用户名: 密码: 验证码:
BPA对大鼠雌激素受体α及相关细胞因子表达的影响:F_0、F_1两代动物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1.通过对F_0代大鼠的围生期双酚A染毒,观察围生期双酚A暴露对F_0、F_1两代大鼠血清IgG(immune globulin G)、IgM(immune globulin M)的影响。
     2.通过对F_0代大鼠的围生期双酚A染毒,观察围生期双酚A暴露对F_0、F_1两代大鼠雌激素受体-α(estrogen receptor-α,ER-α)相对含量的影响。
     3.通过对F_0代大鼠的围生期双酚A染毒,观察围生期双酚A暴露对F_0、F_1两代大鼠脾脏白介素-2(interleukin-2,IL-2)、白介素-12(interleukin-12,IL-12)、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、γ-干扰素(interferon-γ,IFN-γ)和胸腺Fas、FasL这6种细胞因子mRNA表达的改变。
     为进一步探讨环境内分泌干扰物(environmental endocrine disruptors,EEDs)对机体免疫功能的影响提供依据。
     方法
     1.动物染毒
     健康F344大鼠,雌雄各20只,4周龄,适应喂养一周后,按体重随机分为4组,每组10只,雌雄各半。将双酚A溶于玉米油中,配成不同浓度的溶液,按低剂量组(4 mg/kg·d),中剂量组(40mg/kg·d),高剂量组(400 mg/kg·d),从第五周开始,每早8~9点对动物进行灌胃,对照组给予同体积的玉米油。大鼠进入青春期后(9周龄),将同剂量组大鼠按雌雄1:1比例合笼,雌鼠受孕后,单独饲养,直至子鼠出生后30天,子鼠由母鼠哺乳喂养。
     2.体重和一般情况观察
     每周称2次体重,密切观察各组动物的一般状况变化,如被毛、粪便、行为、精神状态等。
     3.组织病理学观察
     取胸腺、脾脏、肝脏和肾脏,称重后各剪取一部分,固定于10%的中性福尔马林中。苏木精、伊红染色(HE染色),石蜡包埋,制成5μm厚的片子,显微镜下观察并拍照,比较各组间的差别。
     4.血清抗体测定
     取全血,离心分离血清,采用酶联免疫间接法测定大鼠血清IgG、IgM的相对含量。
     5.Western杂交
     分别取出各处理组大鼠的脾脏和胸腺组织,匀浆,离心,用SDS-PAGE和Western Blot方法分别分析脾脏和胸腺组织中雌激素受体α(estrogen receptorα,ER-α)的相对含量变化。
     6.实时定量PCR
     取大鼠脾脏和胸腺组织,提取RNA后,检验RNA的浓度和完整性,以GAPDH为内参基因,进行逆转录和PCR反应后,得到IL-2,IL-12,IFN-γ,TNF-α以及Fas,Fasl基因的相对表达量。
     结果
     1.F_0代体重、脏器指数变化情况
     大鼠体重持续增长,但与对照组相比,F_0代低剂量组的体重略有增加但无显著统计学意义;中剂量组的体重无明显改变;高剂量组大鼠的体重却显著降低(P<0.05),其它指标无明显改变(P>0.05)。
     2.F_1代体重、脏器指数变化情况
     与对照组相比,低剂量组子鼠的体重虽无显著变化,脾脏重量和脾脏指数(脾脏与体重之比)却显著增加(P<0.05);中剂量组子鼠的体重和脾脏重量均无显著变化,脾脏指数显著增加(P<0.05);高剂量组子鼠的体重和脾脏重量显著降低(P<0.05),脾脏指数无显著变化(P>0.05)。
     3.F_1代性别比例的变化情况
     各组雌性仔鼠的比例较大,但与对照组相比,其他各剂量组仔鼠数及性别比例无显著变化(P>0.05)。
     4.组织病理学改变
     (1)F_0代组织病理学改变
     肝脏各给药组与对照组的部分动物肝细胞浊肿变性,肝细胞疏松化,以高剂量组略明显,未见坏死。肾脏与对照组相比,高剂量组部分动物出现肾小球萎缩。脾脏高剂量组部分动物白髓减少,脾小体缩小。胸腺无明显病理改变。
     (2)F_1代组织病理学改变
     各给药组与对照组相比,高剂量组部分动物肝细胞浊肿变性,肝细胞疏松化,但未见坏死。肾脏与对照组相比,高剂量组部分动物出现肾小球萎缩。脾脏、胸腺无明显病理改变。
     5.血清IgG、IgM的改变
     (1)F_0代血清IgG、IgM的改变
     与对照组相比,高剂量组雌性大鼠的血清IgG、IgM含量明显减少(P<0.05),而低剂量组和中剂量组均无明显变化(P>0.05);雄性大鼠也出现了相同的变化。
     (2)F_1代血清IgG、IgM的改变
     各剂量组雌性大鼠血清IgG、IgM均无明显改变(P>0.05);雄性大鼠高剂量组血清IgG、IgM明显降低(P<0.05),低剂量组和中剂量组无显著变化(P>0.05)。
     6.雌激素受体α(estrogen receptorα,ER-α)的变化
     (1)脾脏ER-α的改变
     F_0代,低、中剂量组雌性F344大鼠的ER-α表达量没有明显改变,但高剂量组ER-α的表达明显提高(P<0.05),而雄性大鼠恰恰相反,低、中剂量组无明显变化,高剂量组ER-α表达量降低(P<0.05)。
     F_1代,低剂量组雌性F344大鼠的ER-α表达量没有明显改变,但中、高剂量组ER-α的表达明显提高(P<0.05),而雄性大鼠各剂量组ER-α均无明显变化。
     (2)胸腺ER-α的改变
     F_0代,低剂量组雌性F344大鼠的ER-α表达量没有明显改变,但中、高剂量组ER-α的表达明显提高(P<0.05),而雄性大鼠各剂量组ER-α均无明显变化。
     F_1代,低剂量组雌性F344大鼠的ER-α表达量没有明显改变,但中、高剂量组ER-α的表达明显提高(P<0.05),而雄性低剂量组大鼠ER-α无明显变化,中、高剂量组表达量明显降低(P<0.05)。
     7.IL-2、IL-12、IFN-γ、TNF-α、Fas、FasL表达的改变
     (1)F_0代基因表达的变化
     与对照组相比,低、中、高剂量组脾脏IL-2、IL-12、IFN-γ、TNF-α的mRNA表达均显著降低(P<0.05),胸腺Fas表达下降(P<0.05),FasL表达在低剂量组出现一个短暂的下降后(P<0.05),在中、高剂量组明显上升(P<0.05)。
     (2)F_1代基因表达的变化。
