用户名: 密码: 验证码:
失水胁迫对月季切花花瓣内肽酶种类及其活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以探讨“失水胁迫对花瓣内肽酶活性和种类的诱导及其对月季切花失水胁迫耐性的影响”为目的。首先选用耐失水品种‘Samantha’和中度耐失水品种‘Belami’,并且以创造不同的胁迫程度为目的,分别进行了带枝花和离枝花两种方式下的失水胁迫处理,采用分光光度法测定了内肽酶的活性与种类,在此基础上,以‘Samantha’为试材,进行反复失水胁迫处理,通过底物胶电泳法进一步探讨了失水胁迫对内肽酶活性和种类的诱导。
     1、两品种之间的比较研究表明:
     1) 在0~60h失水胁迫过程中,带枝花花枝复水率出现由缓慢下降到快速下降的拐点,‘Samantha’(30h)晚于‘Belami’(24h);两品种花朵水势对应于复水率拐点呈现高度吻合的由快速下降转向缓慢下降的转折点。
     2) 两品种花瓣内肽酶活性诱导上升的转折点与其相应的复水率迅速降低的拐点相一致。胁迫诱导引起的花瓣中金属蛋白酶和丝氨酸蛋白酶活性的变化均是‘Samantha’显著低于‘Belami’。
     离枝花获得了与带枝花的一致的结果。
     由此说明,切花月季品种间失水胁迫耐性差异可能与胁迫对花瓣中金属蛋白酶和丝氨酸蛋白酶活性诱导的差异有关。对‘Samantha’的诱导显著低于‘Belami’,这可能是‘Samantha’较‘Belami'耐失水的原因之一。
     2、‘Samantha’反复失水胁迫处理结果表明:
     1) 失水胁迫24h后,经6h复水,花颈弯曲状况能够恢复到正常状态,同时花朵水势能够恢复到胁迫前的水平,但是花枝鲜重和花瓣内肽酶活性却在复水12h才基本上恢复到胁迫前水平;再次失水胁迫,花枝形态和花朵水分状况都表现出与第一次胁迫相近的变化,但是花瓣内肽酶活性较第一次胁迫过程中的变化更剧烈,上升幅度更大。
     2) 花瓣中丝氨酸蛋白酶活性的迅速增加与切花的衰老紧密联系;失水胁迫强烈诱导了丝氨酸蛋白酶活性,失水胁迫18h,其活性就和自然衰老过程中萎蔫期(6级)时的相同,复水6h仍不能明显下降,再次失水胁迫6h其活性就已经达到萎蔫期(6级)时的水平;ABA预处理减轻了失水胁迫的征状,水势的降低、鲜重的损失及内肽酶活性的水平都显著被抑制。
     3) 试验中对月季切花花瓣内肽酶底物胶电泳测定方法进行了优化,结果表明,花瓣蛋白粗提液通过Sephadex G-25柱子去盐去色素等杂质后,在40℃下前处理10min,然后用12%分离胶(含有0.15%明胶)进行分离,复性完成后温育16h,内肽酶的酶解条带在蓝黑色的凝胶背景上清晰出现。
     4) 底物胶电泳法结果显示,失水胁迫诱导的内肽酶与衰老相关的内肽酶谱带相同,共有3条,分子量从大到小依次大约为200 kDa、123.5 kDa、97.4 kDa,分别命名为EP1、EP2、EP3,其中EP2、EP3与衰老关系更为密切。EP1、EP2、EP3的最适反应温度是42℃;EP1的适宜pH在酸性到中性范围内,EP2和EP3在中性到碱性范围内,pH7时三者活性都能明显表现;EP2和EP3是丝氨酸蛋白酶,EP1可能是金属蛋白酶。
This work was aimed to investigate induction of the activity and types of endoproteases (EP) related to tolerance to water deficit stress (WDS) in cut rose (Rosa hybrida) during WDS. Two cultivars, 'Samantha' with the strong tolerance to WDS, and 'Belami', with the medium one, were used as materials. To make different process of WDS, the two cultivars were treated separately with two manners, namely flowers with or without branches, and the activity and types of EP were determined based on the spectrophotometer method. 'Samantha' was furthermore used to probe into the induction of the activity and types of EP by repeated WDS treatment through gelatin-SDS-PAGE method.1. Based on comparison of the two cultivars under WDS:1) A turning point, in which recovery rate of flowers was going to be decreasing rapidly, was observed in flowers with branches, and the occurrence of the turning point was later in 'Samantha'(30 h) than in 'Belami'(24 h). The turning point of quick falling of water potential (WP) of flower to slow falling was also observed in the flowers of both cultivar, these points were high identical with the turning points of their recovery rate.2) WDS-induced increase of EP activity was later in 'Samantha' than in 'Belami'. And the turning points of quick increase of EP activity induced by WDS in both cultivars were consistent with the turning points of their recovery rates. Changes of both Metallo-proteinase and serine proteinase activities of petals induced by WDS were significantly smaller in 'Samantha' than in 'Belami'.The experiments with the flowers without branches showed substantially the same results as those described above with the flowers with branches.These results above suggested that the difference of tolerance to WDS between different