用户名: 密码: 验证码:
非极性ZnO薄膜的制备及其光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种直接带隙的宽禁带半导体材料,室温下禁带宽度为3.37eV,自由激子结合能高达60meV,远大于GaN的25meV。作为一种优秀的半导体材料,ZnO在太阳能电池、声表面波器件、短波长发光二极管和紫外光探测器等方面有着广泛的应用。但是现阶段ZnO薄膜的生长通常是沿着c轴方向生长出来的(002)面取向的极性ZnO薄膜,在这个方向上生长的薄膜由于自发极化和压电效应的差异而产生没有抵消的极化电荷,该电荷会在量子阱中产生内建电场,降低电子可空穴的复合的几率从而影响器件的发光效率。如果改变薄膜的生长方向,使得薄膜沿垂直于c轴方向生长可以解决这个问题,目前已经有比较多关于非极性ZnO薄膜的研究,但是对于生长高质量、稳定可靠、重复性较高的非极性ZnO薄膜依然是科学界的一大难题。本文基于单源化学气相沉积法和磁控溅射法异质外延生长非极性ZnO薄膜,就薄膜的生长工艺和光电性能做一定的讨论,具体内容如下:
     1.在采用SSCVD法制备出结晶质量良好的a面ZnO薄膜的基础上,分析衬底表面对薄膜的影响,发现衬底表面孪晶结构会在成膜时形成小角度晶界,严重影响薄膜的结晶质量。
     2.采用射频磁控溅射法在(012)Al_2O_3衬底上稳定重复的生长出高质量的a面ZnO薄膜。应力研究表明采用射频磁控溅射法制备出的a面ZnO薄膜要比采用
     SSCVD方法制备的a面ZnO薄膜受到的应力要小。3.对比不同衬底温度和退火温度下非极性ZnO薄膜的PL谱,发现衬底温度为450℃,退火温度为600℃时,非极性ZnO薄膜的缺陷深能级跃迁峰得到了一定程度的抑制,激子复合发光峰得到了增强。
     4.通过对a面ZnO薄膜的C-V曲线分析,得到非极性ZnO薄膜与极性ZnO常温下均呈现n型的导电类型,说明在未掺杂的情况下,极性与非极性ZnO薄膜导电类型未发生本质变化。通过对电阻-温度曲线的研究表明,非极性ZnO薄膜杂质激活能为0.18eV比极性ZnO薄膜的0.3226eV要低。
ZnO is a direct wide band gap semiconductor material, at room temperature the band gap is 3.37eV, the exciton binding energy is 60meV, much larger than the GaN of 25meV. As a excellent semiconductor material, ZnO has a wide applications in solar cells, surface acoustic wave devices, short wavelength light-emitting diodes and UV detectors. But the growth of ZnO films usually along the c-axis orientation and get the (002)ZnO films. grown in this direction the films exist the spontaneous polarization and piezoelectric effects have not offset the difference of the polar charge, the charge generated in the quantum well built electric field can reduce the risk of the composite and affect the efficiency of light-emitting device. If change the film growth direction, making the film along the direction perpendicular to the c-axis can solve this problem, there are already more qulity on the non-polar ZnO thin films, but the growth of high quality, reliable non polar ZnO films is still a major challenge. This article based on chemical vapor deposition and magnetron sputtering growth of a-plane orientation non-polar ZnO films. and do some discussion of optical properties as follows:
     1. a-plane orientation ZnO films deposited on (012)Al_2O_3 substrate by SSCVD method, with the analysis of the substrate impact on the film and found that the formation of twin crystal surface of small angle grain boundaries, thus affecting the crystallization of the film quality.
     2. By RF magnetron sputtering method can repeatly growth high quality a-plane orientation ZnO films on (012)Al_2O_3 substrate, Stress research shows that radio frequency magnetron sputtering a-plane orientation ZnO thin films get a larger tensile stress than use the method SSCVD.