     与对照组相比,低、中、高剂量组脾脏IL-2、IL-12、IFN-γ、TNF-α的mRNA表达均显著降低(P<0.05),胸腺Fas表达下降(P<0.05),FasL表达在低剂量组明显下降(P<0.05),在中、高剂量组却明显上升(P<0.05)。
Object:
     1.To observe the influence of bisphenol A on the concentration of immune globulin G,immune globulin M,after the exposure of bisphenol A.
     2.To observe the influence of bisphenol A on the expression of estrogen receptor alpha when the rats of F_0 generation were administered bisphenol A.
     3 To observe the effect of bisphenol A on the expression of IL-2,IL-12,TNF-α, IFN-γin spleens and the expression of Fas,FasL in thymus,when the rats of F_0 generation were administered bisphenol A..
     This is important to supple for the research of environmental endocrine disruptors on the immune function.
     Methods:
     1.Treatment of rats
     Fisher 344 rats were four weeks old and were divided into control and 4,40 and 400 mg·kg~(-1)BPA groups.Rats were allowed to acclimatize for 1 week prior to the treatment.Bisphenol A was given orally to the three treatment groups daily at 4,40, 400 mg/kg respectively.Controls were treated with the same volume corn oil.When the rats were nine weeks old,vaginal smears were examined daily after female rats were placed with males.Sperm-positive smear was used to determine gestational day (GD0).After positive detection,pregnant rats were placed individually.Twenty pregnant rats and twenty male rats were divided into four groups in random and the sex ratio of each group was 1:1.Treatments were prolonged for the offspring were thirty days old.Ten offspring were selected randomly from each group.
     2.General conditions
     To weigh the rats once a week and observe their general conditions such as clothing hair,excrement and urine,action and mental station et al.
     3.Histological parameters
     The rats were sacrificed by cervical dislocation after the last treatment.The surplus portions of all organs,were fixed in Bouin's Solution and buffered formalin(4%), dehydrated and processed for paraffin wax embedding.The sections were cut at 5um and stained with hematoxiylin and eosin(H&E).The sections of the paraffin blocks were monitored and compared.
     4.Determination of antibody
     To observe the concentration of IgG、IgM by enzyme-linked immunosorbent assay(ELISA),after the exposure of bisphenol A.
     5.Western Blotting
     Microsomes from the spleens and thymus of rats treated with bisphenol A were prepared by differential centrifugation as described previously.The relative concentration of estrogen receptor alpha was evaluated by separated by SDS-polyacrylamide gel electrophoresis(SDS-PAGE,10%gel)and Western Blotting.
     6.Real- time RT-PCR
     Total RNA was prepared from spleens and thymus using Total RNA Kit following the instruction.The relative quantity of IL-2,IL-12,IFN-γ,TNF-α,Fas,and Fasl were gained by Rea-time RT-PCR,and GAPDH was the housekeep gene.