cultivars might be related to the different changes of metallo-proteinase and serine proteinase activities in petals induced by WDS.2. Based on the results of'Samantha' under repeated WDS treatment:1) WR for 6 h after WDS for 24 h, the bend states of flower neck could recover to the normal, at the same time, the WP of flower could come back to the level of no stress. But, the fresh weight of branch and the EP activity of petals could not get back to a basal low level as that of before WDS treatment until WR for 12 h. When WDS being given again, the similar changes took on in flower appearance, flower and branch water conditions, while more acutely change presented in EP activity of petals.2) The quick increase of serine proteinase activity in petals was correlative with senescence. The activity was induced strongly by WDS. WDS for 18 h, the activity was the same as that of senescence (stage 6) and did not decreased significantly until WR for 6 h. WDS for 6 h was given again, the activity came to the level of senescence. The WDS-inducible appearance of flower was weaken by ABA; the falling of water potential, the loss of fresh weight and the hoist of EP activity were controlled.3) The determining method of gelatin-containing polyacrylamide gels in EP from petals of cut rose was optimized. The result showed that removing salts and pigments from crude extracts through column of Sephadex G-25 was vital to the preparation of protein sample. The prepared samples were treated for 10
    min at 40 ℃, loaded in 12 % separating gel containing 0.15 % gelatin, following electrophoresis, incubated for 16 h, Clear bands were observed on the dark blue background.4) The results of gelatin-SDS-PAGE showed that the number of bands induced by WDS was the same as that of senescence-related EPs. According to the molecular weight from large to small, named EP1(200 kDa), EP2(123.5 kDa), EP3(97.4 kDa) respectively. Among them, EP2 and EP3 were most correlative with senescence. The optimum activation temperature of EPl, EP2 and EP3 was 42 ℃; As for the optimum activation pH, EPl had obvious activity from acidic to neutral, EP2 and EP3 had clear activity from neutral to alkali, and all the three had obvious activity was pH 7; EP2 and EP3 were serine proteinases, while EP1 was metallo-proteinase.
引文
1.曹慧,韩振海,许雪峰.水分胁迫诱导平邑甜菜碱叶片衰老期间内肽酶活力的变化及其生化特性研究.中国农业科学,2002,35(2):1514~1518
    2.丛日晨,赵喜亭,高俊平,张颢,熊丽.环已酰亚胺对月季切花开花进程及可溶性蛋白和游离氨基酸含量的影响.见:朱德蔚主编.中国园艺学会第九届学术年会论文集.北京:中国科学技术出版社,2001,386~391
    3.丛日晨,赵喜亭,刘晓辉,高俊平.月季切花采后花瓣内肽酶活性的变化.园艺学报,2003a,30(2):232~235
    4.丛日晨,赵喜亭,高俊平.失水胁迫对切花月季‘贝拉米’内肽酶的影响.园艺学报,2003b,30(3):352~354
    5.单宁伟,金基石,赵喜亭,高俊平.切花月季‘Samantha’采后失水胁迫耐性与花瓣SOD之间的关联.中国农业科学,2005,(印刷中)
    6.高俊平,孙自然,周山涛.我国鲜切花远距离流通中减少损耗的基本途径.北京农业大学学报,1995,21(增刊):84~88
    7.高玲,叶茂炳,徐朗莱,张荣铣.小麦叶片老化期间内肽酶活力上升的影响因素.中国农业科学,1999,32(3):102~104
    8.高玲,叶茂炳,张荣铣,徐朗莱.小麦旗叶老化期间的内肽酶.植物生理学报,1998,24(2):183~188
    9.高勇,吴绍锦.月季(Ladg X)切花水分平衡、鲜重变化和瓶插寿命的相关性研究初报.南京农业大学学报,1989,12(3):87~88
    10.高勇,吴绍锦.月季切花瓶插期生理变化与衰老关系的研究.园艺学报,1990,17(1):71~75
    11.戈家英.多效唑、脯氨酸对迎春切花保鲜作用研究.北方园艺,2001(1):40~41
    12.姜微波.凝胶电泳分析蛋白酶活性的技术改进.植物学通报,2002,19(5):607~610
    13.姜微波,Mayak S, Halevy A H. 香石竹花瓣对乙烯的敏感性与蛋白质合成.植物学报,1997,39(11):91~99
