用户名: 密码: 验证码:
GaN纳米材料的CVD制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化镓(GaN)是宽带隙Ⅲ-Ⅴ族化合物半导体材料的代表,其禁带宽度为Eg=3.4eV,具有高饱和电子漂移速度、高热导率、耐高温、抗辐射、耐酸碱、高硬度等特性,是制作高效率蓝绿光发光二极管、蓝光半导体激光器、高频大功率场效应晶体管和紫外光探测器等半导体器件的首选材料。在实际应用中通常使用的GaN材料为薄膜形式,研究人员尝试用不同方法来制备GaN薄膜,最早出现的是氢化物气相外延生长(HVPE),随后是金属有机气相沉积(MOCVD)和分子束外延生长(MBE)。近年来出现的一些新型方法有电泳沉积(EPD)、脉冲激光沉积(PLD)、磁控溅射(MS)、溶胶-凝胶(Sol-Gel)等。本文中实验均采用设备简单、成本低廉、操作容易的化学气相沉积法(APCVD)。通过HRXRD、FESEM、AFM、EDS、PL等测试手段对样品的结构、形貌及光学性能等特性进行了表征,通过对测试结果的分析,不断优化制备工艺,提高产物性能。
     目前,除GaN衬底外,其他衬底与GaN纳米材料之间均存在晶格失配和热膨胀系数失配,因此,采用合适的衬底并借助缓冲层成了研究者关注的热点。本论文中实验采用常压化学气相沉积法在不同衬底、不同缓冲层上制备GaN薄膜,分析了合成产物的组分、结构和光学性质,探讨了所得产物的生长机理与影响因素。
     除了GaN薄膜材料外,其他形貌的GaN微纳米材料也被应用于光电子器件。本文采用简单的CVD方法,以金膜和铟丝作辅助剂,在硅衬底上以双催化剂模式生长GaN微纳材料。在此过程中,出现了不同形貌的GaN微纳米材料,并研究了产物的结构、辅助剂的作用及其生长机理。
     1、以金属镓和氨气为原料,分别在Si、Al2O3和GaAs三种衬底上生长GaN薄膜。由于GaAs衬底的热稳定性不好,而氨气的分解温度在850℃左右,因此实验选择在870℃下进行。分析结果表明产物均为六方纤锌矿多晶结构,其中Al2O3衬底上所得薄膜的结晶质量和发光性能最好,而GaAs衬底上所得薄膜出现脱层。
     2、以金属镓和氨气为原料,金属Al和Au/Al为缓冲层,在1000℃下生长GaN薄膜。分析结果表明加入金属缓冲层后所得的GaN薄膜的致密度、结晶性能、发光强度都有所改善。
     3、以金属镓和氨气为原料,金和铟为辅助剂,在双辅助剂的生长模式下合成GaN微纳材料,出现了各种不同形貌的GaN微纳米材料。考察了辅助剂、反应时间、反应温度、氨气流量对产物的影响。
Ⅲ-Ⅴcompound semiconductor materials with wide band gap is represented by gallium initride (GaN), whoes energy band gap is 3.4eV. Due to the high saturated electronic drift velocity, high thermal conductivity, resistance to high temperature, rad resistance, resistance to acid and alkali, high hardness features, etc.. It is used to make the semiconductor devices, such as efficient blue-green light emitting diodes, blue-ray semiconductor laser, high power-high frequency Field Effect Transistors, and ultraviolet detectors. The GaN film is mainly used in practice. The researchers tried to produce the GaN films by different methods. HVPE was the earliest, and then MOCVD and MBE were used.At present, some new methods appear, such as electrophoresis deposition (EPD), pulse laser deposition (PLD), magnetron sputtering (MS), sol-gel (Sol-Gel), etc.. In this paper, chemical vapor deposition (CVD) with simple equipment, low cost and easy operation was adopted. The crystalline phase, structure, composition, morphology, and optical property of each sample were analyzed using High-Resolution X-Ray Diffraction (HRXRD), Field Emission Scanning Electron Microscope (FESEM), Atomic Force Microscopy (AFM), Energy Dispersive X-Ray Spectroscopy (EDS), and Photoluminescence (PL). Through the test results, we constantly optimized the preparation process to improve performance of products.
     Currently, except the GaN substrate, lattice mismatch and thermal expansion coefficient mismatch exist between other substrates and GaN nanomaterials. Therefore, the use of appropriate substract and buffer layer becomes the focus of attention of researchers. GaN films were deposited on different substrates and different GaN buffer layers by atmospheric pressure chemical vapor deposition (APCVD). The structure, composition and optical property of each sample were analyzed and the growth mechanism and influencing factors were discussed.