     3. Compare the different non-polar substrate temperature PL spectra of ZnO thin films and found that when the substrate temperature is 450℃, annealing temperature is 600℃, non-polar ZnO films deep level transition has been inhibited, excitonic recombination peak has been enhanced.
     4. With the analysis of the a-plane orientation ZnO thin film of the C-V curve, non-polar ZnO thin films and polar ZnO showed a same N conduction type , indicating that in the undoped case, the polar and non-polar ZnO thin films are no fundamental changes in conductivity type. And with the analysis of the resistance-temperature curve showed that nonpolar ZnO films has the lower impurity actibation energy than the polar ZnO films.
引文
[1] Foster N F, Rozgonyi G A ZINC OXIDE FILM TRANSDUCERS[J]. Applied physics Letters, 1966, 8(9):220-224
    [2] Ide T, Shinizu M, Nakajima A, et al. Gate-length dependence of DC characteristics in submicron-gate AlGaN/GaN high electron mobility transistors[J]. Japanese Journal of Applied Physics 2007, 46 (4B):2332-2338
    [3] Nakahata H, Hachigo A, Fuji S, et al. Equivalent circuit parameters of surface-acoustie-wave interdigital transducers for ZnO/diamond and SiO2/ZnO/diamond structures [J]. Japanese Journal of Applied Physics 2002, 41 (5B):3488-3494
    [4] Hu J,Gordon R G Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition [J]. Journal of Applied Physics, 1992, 71(2):799-891
    [5] J. J. Chen, Y. Gao, F, Zeng, D. M. Li, F. Pan. Effect of sputtering oxygen partial pressures on structure and physical properties of high resistivity ZnO films. Applied Surface Science, 2004, V223:317-330
    [6] Yi L. Hou Y. Zhao H. et al. The photo-and electro-luminescence properties of ZnO:Zn thin film [J]. Displays, 2000, 21 (4):146-150
    [7] Xu X L, Lau S P. Chen J S, et al. Dependence of electrical and optical properties of ZnO films on substrate temperature [J]. Materials Science in Semiconductor processing, 2001.4 (6): 617-621
    [8] Alivov Y I, Van Nostrand J E, Look D C, et al. Observation of 430nm electroluminescence fron ZnO/GaN heterojunction linght-emitting diodes [J]. Applied Physics Letters. 2003, 83 (14):2942-2946
    [9] Yu Q X, Xu B, Wu Q H, et al. Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode [J]. Applied Physics Letters, 2003, 83 (23):4712-4716
    [10] Nomura K,Ohta H, Ueda K, et al. Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor [J]. Science, 2003, 300 (5623):1268-1273
    [11] H. Kim, C. M. Gilmore, J. S. Horwitz, et al. Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices. Appl. Phys. Lett, 2000, 76(3):259-261
    [12] J. P. Mosnier, S. Chakrabarti, B. Doggett, et al. P-type nitrogen and phosphorus doped ZnO thinfilms grown by pulsed laser deposition on sapphire substrates. Zinc Oxide Materials and Devices II, 2007, 6474:647401-1-9
    [13] Michael Lorenz, Bingqiang Cao, Gregor Zimmermann, et al. Stable p-type ZnO: P nanowire/n-type ZnO: Ga film junctions, reproducibly grown by two-step pulsed laser deposition. J.Vac.Sci.Technol. 2009, B 273:1693-1697
    [14] D. C. Look, D. C. Reynolds, C. W. Litton, et al.Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett., 2002, 81(10):1830-1832