    14.姜微波,Mayak S,Halevy A H..香石竹花瓣中乙烯诱导合成的60蛋白质功能的初步研究.植物学报,1999,41(10):139~141
    15.李妮亚,高俊凤.水分胁迫对抗旱性不同的冬小麦幼芽蛋白质的影响.干旱地区农业研究,1997,15(1):85~90
    16.李永红,张常青,谭辉,高俊平,张颢,熊丽.提高月季切花失水胁迫耐性的抗氧化剂筛选.见:朱德蔚主编.中国园艺学会第九届学术年会论文集.北京:中国科学技术出版社,2001,364~373
    17.李永红,张常青,谭辉,金基石,高俊平.抗氧化剂对月季切花失水胁迫耐性和SOD、POD活性的影响.中国农业大学学报,2003,8(5):14~17
    18.刘晓辉,朱旭晖,赵喜亭,谭辉,高俊平.两个切花月季品种花朵开放和衰老对乙烯的反应及其与内肽酶的关联.中国农业科学,2005,38(3):589~595
    19.吕金印,刘军,曹翠玲,汪沛洪,高俊凤.水分胁迫下小麦叶片蛋白质、淀粉和纤维素合成的示踪研究.西北植物学报,1996,16(6):46~50
    20.马博英,徐程.多效唑对月季切花衰老的影响.生物学杂志,1997,14(4):32~33
    21.任东涛,赵松岭.水分胁迫对半干旱地区春小麦旗叶蛋白质代谢的影响.作物学报,1997,23(4):468~473。
    22.芮琪,徐朗莱.用凝胶电泳法研究小麦叶片衰老期间的内肽酶同工酶.南京农业大学学报,2002,25(3):85~88
    23.石岩,于振文,位东斌,余松烈.土壤水分胁迫对小麦根系与旗叶衰老的影响.西北植物学报,1998,18(2):196~201
    24.汤菊香,冯喜兰,高杨帆,薛香.保鲜剂采前处理对菊花切花保鲜效果研究.河南职业技术师范学院学报,1997,25(2):44~46
    25.唐雪梅,高俊平,艾光艳,孙自然.切花月季品种水分胁迫耐性差异及忍耐极限初探.园艺学报,1999,26(1):43~48
    26.王然,王成荣,罗松,韩碧文.月季花瓣衰老过程中可溶性蛋白的SDS-PAGE分析.园艺学报,1998,25(3):306~307
    27.吴小平,汪沛洪,张慧.渗透胁迫对不同抗旱性冬小麦蛋白水解酶活性的影响.西北农业学报,1994,3(1):49~53
    28.薛秋华,林如,月季切花衰老与含水量、膜脂过氧化及保护酶活性的关系.福建农业大学学报,1999,28(3):304~308
    29.曾武清.ETH对切花菊衰老的影响及保鲜研究.南京农业大学硕士学位论文.1996
    30.张常青,唐雪梅,高俊平,张颢,熊丽.切花月季‘萨蔓莎’和‘加布里拉’失水胁迫耐性的差异.园艺学报,2002,29(6):556~560
    31.赵喜亭,丛日晨,单宁伟,高俊平.切花月季品种间失水胁迫耐性与花瓣内肽酶活性之间的关联.园艺学报,2005,32(4)
    32.周昊,杜林方,朱晓峰.用于植物光系统Ⅱ蛋白酶检测的活性染色方法.生物化学与生物物理进展,2002,29(4):651~654
    33.周相娟,姜微波,赵玉梅,刘鹏程.香菜叶片衰老相关63 ku蛋白酶的分析鉴定.科学通报,2002,47(9):693~696
    34.周晓馥,徐洪伟.三唑酮对玫瑰切花衰老指标的影响.植物生理学通讯,2000,36(5):409~411
    35. Adam Z. Protein stability and degradation in chloroplasts. Plant Molecular Biology, 1996, 32 (5): 773~783
    36. Allen G J, Kuchitsu K, Chu S P, Murata Y, Schroeder J I. Arabidopsis abil-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell, 1999, 11(9): 1785~1798
    37. Arima K, Uchikoba T, Yonezawa H, Shimada M, Kaneda M. Isolation and characterization of a serine protease from the sprouts of Pleioblastus hindsii Nakai. Phytochemistry. 2000, 54: 559~565.
    38. Barbara N, Stefania C, Raffaella V, Amedeo A. Purification and characterization of an endoprotease from alfalfa senescent leaves. Phytochemistry, 1998,49 (3) : 643 ~ 649
    39. Bell P R. Megaspore abortion: a consequence of selective apoptosis? Int. J. Plant Sci., 1996,157 : 1-7
    40. Beers E P, Woffenden B J, and Zhao C S. Plant Proteolytic Enzymes: Possible Roles during Programmed Cell Death. Plant Molecular Biology, 2000,44: 399-415
    41. Beers E P, Freeman T B. Proteinase Activity during Tracheary Element Differentiation in Zinnia Mesophyll Cultures. Plant Physiology, 1997, 113 : 873 - 880
    42. Boiler T, Kende H. Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiology. 1979,63: 1123-1132
    43. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem., 1976, 72: 248 - 254
    44. Brady C J. Nucleic acid and protein synthesis. In: Senescence and Aging in Plants. Edited by Nooden L D, Leopold A C. San Diego: Academic press, 1988: 147 ~ 179
    45. Brouquisse R, Evrard A, Rolin D, Raymond P, Roby C. Regulation of protein degradation and protease expression by mannose in maize root tips. Pi sequestration by mannose may hinder the study of its signaling properties, Plant Physiology, 2001,125: 1485 - 1498.