     Result
     1.The change of weight and organ index in F_0 generation
     In F_0 generation,one female rat died during the exposure at 400mg/kg level.Our results showed that rats exposed to 400mg/kg bisphenol A caused significant decrease in body weights(P<0.05).There were no significant changes in spleen weights and spleen index(P>0.05).
     2.The change of weight and organ index in F_1 generation
     In F_1 generation,the terminal body weights and the spleen weights were significantly decreased in the high dose group(P<0.05).There were no weight changes in the low and middle dose groups,but the spleen index increased significantly.In the middle and high dose groups,not any significantly changes were observed in the liver weights,but the liver index increased greatly(P<0.05).Both thymus and thymus index had not any change contrasted to the control(P>0.05).
     3.The change of sex ratio in F_1 generation
     There were more female rats than males in F_1 generation.But there were no significant changes in the number of offspring and the sex ratios contrast to the control(P>0.05).
     4.The change in Histology
     (1)The histological change in F_0 generation
     In F_0 generation,white pulp of spleens reduced and splenic corpuscle contracted in 400mg/kg group.There was not any histology change in other groups.No abnormalities or treatment related changes were observed in any of the thymus sections of the treatment groups when compared with the control.In F_0 generations, not any histology change was observed in livers at low and middle dose.But in high dose,granular degeneration was visible in hepatocyte.It was observed that depauperation were occurred in acinus renis at 400mg/kg in F_0 generation.
     (2)The histological change in F_0 generation
     In F_1 generations,not any histology change was observed in livers at low and middle dose.But in high dose,granular degeneration was visible in hepatocyte.It was observed that depauperation were occurred in acinus renis at 400mg/kg in F_1 generation.No abnormalities or treatment related changes were observed in any of the thymus and spleens sections of the treatment groups.
     5.The change of IgG、IgM
     (1)The change of IgG、IgM in F_0 generation
     Compare to the control,the concentration of IgG、IgM in high dose group increased significantly in both female and male rats(P<0.05),but no significant change was observed in low and middle dose groups(P>0.05).
     (2)The change of IgG、IgM in F_0 generation
     Compare to the control,there was no significant change in female rats in all treatment groups(P>0.05).Whereas,the concentration of IgG、IgM in high dose group of male decreased significantly in(P<0.05),but no significant change was observed in low and middle dose groups(P>0.05).
     6.The change of ER-α
     (1)The change of ER-αin spleen
     In F_0 generation,the expression of ER-αreduced in male rats but increased in female rats in the high dose group(P<0.05).There were no any changes in the other groups.Similar findings were found in the middle and high dose groups in F_1 generation.
     (2)The change of ER-αin thymus
     In F_0 generation,the expression of ER-αincreased in female rats in the middle and high dose group(P<0.05).There were no any changes in the low dose groups and male rats.In F_1 generation,the expression of ER-αincreased in female rats in the middle and high dose group(P<0.05),but reduced in male rats in the middle and high dose group.There were no any changes in the low dose groups in both female and male rats.
     7.The expression of IL-2、IL-12、IFN-γ、TNF-α、Fas、FasL
     (1)The change of gene in F_0 generation
     The expression of IL-2 IL-12 IFN-γand TNF-αmRNA down-regulated greatly in all the treatment groups compared to the control group(P<0.05).The expression of Fas decrease in all treatment groups but the expression of FasL up-regulated in middle and high dose groups after it decrease in low dose group(P<0.05).
     (2)The change of gene in F_1 generation
     The expression of IL-2 IL-12 IFN-γand TNF-αmRNA down-regulated greatly in all the treatment groups compared to the control group(P<0.05).The expression of Fas decrease in all treatment groups but the expression of FasL up-regulated in middle and high dose groups after it decrease in low dose group(P<0.05)
引文
[1]李卫华,吴向东,顾祖维等.环境内分泌干扰物毒理研究的现状及展望[J].卫生毒理学杂志.2000,14(1):13-15.
    [2]姚卫蓉.食品包装污染物研究进展.现代食品科技.2005,21(1):150-153.
    [3]Cooper I,Bristow A,Ticep P A et al.Methods of analysis to test migration from coatings on metal containers[F].Final Reports Ministry of Agriculture.Fisheries and Food,LK,1996,2217.
    [4]Kawamura Y,Sano H,Yamada T.Migrations of bisphenol A from can coatings to drinks[J].Journal of the Food Hygienic Society of Japan,1999,40:158-165.
    [5]Biles J F,MaNeal TP,Begley TH.Determination of bisphenol A migrating from epoxy can coatings to infant fomula liquid concent rates[J].Agriculture and Food Chemistry,1997,45:4697-4700.
    [6]Horie M,Yoshida T,Ishii R et al.Determination of biphenol A in canned drinks by LC/MS[J].Eunseki Kagaku,1999,48:579-587.