    [15] Y. Wang, X. L. Du, Z. X. Mei, et al. Defect characteristics of ZnO film grown on (0001) sapphire with an ultrathin gallium wetting layer. J Crystal Growth, 2004, 273(1-2): 100-105
    [16] S. Blumstengel, S. Sadofev, J. Puls, et al. An inorganic / organic semiconductor‘‘sandwich’’structure grown by molecular beam epitaxy. Adv. Mater., 2009, 21:4850-4853
    [17] Th.Gruber, C.Kirchner, A.Waag. MOCVD growth of ZnO on different substrate materials. Phys.Stat.Sol. (b), 2002, 229(2):841-844
    [18]李香萍,张宝林,董鑫,等.光辅助对MOVD法制备ZnO薄膜性能的影响[J].发光学报, 2008, 29(1):139-143
    [19] Fujimura N, Nishihara T, Goto S, et al. Control of preferred orientation for ZnO films: Control of self-texture. J. Crystal. Growth, 1993, 130:268-280
    [20] Zuniga-Perez J, Munoz-Sanjose V, Palacios-Lidon E, et al. Facets evolution and surface electrical properties of nonpolar m-plane ZnO thin films. Appl. Phys. Lett. 2006, 88:261912-2611914
    [21] Jae Wook Lee, Seok Kyu Han, Soon-Ku Hong et al. Investigation of initial growth and very thin (110)ZnO films by cross-sectional and plan-view transmission electron microscopy [J] Applied Surface Science, 2010(256): 1849-1854
    [22] Belforte A, Calderazzo F, Strahle J. Deoxygenation of carbon dioxide to diethylaormamide in the Zn/HNEt2/CO2 system. Crystal and molecular structure of [Zn4O(CO2Net2)6]. Inorg. Chem, 1991, 30:3778-3781
    [23] S.Bethke, H. Pan, B. W. Wessels, Appl. Phys. Lett., 1988, 52, 138
    [24] A. Mang, et al. Solid State Commun. 1995, 94, 251
    [25] D. W. Hamby, D. A. Lueea, M. J. Klopfstein, et al. J. Appl. Phys. 2003, 93, 3214
    [26] H. Alves, D. Pfisterer, A. Zeuner, et al. Opt. Mater, 2003, 23, 33
    [27] Vanheusden K, Seager C H, Warren W L, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett., 1999, 68:403-405
    [28] Xu P S, Sun Y M, Shi C S, et al. Electronic structure of ZnO and its defects. Scicence in China(A). 2001, 44(9):1174-1181
    [29]孙成为,刘志文,秦福文等.生长温度对磁控溅射ZnO薄膜的结晶特性和光学性质的影响[J].物理学报,2006,55(3):1390-1397
    [30]马锦,马云芳,宋学萍等,厚度对ZnS薄膜结构和应力的影响[J].合肥工业大学学报,2007,30(1):7-10
    [31] Henseler M J H, Lee W C T, Miller P, et al. Optical and photoelectrical properties of ZnO thin films and the effects of annealing[J]. J, Crystal Growth, 2006, 287(1):48-53.
    [32] Mari B, Manjon F J, Mollar M, et al, Photoluminescence of thermal-annealed nanocolumar ZnO thin films grown by electrodeposition[J], Appl. Surface Science, 2006, 252(8):2826-2831
    [33] Garce N Y, Giles N C, Halliburton L E. Production of nitrogen acceptors in ZnO by thermal annealing[J]. Appl, Phys, Lett. 2002,80(8):1334-1336
    [34] Futsuhara M, Yoshioka K, Takai O. Optical properties of zinc oxynitride thin films[J]. Thin Solid Films, 1998, 317(1-2):322-325
    [35]陈晓庆.宽带隙半导体SiC和ZnO的光电性质及掺杂研究:[博士学位论文].合肥:中国科技大学,2010
    [36] H.Jeong, I.S.Kim, S.S.Kim, et al. Homo-buffer layer effects and single crystalline ZnO hetero-epitaxy on c-plane sapphire by a conventional RF magnetron sputtering. Joumal of Crystal Growth, 2004, 264(1-3):110-115
    [37]张锡健,王国强,王卿璞等.退火对ZnO薄膜光学特性的影响[J].发光学报,2008,6(29):1000-7032