    46. Bryant J A, Hughes S G, Garland J M. Programmed cell death in animals and plants. Bios Scientific Publishers Limited, UK, 2000
    47. Buchanan B B, Gruissen W, Jones R L. Biochemistry and Molecular Biology of Plants. Amer. Soc. Plant Physiol., 2000
    48. Buchanan-Wollaston V. The molecular biology of leaf senescence. J. Exp. Bot, 1997, 48 : 181-199
    49. Chen T E, Huang D J, Lin Y H. Isolation and characterization of a serine protease from the storage roots of sweet potato (Ipomoea batatas [L.] Lam). Plant Science, 2004,166 :1019—1026
    50. Chevalier C, Bourgeois E, Pradet A, Raymond P. Molecular cloning and characterization of six cDNAs expressed during glucose starvation in excised maize (Zea mays L) root tips. Plant Molecular Biology, 1995, 28 : 473 - 485
    51. Cleveland D W, Fischer S G, Kirschner M W, Laemmli U K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. The Journal Biological Chemistry(J. Biol. Chem.), 1977,252 (3) : 1102 - 1106
    52. Corpas F J, Palma J M, Del Rio L A. European Journal Cell Biology, 1993, 61: 81 ~ 85
    53. Coupe S A, Sinclair B K, Waston L M, Heyes J A, Eason J R. Identification of dehydration-responsive cysteine proteases during post-harvest senescence of broccoli florets. Journal of Experimental Botany, 2003, 384 : 1045 - 1056
    54. Crafts-Brandner S J, Klein R R, Holzer R, Feller U. Coordination of protein and mRNA abundances of stromal enzymes and mRNA abundances of the Clp protease subunits during senescence of Phaseolus vulgaris (L.) leaves. Planta, 1996, 200 (3): 312 - 318
    55. Cruz de Carvalho M H, Pham-Thi A T, Gareil M, d'Arcy-Lameta A, Fodil Y Z. Isolation and characterization of an aspartic proteinase gene from cowpea (Vigna unguiculata L. Walp.). Journal of Plant Physiology, 2004, 161(8): 971- 976
    56. Dalling M J, Nettleton A M Chloroplast senescence and proteolytic enzymes. In: Plant Proteolytic Enzymes. 1986, vol. I (Ed. By M J. Dalling), 125 ~ 153. CRC Press, Inc., Boca Raton, F A.
    57. Dalling M J. Plant proteolytic enzymes. Vol. Ⅰ and Ⅱ. Boca Raton. FL: CKC Press, 1986,56-70
    58. De Jong A J, Hoeberichts F A, Yakimova E T, Maximova E, Woltering E J. Chemical-induced apoptotic cell death in tomato cells: involvement of caspase-like proteases. Planta, 2000,211 (5): 656-662
    59. Distefano S, Palma J M, GOmez M, del Rio L A. Characterization of endoproteases from plant peroxisomes. Biochem. J., 1997, 327: 399-405
    60. Distefano S, Palma J M, McCarthy I, del Rio L A. Proteolytic cleavage of plant proteins by peroxisomal endoproteases from senescent pea leaves. Planta, 1999, 209 (3) : 308 - 313
    61. Domlnguez F, Cejudo F J. Patterns of starchy endosperm acidification and protease gene expression in wheat grains following germination. Plant Physiology, 1999, 119 (1): 81 - 87
    62. Drake R, John I, Farrell A, Cooper W, Schuch W, Grierson D. Isolation and analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence. Plant Molecular Biology, 1996, 30 (4): 755-767
    63. Eason J R, Ryan D J, Pinkney T T, O'Donoghue E M. Programmed cell death during flower senescence: Isolation and characterization of cysteine proteinases from Sandersonia aurantiaca. Funct. Plant Biol., 2002, 29 : 1055 - 1064
    64. Ellis R E, Yuang J, Horvitz H R. Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 1991,7:663-698
    65. Feller U and Fisher A. Nitrogen metabolism in senescence leaves. Crit Rev in Plant Sciences, 1994, 13(3): 24-273
    66. Fischer A, Brouquisse R, Raymond P. Influence of senescence and of carbohydrate levels on the pattern of leaf protease in purple nutsedge (Cyperus rotundus). Physiol. Plant. (Physiologia Plantarum), 1998, 102 : 385 -395
    67. Graham J S, Xiong J, Gillikin J W. Purification and developmental analysis of a metallo-endoproteinase from the leaves of Glycine max. Physiol. Plant., 1991,97 (2): 786 - 792
    68. Granell, A, Harris N, Pisabarro A G, Carbonell J. Temporal and spatial expression of a thiol-protease gene during pea ovary senescence and its regulation by gibberellin. Plant J, 1992, 2:907-915
    69. Greenberg J T. Programmed cell death. A way of life for plants. Proc. Natl. Acad. Sci. USA. 1996,93: 12094-10449
    70. Groover A, Jones A M. Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis. Plant Physiology, 1999, 119 (2): 375 ~384
    71. Guerrero C, Calle M, de la Reid M S, Valpuesta V. Analysis of the expression of two thiolprotease genes from daylily (Hemerocallis spp.) during flower senescence. Plant Molecular Biology, 1998, 36 (4): 565~571
    72. Guo Z J, Lamb C, Dixon R A. A serine protease from suspension-cultured soybean cells. Phytochemistry, 1998, 47: 547~553.