    [7]Brotons J A,Olea-Serrano MF,Villalobos M,et al.Xenoestrogens released from lacquer coatings in canned food[J].Environmental Health Perspectires,1995,10:608-612.
    [8]Irranaka M,Sasaki K,Nrroto S,et al.Determination of bisphenol A in camped foods by C G/MS[J].Journal of Food Hygienic Society of Japan,2004,42(2):71-78.
    [9]Yoshida T,Horie M,Hoshino Y,et al.Determination of bisphenol A in canned vegetables and fruit by high performance liquid chromatography[J].Food Additivesand Contaminants,2001,18(1):69-75.
    [10]Goodson A,Sunmerfield W,Cooper I.Survey of bisphenol A and bisphenol F in canned food[J].Food Additives and Contaminants,2002,19(8):796-802.
    [11]Schonfelder G,Wittfoht W,Hoop H,et al.Parent bisphenol A accumulation in the human maternal-fetal-placenta unit[J].Environ Health Perspect,2002,110(11):703-707.
    [12]Ema M,Fulukawa M,et al.Rat two-generation reproductive toxicity study of bisphenol A[J].Reprot Toxicology,2001,15(5):505-523.
    [13]Howdeshell K L,Hotchkiss A K,Vandenbergh J G,et al.Exposure to bisphenol A advances puberty[J].Nature,1999,401:763-764.
    [14]Beverly S R,Mary KM,David A D,et al.Perinatal exposure to low doses of bisphenol A affects body weight,patterns of estrous cyclicity,and plasma LH levels[J].Environment Health Perspect,2001,109:675-680.
    [15]贾孟春.环境内分泌干扰物对男性生殖的影响[J].国外医学计划生育/生殖健康分册.2006,25(3)174-177.
    [16]Khurana S,Ranmal S,Ben-Jonathan N.Exposure of newborn male and females rats to environmental estrogens:delayed and sustained hyperprolatinemia and alterations in estrogen receptor expression[J].Endocrinology,2000,141:4512-4517.
    [17]Facciolo R M,Alo R,Madeo M,et al.Early cerebral activities of the environmental estrogen bisphenol A appear to act via the somatostain receptor subtype sst2[J].Environment Health respect,2002,110(suppl):397-402.
    [18]Kubo,Arai O,Ogata R,et al.Exposure to bisphenol A during the fetal and susking periods disrupts sexual differentiation of the locus coeruleus and of behavior in the rat[J].Neuroscience Letter,2001,304:73-76.
    [19]Farabollini F,Porrini S,Dessi-Fulgheri F.Perinatal exposure to the estrogenic pollutant bisphenol A on sociosexual behavior in male and female rats[J].Pharmacology Biochemistry Behavior,1999,64:687-694.
    [20]Farabollini F,Porrini S,Della Seta D,et al.Effects of perinatal exposure to bisphenol A on sociosexual behavior of female rats[J].Environment Health Perspect,2002,110(suppl):409-414.
    [21]Dessi-Fulgheri F,Porrini S,Farabollini F.Effects of perinatal exposure to bisphenol A on play behavior of female and male juvenile rats[J].Environment Health Perspect,2002,110(suppl):403-407.
    [22]Palanaza P,Howdeshell KL,Parmigiane S,et al.Exposure to a low dose of bisphenol A during fetal life or in adulthood alters materenal behavior in mice [J].Environment Health Perspect,2002,110(suppl):415-422.
    [23]龙冬梅,张浩,程薇波,吴德生.围生期双酚A暴露对雄鼠子一代生长和脑发育形态的影响[J].环境与职业医学,2006,23(2):118-121.
    [24]Inadera H.The immune system as a target for environmental chemicals:xenoestrogens and other compounds[J].Toxiology Letters,2006,164:191-206.
    [25]Sakazaki H,Veno H,Nakamuro K.Estrogen receptor α in mouse splenic lymphocytes:possible involvement in immunity[J].Toxicology Letters,2002,133:221-229.
    [26]Rice C D,Xiang Y,et al.Immune function,hepatic CYP1A and reproductive biomarker response in the gulf kill fish,Fundulus grandis,during dietary exposures to endocrine disruptors[J].Marine Environment Research,2000,50(1-5):163-168.
    [27]Razia S,Soda K,Yasuda K,Tamotsus,Oishi T.Effect of estrogen 17beta-estradiol and P-nonylphenol on the development of immune organs in male Japanse quail[J].Environment Science,2005,12(2):99-110.
    [28]Yao G H,Hou Y Y.Nonylphenol induces thymocyte apotosis througn Fas/Fasl pathway by mimicking estrogen in vivo[J].Environmental Toxicology and Pharmacology.2004,17:19-27.
