. Graphene Oxide Sheet-Mediated Silver Enhancement for Application to Electrochemical Biosensors[J]. Anal.Chem.2011,83(3):648-653.
    [18]Chandra, V., Kim, K.K. Highly selective adsorption of Hg2+ by a polypyrrole-reduced grapheme oxide composite[J]. Chem. Commun.,2011,47:3942-3944.
    [19]Yang, S.T., Chen, S., Chang, Y.L., Cao, A.N., Liu, Y.F., Wang, H.F. Removal of methylene blue from aqueous solution by graphene oxide[J]. J Colloid. Interf. Sci.2011,359:24-29.
    [20]Du, D., Wang, L.M., Shao, Y.Y., Wang, J., Engelhard, M.H., Lin, Y.H. Functionalized Graphene Oxide as a Nanocarrier in a Multienzyme Labeling Amplification Strategy for Ultrasensitive Electrochemical Immunoassay of Phosphorylated p53 (S392)[J]. Anal. Chem. 2011,83:746-752.
    [21]Chung, C., Kim, Y.K., Shin, D., Ryoo.S.Y, Hong, B.H.,Min, D.H. Biomedical Applications of Graphene and Graphene Oxide[J]. Acc. Chem. Res.2013, DOI:10.1021/ar300159f.
    [22]Kotchey, G.P., Allen, B.L., Vedala, H., Yanamala, N., Kapralov, A.A., Tyurina, Y.Y, Seetharaman, J.K., Kagan, V.E., Star, A. The Enzymatic Oxidation of Graphene Oxide[J]. ACS Nano.2011,5(3):2098-2108.
    [23]Sapsford, K. E., Berti, L., Medintz, I.L. Materials for Fluorescence Resonance Energy Transfer Analysis:Beyond Traditional Donor-Acceptor Combinations[J]. Angew. Chem. Int. Ed.2006,45(28):4562-4588.
    [24]Liu, Y, Liu, C.Y, Liu, Y. Investigation on fluorescence quenching of dyes by graphite oxide and grapheme[J]. Appl. Surf. Sci.2011,257:5513-5518
    [25]Dong, H.F., Gao, W.C., Yan, F., Ji, H.X., Ju, H.X. Fluorescence Resonance Energy Transfer between Quantum Dots and Graphene Oxide for Sensing Biomolecules[J]. Anal. Chem 2010, 82(13):5511-5517.
    [26]Liu, C.H., Wang, Z., Jia, H.X., Li, Z.P. Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide:a highly sensitive biosensing platform [J]. Chem. Commun.2011,47(16):4661-4663
    [27]Zhao, X.H., Kong, R.M., Zhang, X.B., Meng, H.M., Liu, W.N., Tan, W.H., Shen, G.L., Yu, R.Q. Graphene-DNAzyme Based Biosensor for Amplified Fluorescence "Turn-On" Detection of Pb2+ with a High Selectivity[J]. Anal. Chem.2011,83(13):5062-5066.
    [28]张书城,刘平,仉宝聚.钍资源及其利用[J].世界核地质科学.2005,22(2):98-103.
    [29]Shtangeeva, I., Ayrault, S., Jain, J. Thorium uptake by wheat at different stages of plant growth[J]. J. Environ. Radioactiv.2005,81:283-293.
    [30]王翔.稀土矿中汞、铅、钍的含量特征研究[J].资源开发与市场.2008,24(12):1063-1064.
    [31]Xu, J.D., Whisenhunt, D.W., Veeck, A.C., Uhlir, L.C., Raymond, K.N. Thorium(IV) Complexes of Bidentate Hydroxypyridinonates[J]. Inorg. Chem.2003,42:2665-2674.
    [32]杨乡珍.国内钍的光度分析新进展[J].湿法冶金.2011,30(1):82-84.
    [33]纪学珍,刘慧君,王丽丽,梁俊,伍瑜雯,刘秀云,张小军.环糊精键合硅胶材料对钍的吸附[J].核化学与放射化学.2012,34(1):40-45.
    [34]王初丹,侯明.电感耦合等离子体质谱法测定地质样品中的稀土、钍元素[J].2011,31(3):454-456.
    [35]Che, J.F., Shen, L.Y., Xiao, Y.H. A new approach to fabricate graphene nanosheets in organic medium:combination of reduction and dispersion [J]. J Mater Chem.2010,20(9):1722-1727.
    [36]McAllister, M.J., Li, J.L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera, A.M., Milius, D.L., Car, R., PrudT'homme, R.K., Aksay, I.A. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite[J]. Chem. Mater.2007, 19(18):4396-4404.
    [37]Yang, S.T., Chen, S., Chang, Y.L., Cao, A., Liu, Y.F., Wang, H.F. Removal of methylene blue from aqueous solution by graphene oxide[J]. J. Colloid. Interf. Sci 2011,359(1):24-29.
    [38]Xie, G.Q., Xi, P.X., Liu, H.Y., Chen, F.J., Huang, L., Shi, Y.J., Hou, F.P., Zeng, Z.Z., Shao, C.W., Wang, J. A facile chemical method to produce superparamagnetic graphene oxide-Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution [J]. J. Mater. Chem.2012,22(3):1033-1039.