    73. Hagenbeek D, Quatrano R S, Rock C D. Trivalent ions activate abscisic acid-inducible promoters through an ABI1-dependent pathway in rice protoplasts. Plant Physiol., 2000, 123: 1553~1560
    74. Hara-Nishimura I, Kinoshita T, Hiraiwa N, Nishimura M. Vacuolar processing enzymes in protein-storage vacuoles and lytic vacuoles. Journal of Plant Physiology, 1998, 152 (6): 668~674
    75. Hara I, Mastubara H. Pumpkin (Cucurbita sp.) seed globulin. V. Proteolytic activities involved in globulin degradation in ungerminated seeds. Physiologia Plantarum (Physiol. Plant.), 1980, 21: 219
    76. Hay P C, Ramsaur T, Smith C, Miernyk J A. Physiol. Plant., 1991, 81: 377~384
    77. Hellimish S, Schauzk. Experimental Mycology, 1987, 12: 223
    78. Hensel L L, Grbic V, Baumgarten D A, Bleecker A B. Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell, 1993, 5: 553~564
    79. Heussen C, Dowdle E B. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Analytic Biochemistry (Anal. Biochem.), 1980, 102: 196~202
    80. Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I. An aspartic endopeptidase is involved in the breakdown of propeptides of storage proteins in protein-storage vacuoles of plants. European Journal of Biochemistry, 1997, 246 (1): 133~141
    81. Huffaker R C. Proteolytic activity during senescence of plant. New Phytologist. 1990, 116 (25): 199~231
    82. Ingvardsen C, Veierskov B. Ubiquitin-and proteasome-dependent proteolysis in plants: mini-review. Physiologia Plantarum (Physiol. Plant.), 2001, 112 (4): 451~459.
    83. Jacob T, Ritehie S, Assmann S M. Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity. Proc Natl Acad Sci USA, 1999, 96 (21): 12192~12197
    84. James F, Brouquisse R, Suire C, Pradet A, Raymond P. Purification and biochemical characterization of a vacuolar serine endopeptidase induced by glucose starvation in maize roots, Biochem. J., 1996, 320: 283~292.
    85. Jia W S, Zhang J H, Liang J S. Initiation and regulation of water deficit-induced abscisic acid accumulation in maize leaves and roots: cellular volume and water relations. J. Exp. Bot., 2001, 52 (355): 295~300
    86. Jiang W b, Lers A, Lomaniec E, Aharoni N. Senescence-related serine protease in parslery. Phytochemistry, 1999, 50: 377~382
    87. Jones J T, Mullet J E. A salt- and dehydration-inducible pea gene, cyp15a, encodes a cell-wall protein with sequence similarity to cysteine proteases. Plant Molecular Biology, 1995, 28: 1055-1065
    88. Jord L, Coego A, Conejero V, Vera P. Genomic cluster containing four differentially regulated subtilisin-like processing protease genes is in tomato plants. J. Biol. Chem., 1999, 274 (4): 2360~2365.
    89. Kampen J, Wettern M, Schulz M. The ubiquitin system in plants. Physiologia Plantarum (Physiol. Plant.), 1996, 97: 618~624
    90. Kaneda M, Ohmine H, Yonezawa H, Tominaga N. Amino acid sequence around the reactive serine of cucumisin from melon fruit. J. Biochem., 1984, 95 (3): 825~829.
    91. Kaneda M, Sobue A, Eida S, Tominaga N. Isolation and characterization of proteinases from the sarcocarp of snake-gourd fruit. J. Biochem., 1986, 99(2): 569~577.
    92. Kaneda M, Tominaga N. Isolation and characterization of a protease from sarcocarp of melon fruit. J. Biochem., 1975, 78 (6): 1287~1296.
    93. Kawasaki S, Takeuchi J., Senescence-induced thylakoid-bound diisopropyl-fluorophosphate-binding protein in spinach. Induction pattern, localization, and some properties. Plant Physiol., 1989, 90: 338~344
    94. Khanna-Chopra R, Srialli B, and Ahlawat Y S. Drought induces many forms of cysteine proteases not observed during natural senescence. Biochemical and Biophysical Research Communications, 1999, 255: 324~327
    95. Kobayashi T, Kobayashi E, Sato S, Hotta Y, Miyajima N, Tanaka A,. Tabata ST. Characterization of cDNAs induced in meiotic prophase in lily microsporocytes, DNA Res., 1994, 1: 15~26.
    96. Koltunow A M, Truettner J, Cox K H, Wallroth M, Goldberg R B. Different temporal and spatial gene expression patterns occur during another development. Plant Cell, 1990, 2: 1201~1224.
    97. Koizumi M, Yamaguchi-Shinozaki K,Tsuji H, Shinozaki K. Structure and expression of two genes that encode distinct drought-inducible cysteine peoteinases in Arabidopsis thaliana. Gene, 1993, 129: 175~182
    98. Lam E, Fuluda H, Greenberg J. Programmed cell death in higher plants. Plant Molecular Biology, 2000
    99. Laplaze L, Ribeiro A, Franche C, Duhoux E, Auguy F, Bogusz D, Pawlowski K. Characterization of a Casuarina glauca nodule-specific subtilisin-like protease gene, a homolog of Alnus glutinosa ag12. Molecular Plant-Microbe Interactions: Mpmi. 2000, (1): 113~117.