     In addition to GaN films, micro-nano materials with other morphologies also are applied in light-electronic devices. In this study, GaN micro/nano materials were prepared on Si (100) substrate by CVD with double catalyst mode using Au film and indium silk as auxiliaries. In the process, GaN micro/nano materials with different morphologies was obtained and the structure, catalyst role and growth mechanisms of the products were analyzed.
     1. The polycrystal GaN films were produced using gallium and ammonia as raw materials, Si, Al2O3 and GaAs as substrates. Due to the bad thermal stability of GaAs substrate and 850℃decomposition temperature of ammonia gas, the experiment was done under the temperature less than 870℃. The results showed that the product was polycrystal with six-party fine zinc mine structure. The crystallization property and optical property of GaN films on Al2O3 substrate were best; but GaN film on GaAs substrate was worst and delaminated.
     2. The GaN films grew at 1000℃, using gallium and ammonia as raw materials, Al and Au/Al as buffer layers. The density, crystallization property and luminous intensity of GaN films were improved by the buffer layers.
     3. GaN mico/nano materials were systhesized under the growth mode of double auxiliaries, using gold and indium as auxiliaries, gallium and ammonia gas as raw materials, by CVD method. GaN micro/nano materials with different morphologies were obtained. The influence of auxiliaries, reaction time, reaction temperature and ammonia flow on the product was studied.
引文
[1]J I Pankove. T D Moustakas (Eds.), Gallium Nitride (GaN) I [M]. New York, Academic Press, Semiconductors and Semimetals,1998,50:168-170.
    [2]杨东.CVD法合成一维GaN纳米结构和GaN薄膜的研究[D].山西省太原市,太原理工大学,2006.
    [3]倪贤峰. MOCVD方法生长硅基GaN与AlxGa1-xN薄膜及其性能研究[D].浙江大学,2004.
    [4]Hays D C, Cho H, Jung K B, et al. Selective dry etching using inductively coupled plasmas:part Ⅱ. InN/GaN and InN/AlN[J]. Applied Surface Science,1999,147(1-4): 134-139.
    [5]Lakshmi E. Dielectric properties of reactively sputtered gallium nitride films[M]. Thin Solid Films,1981,83(1):L137-L139.
    [6]Morimoto Y. Few characteristics of epitaxial GaN etching and thermal decomposition[J]. Journal of the Electrochemical Society,1974,121:1383-1386.
    [7]Ito K, Amano H, Hiramatsu K, et al. Cathodoluminescence properties of un-doped and Zn-doped AlxGa1-xN grown by metalorganic vapor phase epitaxy[J]. Jpnanese Journal of Applied Physics,1991,30:1604-1608.
    [8]丁少锋,范广涵,李述体,等.InN材料及器件的最新研究进展[J].材料导报,2007,21(6):16-20.
    [9]Lee J, Kim D H, Kim J, et al. GaN-based light-emitting diodes directly grown on sapphire substrate with holographically generated two-dimensional photonic crystal patterns[J]. Current Applied Physics,2009,9(3):633-635.
    [10]Lee S N, Paek H S, Ryu H Y, et al. Micro-crack-free high power blue-violet GaN-based laser diodes grown on maskless epitaxial lateral overgrown GaN/sapphire[J]. Journal of Crystal Growth,2007,298:695-698.
    [11]Qiu X G, Segawa Y, Xue Q K, et al. Influence of threading dislocations on the near-bandedge photoluminescence of wurtzite GaN thin films on SiC substrate[J]. Applied Physics Letters,2000,77(9):1316-1318.
    [12]Kirilyuk V, A Zauner A R, Christianen P C M, et al. Exciton-related photoluminescence in homoepitaxial GaN of Ga and N polarities[J]. Applied Physics Letters,2000,76(17): 2355-2357.
    [13]Pankove J I, Berkeyheiser J E, Maruska H P, et al. Luminescent properties of GaN[J]. Solid State Communications,1970,8(13):1051-1053.
    [14]Fischer R, Miehr A, AmbacherO, et al. Novel single source precursors for MOCVD of AlN, GaN and InN[J]. Journal of Crystal Growth,1997,170(1-4):139-143.
    [15]Amano H, Kito M, Hiramatsu K, et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation(LEEBI)[J]. Jpnanese Journal of Applied Physics,1989, 28(2):L2112-L2114.
    [16]Nakamura S, Mukai T, Senoh M, et al. Thermal annealing effects on P-type Mg-doped GaN films[J]. Jpnanese Journal of Applied Physics,1992,31:L139-L142.
    [17]王连红,梁建,马淑芳,等.CVD法制备硅基氮化镓薄膜[J].发光学报,2008,29(1):152-155.
    [18]Li W, Chen J F, Wang T. Study of GaN adsorption on the Si surface[J]. Applied Surface Science,2009,256(1):191-193.