    [29]Gupta,C.Reproductive malformation of the male offspring following maternal exposure to estrogenic chemicals[J].Proc.Soc.Exp.Biol.Med,2000,224:61-68.
    [30]Karrow N.A.,Guo T.L.,Delclos K.B.,et al.Nonylphenol alters the activity of splenic NK cells and the numbers of leukocyte subpopulations in Sprague-Dawley rats:a two generation feeding study[J].Toxicology,2004,196:237-245.
    [31]刘艳,崔金山,张玉敏,段志文,李海山.环境雌激素壬基酚对小鼠生精功能的影响[J].工业卫生与职业病,2004,5(30):293-296.
    [32]Guo T.L.,Germolec D.R.,Musgrove D.L.,Delclos K.B.,Newbold,R.R.Weis C.,White Jr K.L..Myelotoxicity in genistein-,nonylphenol-,methoxychlor-,vinclozolinor ethinyl estradiol-exposed F_1 generations of Sprague-Dawley rats following developmental and adult exposures[J].Toxicology.2005,211:207-219.
    [33]马全祥,毛泽善,袁向山,韩金珠,杨廷桐.壬基酚对小鼠肝脏显微结构的影响[J].新乡医学院学报,2006,3(23):229-230.
    [34]Rice C.,Birnbaum L.S.,Cogliano J.,et al.Exposure assessment for endocrine disruptors:some considerations in the design of studies[J].Environment Health Perspect,2003,111(13):1683-1690.
    [35]李佳圆,栾荣生.环境内分泌干扰物与人群健康的关系[J].国外医学卫生学
    分册,2001,4(28):193-196.
    
    [36]Sherry A F,Katherine M F,Delclos K B,Newbold R R.Maternal and offspring toxicity but few sexually dimorphic behavioral alterations result from nonylphenol exposure[J].Neurotoxicology and Yeratology,2000,22:583-591.
    [37]逢兵,周袁芬,周天喜,任道风,金泰,蒋学之.双酚A对大鼠胚胎毒性的初步研究[J].劳动医学,2000,2(17):76-77.
    [38]Negishi T,Kawasaki K,Takatori A,Ishii Y,Kyuwa S,Kuroda Y,Yoshikawa Y.Effects of perinatal exposure to bisphenol A on the behavior of offspring in F344rats[J].Environmental Toxicology and Pharmacology,2003,14:99-108.
    [39]李玉白,曾琦斐,刘劭钢.壬基酚毒性作用的研究[J].医学理论与实践,2006,4(19):375-376.
    [40]马全祥,毛泽善,袁向山,韩金珠,杨廷桐.壬基酚对小鼠肝脏显微结构的影响[J].新乡医学院学报,2006,3(23):229-230.
    [41]范奇元,李卫华,申立军,张蕴晖,丁训诚等.壬基酚对仔鼠雄性生殖系统的影响[J].中华预防医学杂志,2001,5(35):344-345.
    [42]Woo G H,Shibutani M,Ichiki T,Hamamura M,Lee K Y,Inoue K,Hirose M.A repeated 28-day oral dose toxicity study of nonylphenol in rats,based on the 'Enhanced OECD Test Guideline 407' for screening of endocrine-disrupting chemicals[J].Arch Toxicology,2006,10:129-204.
    [43]Lee P C,Patra S C,Stelloh C T,Lee W,Struwe M.Interaction of Nonylphenol and Hepatic CYPlA in Rats[J].Biochemical Pharmacology,1996,52:885-889.
    [44]Laurenzana E M,Weis C C,Bryan C W,Newbold R,Delclos K B.Effect of dietary administration of genistein,nonylphenol or ethinyl estradiol on hepatic testosterone metabolism,cytochrome P-450 enzymes,and estrogen receptor alpha expression[J].Food and Chemical Toxicology,2002,40:53-63.
    [45]Niwa T,Maehawa Y,Fujimoto M,Kishimoto K,Yabusaki Y,Ishibashi F,Katagiri M.Inhibition of Human Hepatic Cytochrome P450s and Steroidogenic CYP 17 by Nonylphenol[J].Biology Pharmacology Bulletin,2002,2(25):235-238.
    [46]Manuel Zumbado,Luis D.Boada,Santiago Torres,Jose" G.Monterde,Bonifacio N.Díaz-Chico,Juan L.Afonso,et al.Evaluation of acute hepatotoxic effects exerted by environmental estrogens nonylphenol and 4-octylphenol in immature male rats [J] .Toxicology,2002,175:49-62.
    [47] Tan B L , Kassim N M , Mohd M A. Assessment of pubertal development in juvenile male rats after sub-acute exposure to bisphenol A and nonylphenol [J].Toxicology Letters, 2003,143:261-270.