    100. Laurent U, Samuel S, Lo(?)c B, Philippe B. Effect of elevated CO_2 on leaf water relations, water balance and senescence of cut roses. Plant. Physiol., 2002 (159): 717~723
    101. Leshem Y Y. Processes and control of Plant Senescence. 1986, Elsevier Press, New York
    102. Li J X, Wang X Q, Watson M B, Assmann S M. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science, 2000, 287:300~303
    103. Lindahl M, Spetea C, Hundal T, Oppenheim A B, Adam Z, Andersson B. The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem Ⅱ D1 protein. Plant Cell, 2000, 12(3): 419-431
    104. Linthorst H J, Van der Does C, Brederode F T, Bol J F. Circadian expression and induction by wounding of tobacco genes for cysteine proteinase. Plant Molecular Biology, 1993,21: 685~694
    105. Lukaszewski T A, Reid M S. Bulb-type flower senescence. Acta-Horticulture, 1989, 261: 59-62
    106. Mae T, Hageman R H. Proteinases in senescing maize (Zea mays L) leaves. Soil Sci Plant Nutr, 1986, 32(2) :285~294
    107. Ma N, Cai L, Lu W J, Tan H, Gao J P. Exogenous ethylene influences flower opening of cut roses (Rosa hybrida) by regulating the genes encoding ethylene biosynthesis enzymes. Science in China Series C-Life Sciences, 2005. (in press)
    108. Marttila S, Jones B L, Mikkonen A. Differential localization of two acid proteinases in germinating barley (Hordeum vulgare) seed. Physiologia Plantarum, 1995, 93 (2) : 317 - 327
    109. Mattoo A K, Marder J B, Edelmand M. Dynamics of the photosystem Ⅱ reaction center. Cell, 1989,56:241-246
    110. Mayak S and Halevy A H. Interelationships of ethylene and sbscisic acid in the control of rose petal senescence. Plant Physiol., 1974, 50 : 341 - 346
    111. Mayak S. Senescence of cut flowers. Hort. Sci., 1987,22: 863 - 865
    112. Meichtry J, Amrhein N, Schaller A. Characterization of the subtilase gene family in tomato (Lycopersicon esculentum Mill.). Plant Mol. Biol., 1999,39 : 749 - 760.
    113. Michael L Y, Anthony D S, Michael S R. Flower senescence in daylily (Hemerocallis). Physiologia Plantarum, 1992, 86 : 308 - 314
    114. Michand D, Faye L, Yelle S. Electrophoretic analysis of plant cysteine and serine proteinases using gelatin-containing polyacrylamide gels and class-specific proteinase inhibitors. Electrophoresis, 1993, 14 : 94 - 98
    115. Mikola L. Mikola J. Occurrence and properties of different types of peptidases in higher plants. In: Plant Proteolytic Enzymes. 1986, vol. I (Ed. By M J. Dalling), 97-117. CRC Press, Inc., Boca Raton, F A
    116. Milker B L, Huffaker R C. Differential induction of endoproteinases during senescence of attached and detached barley leaves. Plant Physiology, 1985, 78 : 442 - 446
    117. Minami A, Fukuda H. Transient and specific expression of a cysteine endoproteinase associated with autolysis during differentiation of Zinnia mesophyll cells into tracheary elements. Plant Cell Physiology, 1995,36 :1599 - 1606
    118. Morillon R, Chrispeels M J. The role of ABA and the transpiration stream in the regulation of the osmotic water permeability of leaf cells. Proc Natl Acad Sci USA, 2001, 98 (24): 14138-14143
    119. Morita S, Fukase M, Yamaguchi M, Morita Y. Substrate specificity of a novel serine protease from soybean (Glycine max L. Merill). J. Biochem., 1996, 119 (6) : 1094 ~ 1099.
    120. Navari-Izzo F, Quartacci M F, Pinzino C, Rascio N, Vazzana C, Sgherri C L M. Protein dynamics in thylakoids of the desiccation-tolerant plant boea Hygroscopica during dehydration and rehydration. Plant Physiology, 2000, 124 : 1427 ~ 1436
    121.Nishikata M. Trypsin-like protease from soybean seeds. Purification and some properties. J. Biochem., 1984, 95(4): 1169- 1177.
    122. Osteryoung K W, Sticher L, Jones R L, Bennett A B. In vitro processing of tomato proteinase inhibitor I by barely microsomal membranes. Plant Physiology, 1992, 99 : 378 ~ 382
    123. Ostersetzer O, Adam Z. Light-stimulated degradation of an unassembled Rieske FeS protein by a thylakoid-bound protease: the possible role of the FtsH protease. Plant Cell, 1997, 9 : 957 ~ 965
    124. Pedro C, Juan C. Changes in the level of peptidase activities in pea ovaries during senescence and fruit set induced by gibberellic acid. Plant Physiol., 1990, 92 :1070 ~ 1074
    125. Petersen G R, Van Etten J L. Detection of endopeptidases in polyacrylamide gels. Electrophoresis, 1983, 4 : 433
    126. Pozo O, del Lam E. Caspases and programmed cell death in the hypersensitive response of plantsto pathogens. Current Biology, 1998, 8 (20): 1129- 1132
    127. Rawling N D, Barrett A J. MEROPS: the peptidase database. Nucleic Acids Research, 1999, 27 (1): 325-331
    128. Ragster L V, Chrispeels M J. Azocoll-digesting proteinase in Soybean leaves. Characteristics and changes during leaf maturation and senescence. Plant Physiology, 1979, 64 : 857 - 862
    129. Ribeiro A, Akkermans A D L, van Kammen A, Bisseling T, Pawlowski K. A Nodule-Specific Gene Encoding a Subtilisin-Like Protease Is Expressed in Early Stages of Actinorhizal Nodule Development. Plant Cell, 1995, 7 : 785 - 794.