    [38] Matthew R H, Ashley W J, Russell J J, et al. Towards new precursors for ZnO thin films by single source CVD: the X-ray structures and precursor properties of zinc ketoacidoximates. Inorganica Chimica Acta, 2005, 358:201:207
    [39]王金忠,杜国忠,王新强等.退火对ZnO薄膜结构及发光特性的影响[J].光学学报,2002,22(2):0253-2239
    [40] H. Sheng, S. Muthukumar, N. W. Emanetoglu. Schottky diode with Ag on (110) epitaxial ZnO film. Applied Physics Letters, 2002, 80(12):2131-3135
    [41] Takumi Moriyama and Shizuo Fujita. Growth behavior of nonpolar ZnO on M-plane and R-plane sapphire by metalorganic vapor phase epitaxy. Japanese Journal of Applied Physics, 2005, 44(11):7918-7922
    [42] T. Abe, Y. Kashiwaba, S. Onodera, et al. Homoepitaxial growth of non-polar ZnO(11-20) filmson off-angle ZnO substrates by MOCVD Journal of Crystal Growth, 2007, 298:456-461
    [43] A. Hoffmann, M. R. Wagner, J. S. Reparaz, et al. Excitons and optical phonons in polar and non-polar ZnO under uniaxial and hydrostatic pressure fields. The 6th International Workshop on Zinc Oxide and Related Materials, 2010, 6:7-9
    [44] HOU-GUANG CHEN, GUO-JU CHEN, et al. epitaxial growth of non-polar a-plane zno on r-plane sapphire substrates by mocvd and rf-sputtering [J] International Journal of Modern Physics, 2009(6)1154-1159
    [45] Takumi M, Shizuo F 2005 Jpn J. Appl. Phys. 44-7919
    [46] Gorla C R, Emanetoglu N W, Liang S, Mayo W E, Lu Y, Wraback M, Shen H 1998 J. Appl. Phys. 85-2595
    [47]李宁.单源化学气相沉积法异质外延生长ZnO薄膜:[硕士学位论文].成都:电子科技大学,2010
    [48] S. Blumstengel, S. Sadofev, J. Puls, et al. An inorganic/organic semiconductor”sandwich”structure grown by molecular beam epitaxy. Adv. Mater. 2009, 21:4849-4854
    [49] S.K.Han, S.K.Hong, J.W.Lee, et al. Structural and optical properties of non-polar A-plane ZnO films grown on R-plane sapphire substrate by plasma-assisted molecular-beam epitaxy. J Crystal Growth, 2007, 309:120-128
    [50]戴丽萍.单源化学气相法制备ZnO薄膜及其光电性质研究:[博士学位论文].成都:电子科技大学,2008
    [51] Guo B, Qiu Z R, Wong K S Intensity dependence and transient dynamics of donor-acceptor pair recombination in ZnO thin films grown on (001)silicon [J]. Applied Physics Letters, 2003, 82(14):2289-2293
    [52] Leiter F H, Alves H R, Hofstaetter A, et al. The oxygen vacancy as the origin of a green emission in undoped ZnO [J]. Physica Status Solidi B-Basic Research, 2001, 226(1):R4-R5
    [53]孙景昌. p-ZnO薄膜和ZnO发光器件的制备与研究:[博士学位论文].大连:大连理工大学,2009
    [54] Wu X L, Siu G G, Fu C L. et al. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films [J]. Applied Physics Letters, 2001, 78(16):2284-2287.
    [55]史常忻.金属-半导体-金属光电探测器.上海交通大学出版社,2000
    [56] Donald A. Neamen半导体物理与器件.清华大学出版社,2003
    [57]李杰MSM结构紫外探测器的性能测试与研究:[硕士学位论文].成都:电子科技大学,2010
    [58] Petrella A J, Deng H, Roberts N K, et al. Single-Source Chemical Vapor Deposition Growth of ZnO Thin Films Using Zn4O(CO2Net2)6. Chem. Mater, 2002, 14:4339-4342
    [59] Xiangyun Han, Yihua Gao, Jiangnan Dai et al. Nonpolar a-plane ZnO films grown on GaN/sapphire templates with SiNx interlayer by pulsed laser deposition [J] Appl Phy, 2010(43):145-102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700