    [48] Kabuto H, Amakawa M, Shishibori T. Exposure to bisphenol A during embryonic/fetal life and infancy increases oxidative injury and causes underdevelopment of the brain and testis in mice[J]. Life Sciences, 2004, 74: 2931-2940.
    [49] Lee M H, Chung S W, Kang B Y, Park J, Lee C H, Hwang s, Kim T S. Enhanced interleukin-4 in CD4+ T cells and elevated immunoglobulin E levels in antigen-primed mice by bisphenol A and nonylphenol endocrine disruptors: involvement of nuclear factor-AT and Ca~(2+)[J]. Immumology, 2003,109:76-86.
    [50] Sakazaki H, Ueno H, Nakamuro K. Estrogen receptor a in mouse splenic lymphocytes: possible involvement in immunity[J]. Toxicology Letters, 2002,133: 221-229.
    [51] Jurgella G F, Marwah A, Malison J A, Peterson R, Barry T P. Effects of xenobiotics and steroids on renal and hepatic estrogen metabolism in lake trout[J]. General and Comparative Endocrinology, 2006,148 :273—281.
    [52] Meucci V , Arukwe A. Transcriptional modulation of brain and hepatic estrogen receptor and P450arom isotypes in juvenile Atlantic salmon (Salmo salar) after waterborne exposure to the xenoestrogen, 4-nonylphenol[J]. Aquatic Toxicology,2006, 77:167-177.
    [53] Razia S, Maegawa Y, Tamotsu S, Oishi T. Histological changes in immune and endocrine organs of quail embryos: exposure to estrogen and nonylphenol[J]. Ecotoxicology and Environmental Safety.2007, 8:145-154.
    [54] Yao G H, Yang L S, Hu Y L, Liang J, Liang J F, Hou Y Y. Nonylphenol-induced thymocyte apoptosis involved caspase-3 activation and mitochondrial depolarization[J]. Molecular Immunology ,2006,43 : 915-926.
    [55] Takao T, Nanamiya W, Nazarloo H P, Matsumoto R, Asaba K, Hashimoto K. Exposure to the environmental estrogen bisphenol A differentially modulated estrogen receptor-a and -himmunoreactivity and mRNA in male mouse testis[J]. Life Sciences,2003,72:1159-1169.
    [56] Ray, P, Ghosh, S.K, Zhang, DH , et al. Repression of interleukin-6 gene expression by 17β-estradiol: Inhibition of the DNA-binding activity of the transcription factors NF-IL6 and NF-kB by the estrogen receptor [J]. FEBS Lett, 1997, 409:79-85.
    [57] Hiroaki O, Akio Y, Masatoshi M. Determination of Bisphenol A and 4-Nonylphenol in Human Milk Using Alkaline Digestion and Cleanup by Solid-Phase Extraction[J]. The Japan Society for Analytical Chemistry, 2003,19:1663-1666.
    [58] Larkin P, SaboT, KelsoJ, Denslow N D. Analysis of Gene Expression Profiles in Largermouth Bass Exposed to 17-β -Estradiol and to Anthropogenic Contaminants that Behave as Estrogens[J].Ecotoxiology, 2003,12:463-468.
    [59] Hong E J, Choi K C , Jeung E B. Maternal-fetal transfer of endocrine disruptors in the induction of Calbindin-D9k mRNA and protein during pregnancy in rat model[J]. Molecular and Cellular Endocrinology, 2003, 212:63-72.
    [60] Masutomi N, Shibutani M, Takagi H, Uneyama C, Lee KY, Hirose M. Alteration of pituitary hormone-immunoreactive cell populations in rat offspring after maternal dietary exposure to endocrine-active chemicals[J].Arch Toxicology,2004,78: 232-240.
    [61] Min J, Lee S K, Bock M G. Effects of endocrine disrupting chemicals on distinct expression patterns of estrogen receptor, cytochrome P450 aromatase and p53 genes in Oryzias latipes Liver. Journal of Biochemistry Molecular Toxicology, 2003, 17(5):272-277.
    [62] Fujimoto N, Honda H. Effects of environmental estrogenic compounds on growth of a transplanted estrogen responsive pituitary tumor cell line in rats[J]. Food and Chemical Toxicology, 2003, 41:1711-1717.
    [63] Takagi H, Shibutani M, Masutomi N, Uneyama C, Takahashi N, Mitsumori K, Hirose M. Lack of maternal dietary exposure effects of bisphenol A and nonylphenol during the critical period for brain sexual differentiation on the reproductive/endocrine systems in later life[J]. Arch Toxicology, 2004, 78: 97-105.
    [64] Uguz C, Iscan M, Ayse E, Isgor B, Togan I. The bioaccumulation of nonyphenol and its adverse effect on the liver of rainbowtrout (Onchorynchus mykiss). Environmental Research, 2003, 92 :262-270.