    [19]Mohapatra D R, Rai P, Misra A, et al. Parameter window of diamond growth on GaN films by microwave plasma chemical vapor deposition[J]. Diamond & Related Materials, 2008,17(7-10):1775-1779.
    [20]Goldys E M, Godlewski M, Langer R, et al. Surface morphology of cubic and wurtzite GaN films[J]. Applied Surface Science,2000,153(2-3):143-149.
    [21]B Deb, S Chaudhuri, A K Pal. Hexagonal GaN films deposited by reactive hot wall evaporation technique[J]. Materials Letters,2002,53(1-2):68-75.
    [22]Yasui K, Kanauchi K, Akahane T. Growth of c-GaN films on GaAs(100) using hot-wire CVD[J]. Thin Solid Films,2003,430(1-2):178-181.
    [23]Matsumura H, Umemoto H, Masuda A. Cat-CVD (hot-wire CVD):how different from PECVD in preparing amorphous silicon[J]. Journal of Non-Crystalline Solids,2004,338-340: 19-26.
    [24]Komae Y, Saitou T, Suemitsu M, et al. The growth of GaN films by alternate source gas supply hot-mesh CVD method[J]. Thin Solid Films,2009,517(12):3528-3531.
    [25]Maruska H P, Tietjen J J. The preparation and properties of vapor-deposited single-crystal-line GaN[J]. Applied Physics Letters,1969,15(10):327-329.
    [26]贾婷婷,林辉,滕浩,等.异质衬底上HVPE法生长GaN厚膜的研究进展[J].人工晶体学报,2009,38(2):501-505.
    [27]Yang C C, Wu M C, Lee C H, et al. X-ray diffraction characterization of epitaxial zinc-blende GaN films on a miscut GaAs(001) substrates using the hydride vapor-phase epitaxy method[J]. Journal of Crystal Growth,1999,206(1-2):8-14.
    [28]Williams A D, Moustakas T D. Formation of large-area freestanding gallium nitride substrates by natural stress-induced separation of GaN and sapphire[J]. Journal of Crystal Growth,2007,300(1):37-41.
    [29]Kwon H Y, Moon J Y, Choi Y J, et al. Initial growth behaviors of GaN layers overgrown by HVPE on one-dimensional nanostructures[J]. Materials Science and Engineering:B,2010, 166(1):28-33.
    [30]马平,魏同波,段瑞飞,等.蓝宝石衬底上HVPE-GaN厚膜生长[J].半导体学报,2007,28(6):902-908.
    [31]Mahadik N A, Qadri S B, Rao M V. Double-crystal X-ray topography of freestanding HVPE grown n-type GaN[J]. Thin Solid Films,2007,516(2-4):233-237.
    [32]Nouet G, Ruterana P, Chen J, et al. Characterization of thick HVPE GaN films[J]. Superlattices and Microstructures,2004,36(4-6):417-424.
    [33]Lin C T, Yu G H, Wang Z X, et al. Hydride vapor phase epitaxy growth of high-quality GaN film on in situ etched GaN template[J]. Materials Letters,2009,63(11):943-945.
    [34]Peng D S, Feng Y C, Niu H B, et al. High Quality GaN Display Films Growth on Pre-Treated Sapphire Substrate[J]. Chinese Journal of Electron Devices,2008,31 (1):57-60.
    [35]Hassan Z, Lee Y C, Yam F K, et al. Microcrystalline GaN film grown on Si(100) and its application to MSM photodiode[J]. Materials Chemistry and Physics,2004,84(2-3):369-374.
    [36]Tomar M S, Rutherford R, New C, et al. Growth of InGaN and GaN films by photo-assisted metalorganic chemical vapor deposition[J]. Solar Energy Materials and Solar Cells,2000,63(4):437-443.
    [37]Roqan I S, Nogales E, O'Donnell K P, et al. The effect of growth temperature on the luminescence and structural properties of GaN:Tm films grown by gas-source MBE[J]. Journal of Crystal Growth,2008,310(18):4069-4072.
    [38]Kim E, Rusakova I, Berishev I, et al. GaN thin film growth on GaAs(001) by CBE and plasma-assisted MBE[J]. Journal of Crystal Growth,2002,243(3-4):456-462.
    [39]Chuah L S, Hassan Z, Hassan H A, et al. GaN Schottky barrier photodiode on Si(111) with low-temperature-grown caplayer[J]. Journal of Alloys and Compounds,2009,481(1-2): L15-L19.
    [40]Gerlach J W, Hofmann A, Hoche T, et al. Control of the crystalline quality of wurtzitic GaN films deposited on y-LiAlO2 by ion-beam assisted molecular-beam epitaxy[J]. Nuclear Instruments and Methods in Physics Research B,2007,257(1-2):315-319.