    130. Riccardi F, Gazeau P, de Vienne D, Zivy M. Protein changes in response to progressive water deficit in maize. quantitative variation and polypeptide identification. Plant Physiol., 1998, 117: 1253-1263
    131.Richter S, Lamppa G K. Achloroplast processing enzyme functions as the general stromal processing peptidase. Proc.Natl. Acad. Sci. USA, 1998, 95 : 7463 - 7468
    132. Rodney B J, Margrethe S, Chen L K. The effect of protein synthesis inhibition on petal senescence in cut bulb flowers. J. Amer. Soc. Hort. Sci., 1994, 119 (6) : 1243 - 1247
    133. Rui Q, Xu L L. Characterization of endopeptidases in wheat leaves during dark-induced senescence. Acta Botanica Sinica, 2003,45 (9): 1049 ~ 1054
    134. Schaffer M A, Fischer R L. Analysis of mRNAs that accumulate in response to low temperature identifies a thiol protease geng in tomato. Plant Physiology, 1988, 87 : 431 - 436
    135. Slooten L, Capiau K, Van Camp W, Van Montagu M, Sybesma C, Inze D. Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco overexpressing manganese superoxide dismutase in the chloroplasts. Plant Physiol., 1995, 107: 737~750
    136. Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A. The Involvement of Cysteine Proteases and Protease Inhibitor Genes in the Regulation of Programmed Cell Death in Plants. Plant Cell, 1999, 11 (3): 431~443
    137. Srivalli B, Renu-Khanna C, Khanna C R. Drought-induced enhancement of protease activity during monocarpic senescence in wheat. Urrent Science, 1998, 75 (11): 74~76
    138. Srivstava B. Mechanism of action of kinetin in the retardation of senescence in excise leaves. In: P. Wightman and G. Setterfield (Editors), Biochemistry and Physiology of Plant growth Substance. Runge Press, Ottawa. 1978, 123: 1479~1494.
    139. Stefania D, Jose M P, Manuel G, Luis A. Characterization of endoproteases from plant peroxisomes. Biochemistry, 1997, 327: 399~405
    140. Stephenson P, Rubiinstein B. Characterization of proteolytic activity during senescence in daylilies. Physiologia Plantrum, 1998, 104: 463~473
    141. Steudle E. Water uptake by roots: effects of water deficit. J. Exp. Bot., 2000, 51 (350): 1531-1542
    142. Story R D. Plant endopeptidases. In: Plant Proteolytic Enzymes. 1986, vol. Ⅰ (Ed. By M J. Dalling), 119~140. CRC Press, Inc., Boca Raton, F A.
    143. Sutoh K K, Minamikawa T. Identification and possible roles of three types of endopeptidase from germinated wheat seeds. Journal of Biochemistry, 1999, 126 (4): 700~707
    144. Suttle J C, Kende H. Ethylene action and loss of membrane integrity during petal senescence in tradescantia. Plant Physiology, 1980, 65: 1067~1072
    145. Swanson S J, Bethke P C, Jones R L. Barley Aleurone Cells Contain Two Types of Vacuoles: Characterization of Lytic Organelles by Use of Fluorescent Probes. Plant Cell, 1998, 10: 685~698
    146. Tardieu F, Simonneau T. Variability among speices of stomatal control under fluctuating soil water status and evaporative demand :modelling isohydric and anisohydrie behaviours. J. Exp. Bot., 1998, 49: 419~432
    147. Taylor A, Horsch A, Rzepczyk A, Hasenkampf C, Riggs D. Maturation and secretion of a serine protease is associated with events of late microsporogenesis. Plant J., 1998, 12: 1261~1271.
    148. Tonero P, Conejero V, Vera P. Identification of a new pathogen-induced member of the subtilisin-like processing protease family from plants. J. Biol. Chem., 1997, 272 (22): 14412~14419.
    149. Tomero P, Conejero V, Vera P. Primary structure and expression of a pathogen-induced protease (PR-P69) in tomato plants: similarity of functional domains to subtilisin-like endoprotease. Proc. Natl. Acad. Sci., 1996, 93: 6332~6337.
    150. Uchikoba T, Yonezawa H, Kaneda M. Cleavage specificity of cucumisin, a plant serine protease, J. Biochem., 1995, 117(5): 1126~1130.