    [65] Hernandez J P, Laura M C, Kretschmer X C, Baldwin W S. Gender-specific induction of cytochrome P450s in nonylphenol-treated FVB/NJ mice[J]. Toxicology and Applied Pharmacology, 2006, 78: 356-367.
    [66] Zhang L, Gibble R, Baer KN. The effects of 4-nonylphenol and ethanol on acute toxicity, embryo development, and reproduction in Daphnia magna[J]. Ecotoxicology and Environmental Safety, 2003, 55:330-337.
    [67] Lynn P W, Robert L H, Jr, David M. Developmental estrogenic exposure in zebrafish (Danio rerio): II. Histological evaluation of gametogenesis and organ toxicity [J]. Aquatic Toxicology, 2003, 63: 431-446.
    [68] Robert L. Hill, Jr, David M, Janz. Developmental estrogenic exposure in zebrafish (Danio rerio):I. Effects on sex ratio and breeding success[J].Aquatic Toxicology, 2003,63 :417-429.
    [69] Kyselova V, Peknicova J, Buckiova D, Boubelik M. Effects of p-nonylphenol and resveratrol on body and organ weight and in vivo fertility of outbred CD-1 mice[J]. Reproductive Biology and Endocrinology, 2003, 1:1-10.
    [70] Michael J H, Christopher J B, Becky L H, Stephanie D F, Dragoslav M, Kevin J K,Nancy D D. Vitellogenin mRNA regulation and plasma clearance in male sheepshead minnows, (Cyprinodon variegatus) after cessation of exposure to 17β -estradiol and p-nonylphenol [J].Aquatic Toxicology, 2002, 58: 99-112.
    [71] You H J, Choi C Y, Jeon Y J, Chung Y C, Kang S K, Hahm K S, Jeong H G. Suppression of inducible nitric oxide synthase and tumor necrosis factor-a expression by 4-nonylphenol in macrophages [J]. Biochemical and Biophysical Research Communications, 2002,294:753-759.
    [72]Tanaka T, Kohno H, Tanino M, Yanaida K. Inhibitory effects of estrogenic compounds, 4-Nonylphenol and genistein on 7,12-Dimethylbenz[a]anthracene-Induced Ovarian Carcinogenesis in Rats[J]. Ecotoxicology and Environmental Safety, 2002, 52:38-45.
    [73] Zumbado M, Boada L D, Torres S, Monterde J G, Chico B N, Juan L A, Juan G C, Blanco A. Evaluation of acute hepatotoxic effects exerted by environmental estrogens nonylphenol and 4-octylphenol in immature male rats[J]. Toxicology, 2002, 175 :49-62.
    [74] Doergea D R, Twaddlea N C, Churchwella M I, Changa H C, Newbold R R, Delclosa K B. Mass spectrometric determination of p-nonylphenol metabolism and disposition following oral administration to Sprague-Dawley rats[J]. Reproductive Toxicology, 2002,16:45-56.
    [75] Azenabor A A, Hoffman-Goetz L. 17β-Estradiol increases Ca~(2+) influx and down regulates interleukin-2 receptor in mouse thymocytes [J]. Biochem Biophys Res Commun, 2001, 281: 277-281.
    [76] Byun J A, Heo Y, Kim Y O, Pyo M Y. Bisphenol A-induced downregulation of murine macrophage activities in vitro and ex vivo [J]. Environmental Toxicology and Pharmacology, 2005, 19: 19-24.
    [77] Della Seta D, Minder I, Belloni V, Aloisi A M, Dessi-Fulgheri F, Farabollini F. Pubertal exposure to estrogenic chemicals affects behavior in juvenile and adult male rats [J]. Hormones and Behavior, 2006, 50: 301-307.
    [78] Estlander T, Jolanki R, Henriks-Eckerman M, Kanerva L. Occupational contact allergy to bisphenol A [J]. Contact Dermatitis, 1999, 40: 52-53.
    [79] Fox H S, Bond B L, Parslow T G. Estrogen regulates the IFN-γ promoter[J]. The Journal of Immunology, 1991, 146(12): 4362-4367.
    [80] Inadera H. The immune system as a target for environmental chemicals: Xenoestrogens and other compounds [J]. Toxicology Letters, 2006,164: 191-206.
    [81] Iguchi T, Watanabe H, Katsu Y. Developmental effects of estrogenic agents on mice, fish, and frogs: A mini-review [J]. Hormones and Behavior, 2001, 40: 248-251.
    [82] Kabuto H, Amakawa M, Shishibori T. Exposure to bisphenol A during embryonic/fetal life and infancy increases oxidative injury and causes underdevelopment of the brain and testis in mice [J]. Life Sciences,2004,74: 2931-2940.