    [39]Paredes, J.I., Rodil, S.V., Alonso, A.M., Tascon, J.M.D. Graphene oxide dispersions in organic solvents[J]. Langmuir.2008,24(19):10560-10564.
    [40]Zhao, G.X., Ren, X.M., Gao, X., Tan, X.L., Li, J.X., Chen, C.L., Huang, Y.Y., Wang, X.K. Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets Guixia Affiliation Information [J]. Dalton Trans.2011,40(41):10945-10952.
    [41]Chandra, V., Kim, K.S., Highly selective adsorption of Hg2+ by a polypyrrole-reduced graphene oxide composite[J]. Chem. Commun.2011,47(13):394-3944.
    [42]Moore, J.W., Ramamoorthy, S., Heavy Metals in Natural Waters[M]. New York:Springer-Verlag,1984.
    [43]Zeinera, M., Steffan, I., Cindric, I.J., Determination of trace elements in olive oil by ICP-AES and ETA-AAS:A pilot study on the geographical characterization [J]. Microchem. J. 2005,81(2):171-176.
    [44]Shamsipur, M., Shokrollahi, A., Sharghi, H., Eskandari, M.M. Solid phase extraction and determination of sub-ppb levels of hazardous Hg2+ions[J]. J. Hazard. Mater.2005,117:(2-3) 129-133.
    [45]Liu, Q., Shi, J.B., Sun, J.T., Wang, T., Zeng, L.X., Jiang, G.B. Graphene and Graphene Oxide Sheets Supported on Silica as Versatile and High-Performance Adsorbents for Solid-Phase Extraction [J]. Angew. Chem.2011,123:6035-6039.
    [46]Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films[J]. Science.2004, 306(5696):666-669.
    [47]Yang, ST., Chang, Y.L., Wang, H.F., Liu, G.B., Chen, S., Wang, Y.W., Liu, Y.F., Cao, A.N. Folding/aggregation of graphene oxide and its application in Cu2+ emoval[J]. J. Colloid Interfece Sci.2010,351(1):122-127.
    [48]Zhao, G.X., Ren, X.M., Gao, X., Tan, X.L., Li, J.X., Chen, C.L., Huang, Y.Y., Wang, X.K. Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets[J]. Dalton Trans.2011,40:10945-10952
    [49]Ramesha, G.K., Kumara, A.V., Muralidhara, H.B., Sampath, S. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes[J]. J. Colloid Interface Sci. 2011,361(1):270-277.
    [50]Laxen, D.P.H., Harrison, R.M. Cleaning methods for polythene containers prior to the determination of trace metals in fresh water samples[J]. Anal. Chem.1981,53(2):345-350.
    [51]Lin, Y., Jin, J., Song, M. Preparation and characterisation of covalent polymer functionalized grapheme oxide[J]. J. Mater. Chem.2011,21:3455-3461.
    [52]Yuan, P., Southon, P.D., Liu, Z.W., Green, M.E.R., Hook, J.M., Antill, S.J. Functionalization of Halloysite Clay Nanotubes by Grafting with γ-Aminopropyltriethoxysilane[J]. J. Phys. Chem. C.2008,112:15742-15751.
    [53]Maquieira, A., Elmahadi, H.A.M., Puchades, R. Immobilized Cyanobacteria for Online Trace Metal Enrichment by Flow Injection Atomic Absorption Spectrometry[J]. Anal. Chem.1994, 66(21):3632-3638.
    [54]Santos, M.R.M.C., Airoldi, C. Urea Derivatives Anchored on Silica Gel[J]. J. Colloid Interf. Sci.1993,183(2):416-423.
    [55]Machado, R.S.A., Fonseca, J.M.G., Arakaki, L.N.H., Espinola, J.G.P., Oliveira, S.F. Silica gel containing sulfur, nitrogen and oxygen as adsorbent centers on surface for removing copper from aqueous/ethanolic solutions[J]. Talanta.2004,63(2):317-322.
    [56]Li, Z.H., Chang, X.J., Zou, X.J., Zhu, X.B., Nie, R., Hu, Z., Li, R.J. Chemically-modified activated carbon with ethylenediamine for selective solid-phase extraction and preconcentration of metal ions[J]. Anal. Chim.Acta.2009,632:272-277.
    [57]Cui Y.M., Chang X.J., Zhai Y.H. ICP-AES determination of trace elements after preconcentrated with p-dimethylaminobenzaldehyde-modified nanometer SiO2 from sample solution[J]. Microchem. J.2006,83:35-41.
    [58]Mendil, D., Tuzen, M., Usta, C. Bacillus thuringiensis var. israelensis immobilized on Chromosorb 101:A new solid phase extractant for preconcentration of heavy metal ions in environmental samples[J]. J. Hazard. Mater.2008,150(2):357-363.
    [59]Zang, Z.P., Hu, Z., Li, Z.H., He, Q., Chang, X.J. Synthesis, characterization and application of ethylenediamine-modified multiwalled carbon nanotubes for selective solid-phase extraction and preconcentration of metal ions[J]. J Hazard. Mater.2009,172:958-963.
    [60]Long, G.L., Winefordner, J.D. Guidelines for data acquisition and data quality evaluation in environmental chemistry[J]. Anal. Chem.1980,52(14):2242-2249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700