    151. Uceda T, Seo S, Ohashi Y, et al.. Circadian and senescence enhanced expression of a tobacco cystrinr protease gene. Plant Mol. Biol., 2000, 44: 649~657
    152. Vallee B L, Galdes A, Auld D S, and Riordran J F. Carboxypeptidase A, in Zinc Enzymes. Spiro T G, Ed., John Wiley & Sons, New York, 1983, 27
    153. Valpuesta V, Lange. N E, Guerrero C, Reid M S. Upregulation of a cysteine protease accompanies the ethylene insensitive senescence of daylily (Hemerocallis) flower. Plant Mol Biol., 1995, 28: 575~582
    154. Van der Valk H C P M, van Loon L G. Subcellular localization of proteases in developing leaves of oats (Avena satival.). Physiologia Plantarum, 1988, 87: 536~541
    155. Van der Wilden W, Segers J H L. and Chrispeels M J. Cell walls of phaseolus vulgaris leaves contain the azocoll-digesting proteinase. Physiologia Plantarum, 1983, 73: 576~578
    156. van Doom W G, Abadie P, Belde P J M. Alkylethoxylate surfactants for rehydration of roses and Bouvardia flower. Postharvest Biology and Technology, 2002, 24: 327~333
    157. Vierstra R D, Langan S M, Schailer G E. Complete amino acid sequence of ubiquitin from the higher plant. Avena sativa. Biochemistry, 1986, 25: 3105~3108
    158. Voigt G, Biehl B, Heinrichs H, Voigt J. Aspartic proteinase levels in seeds of different angiosperms. Phytochemistry, 1997, 44 (3): 389~392
    159. Wagstaffl C, Leverentz M K, Griffiths G, Thomas B, Chanasut U, Stead A D and Hilary J. Rogers H J. Cysteine protease gene expression and proteolytic activity during senescence of Alstroemeria petals. Journal of Experimental Botany, 2002, 53 (367): 233~240
    160. Wang D, Fan J, Ranu R S. Cloning and expression of 1-aminocyclopropane-1-carboxylate synthase cDNA from rosa (Rosa x hybrida). Plant Cell Reports, 2004, 22: 422~429.
    161. Wang X J, Loh C S, Yeoh H H, Sun W Q. Drying rate and dehydrin synthesis associated with abscisic acid-induced dehydration tolerance in Spathoglottis plicata orchidaceae protocorms. J. Exp. Bot., 2002, 53 (368): 551~558
    162. Wang X Q, Ullah H, Jones A M, Assmann M. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science, 2001, 292: 2070~2072
    163. Wang Y T, Yang C Y, Chen Y T, Lin Y, Shaw J F. Characterization of senescence-associated proteases in postharvest broccoli florets. Plant Physiology and Biochemistry, 2004, 42: 663~670
    164. Williams J, Bulman M, Huttly A, Phillips A, Neill S. Characterization of a cDNA from Arabidopsis thaliana encoding a potential thiol protease whose expression is induced indepently by wilting and abscisic acid. Plant Molecular Biology, 1994, 25: 259~270
    165. Wilk S, Orlowski M. Cation-sensitive neutral endopeptidase: isolation and specificity of the bovine pituitary enzyme. J. Neurochem., 1980, 35: 172~182
    166. Wittenbach V A, Lin W, Hebert R R. Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves. Plant Physiology, 1982, 69: 98~102
    167. Woodson W R, Handa A K. Changes in protein patterns and in vivo protein synthesis during presenescence and senescence of inhibiscus petals. Journal Plant Physiology, 1987, 128: 67~75
    168.X.H.波钦诺克著,荆家海译.茚满三酮法测定氨态氮.《植物生物化学分析方法》,科学出版社.1981:95~101
    169. Xiong L M, Lee B H, Ishitani M. FI ER Y1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev, 2001, 15 (15) : 1971~1984
    170. Yamagata H, Masuzawa T, Nagaoka Y, Ohnishi T, Iwasaki T. Cucumisin, a serine protease from melon fruits, shares structural homology with subtilisin and is generated from a large precursor, J. Biol. Chem., 1994, 269 (52): 32725~32731.
    171. Yamagata H, Ueno S, Iwasaki T. Isolation and characterization of a possible native cucumisin from developing melon fruits and its limited autolysis to cucumisin. Agric. Biol. Chem., 1989, 53: 1009~1017.
    172. Ye Z H, Varner J E. Induction of cysteine and serine proteases during xylogenesis in Zinnia elegans. Plant Molecular Biology, 1996, 30: 1233~1246
    173. Yonezawa H, Uchikoba T, Kaneda M. Substrate specificity of honeydew melon protease D, a plant serine protease. Biosci. Biotechnol. Biochem., 1997, 61: 1277~1280.
    174. Young T E, Gallie D R. Programmed cell death during endosperm development. Plant Mol. Biol., 2000, 44
    175. Zhang S Q, Outlaw Jr W H, Aghoram K, et al.. Relationship between changes in the guard cell abscisic acid content and other stress-related physiological parameters in intact plants. J. Exp. Bot., 2001, 52 (355): 301~308
    176. Zieslin N. Postharvest control of vase life and senescence of rose flowers. Acta. Hort., 1989, 261: 257~264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700