    [83] Karrow N A, Guo T L, Delclos K B, Newbold R R, Weis C, Germolec D R, White K R, McCay J A. Nonylphenol alters the activity of splenic NK cells and the numbers of leukocyte subpopulations in Sprague-Dawley rats: a two generation feeding study [J]. Toxicology, 2004,196: 237-245.
    [84] Mochida K, Ohkubo N, Matsubara T, Ito K, Kakuno A, Fujii K. Effects of endocrine-disrupting chemicals on expression of ubiquitin C-terminal hydrolase mRNA in testis and brain of the Japanese common goby [J]. Aquatic Toxicology, 2004, 70: 123-136.
    [85] Negishi T, Kawasaki K, Takatori A, Ishii Y, Kyuwa S, Kuroda Y Yoshikawa Y. Effects of perinatal exposure to bisphenol A on the behavior of offspring in F344 rats [J]. Environmental Toxicology and Pharmacology, 2003, 14: 99-108.
    [86] Sanderson S O, Sebo T J, Murphy L M, et al. An analysis of the P63/alpha-methylacyl coenzyme A racemase immu-nohistochemical cocktail stain in prostate needle biopsy specimens and tissue microarrays [J]. Am J Clin Pathol, 2004, 121(2):220-225.
    [87] Matsumoto J, Yokota H, Yuasa A. Developmental increases in rat hepatic microsomal UDP-glucuronosyltransferase activities toward xenoestrogens and decreases during pregnancy [J]. Environmental Health Perspectives,2002 110(2):193-196.
    [88] Laurenzana E M, Balasubramanian G, Weis C, Blaydes B, Newbold R R, Delclos K B. Effect of nonylphenol on serum testosterone levels and testicular steroidogenic enzyme activity in neonatal, pubertal, and adult rats[J]. Chemico-Biological Interactions ,2002,139:23-41.
    [89] Moffat G J, Burns A, Miller J V, Joiner R, Ashby J. Glucuronidation of nonylphenol and octylphenol eliminates their ability to activate transcription via the estrogen receptor[J]. Regulatory Toxicology and Pharmacology. 2001, 34:182-187.
    [90] Takeshita A, Koibuchi N, Oka J, Taguchi M, Shishiba Y, Ozawa Y. Bisphenol-A, an environmental estrogen, activates the human orphan nuclear receptor, steroid and xenobiotic receptor-mediated transcription. European Journal of Endocrinology, 2001,145:513-517.
    [91]Sherry A F,Katherine M F,Delclos K B,Retha R N.Maternal and offspring toxicity but few sexually dimorphic behavioral alterations result from nonylphenol exposure.Neurotoxicology and Teratology,2000,22:583-591.
    [92]Cunny H C,Mayes B A,Rosica K A,Trutter J A,Miller J P V.Subchronic toxicity(90-Day)study with para-Nonylphenol in Rats[J].Regulatory Toxicology and Pharmacology,1997,26:172-178.
    [93]Kloasa W,Lutza I,Einspanier R.Amphibians as a model to study endocrine disruptors:Ⅱ.Estrogenic activity of environmental chemicals in vitro and in vivo[J].The Science of the Total Environment,1999,225:59-68.
    [94]Chapin R E,Delaney J,Wang Y,Lanning L,Davis B,Collins B,Mintz N,Wolfe G.The effects of 4-nonylpehno in rats:a multigeneration reproduction study.Toxiological Science,1999,52:80-91.
    [95]孙玲,屈艾,高宽场.环境内分泌干扰物的遗传毒性研究进展[J].江苏预防医学,2006,17(2):82-85.
    [96]尹大强,胡双庆,朱坤宁,等.双酚和几种天然激素对鲫鱼淋巴细胞增殖的影响[J].中国环境科学,2002,22(5):392-396.
    [97]胡军,李杰,张奎卫,李凤霞,等.双巯基乙酸异辛酯二正辛基锡对大生殖内分泌激素的影响[J].环境与健康杂志,2006,23(3):214-216.
    [98]井长勤,穆灵敏,张光谋.环境内分泌干扰物研究进展[J].新乡医学院报,2005,22(6):627-629.
    [99]乔丽丽,蔡德培.环境内分泌干扰物对青春期儿童性发育的影响[J].国外医学卫生学分册,2005,32(6):346-349.
    [100]伍吉云,万棉,胡建英.环境中内分泌干扰物的作用机制[J].环境与健康杂志,2005,22(6):494-497.
    [101]张信连,杨维东,刘洁生.环境内分泌干扰物对生物和人体健康的影响[J].国外医学临床生物化学与检验学分册,2005,26(6):349-351.
    [102]卢军萍,蔡德培.环境内分泌干扰物与青春期发育异常[J].国外医学儿科学分册,2005,32(3):108-111.
    [103]黄雅卿,张文昌.环境内分泌干扰物的雌激素受体毒性研究进展[J].中 国公共卫生,2004,20(10):1271-1273。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700