    [41]Chen C H, Aballe L, Klauser R, et al. Valence band discontinuity at the GaN/SiC(0001) heterojunction studied in situ by synchrotron-radiation photoelectron spectroscopy[J]. Journal of Electron Spectroscopy and Related Phenomena,2005,144-147:425-428.
    [42]Shen X Q, Shimizu M, Yamamoto T, et al. Comparison of surface morphologies in GaN films grown by rf-MBE and MOCVD on vicinal sapphire(0001) substrates[J]. Journal of Crystal Growth,2009,311(7):2049-2053.
    [43]张敬尧,李玉国,崔传文,等.Si基GaN薄膜的制备方法及结构表征[J].微纳电子技术,2008,45(4):240-244.
    [44]吴玉新,薛成山,庄惠照,等.电泳沉积法制备GaN薄膜的结构和组分分析[J].功能材料,2006,37(9):1420-1422.
    [45]Wang R P, Muto H, Kusumori T. Growth of c-axis oriented GaN films on quartz by pulsed laser deposition[J]. Optical Materials,2003,23(1-2):15-20.
    [46]Premchander P, Manoravi P, Joseph M, et al. Optical study of GaN epilayer grown by metalorganic chemical vapor deposition and pulsed laser deposition[J]. Journal of Crystal Growth,2005,273(3-4):363-367.
    [47]Tsuchiya Y, Kobayashi A, Ohta J, et al. Heteroepitaxial growth of GaN on atomically flat LiTaO3(0001) using low-temperature AIN buffer layers[J]. Journal of Crystal Growth,2006, 293(1):22-26.
    [48]Mahony D O, Lunney J G, Tobin G, et al. Pulsed laser deposition of manganese doped GaN thin films[J]. Solid-State Electronics,2003,47(3):533-537.
    [49]Sanguino P, Schwarz R, Wilhelm M, et al. Morphology and composition of GaN films grown by cyclic-pulsed laser deposition[J]. Vacuum,2007,81(11-12):1524-1528.
    [50]Xiao H D, Liu R, Liu J Q, et al. Growth process from amorphous GaN to polycrystalline GaN on Si(111) substrates[J]. Vacuum,2009,83(11):1393-1396.
    [51]Zou C W, Wang H J, Yin M L, et al. Preparation of GaN films on glass substrates by middle frequency magnetron sputtering[J]. Journal of Crystal Growth,2009,311(2):223-227.
    [52]Zhang C G, Chen W D, Bian L F, et al. Preparation and characterization of GaN films by radio frequency magnetron sputtering and carbonized-reaction technique[J]. Applied Surface Science,2005,252(6):2153-2158.
    [53]Kikuma T, Tominaga K, Furutani K, et al. GaN film deposited by planar magnetron sputtering[J]. Vacuum,2002,66(3-4):233-237.
    [54]Yudate S, Sasaki R, Kataoka T, et al. Growth condition dependence of photoluminescence of Eu-doped GaN films prepared by radio frequency magnetron sputtering[J]. Optical Materials,2006,28(6-7):742-745.
    [55]丁咚,阴明利,邹长伟,等.中频磁控溅射制备GaN薄膜[J].核技术,2008,31(7):515-518.
    [56]童杏林,罗梦泽,姜德生,等.GaN薄膜制备及脉冲激光沉积法的研究进展[J].激光杂志,2006,27(1):5-7.
    [57]Sinha G, Adhikary K, Chaudhuri S. Synthesis and optical characterization of c-axis oriented GaN thin films on amorphous quartz glass via sol-gel process[J]. Applied Surface Science,2008,254(16):5257-2560.
    [58]朱华超,满宝元,庄惠照,等.SiC缓冲层用于改善硅基氮化镓薄膜的质量研究[J].功能材料,2008,39(2):247-249.
    [59]工文彦,秦福文,吴爱民,等.玻璃衬底上低温沉积GaN薄膜研究[J].半导体技术,2008,33(10):880-884.
    [60]Graven M D, Lim S H, Wu F, et al. Structural characterization of nonpolar (11-20) a-plane GaN thin films grown on(1-102) r-plane sapphire[J]. Applied Physics Letters,2002, 81(3):469-471.
    [61]杨新波,徐军,李红军,等.非极性GaN用r面蓝宝石衬底[J].无极材料学报,2009,24(4):783-786.
    [62]Xu K, Xu J, Deng P Z, et al. γ-LiAlO2 single crystal:a novel substrate for GaN epitaxy[J]. Journal of Crystal Growth,1998,193(1-2):127-132.
    [63]Waltereit P, Brandt O, Ramsteiner M, et al. Growth of m-plane GaN (1100):a way to evade electrical polarization in nitrides[J]. Journal of Physics State Solid A,2000,180(1): 133-138.
    [64]Maruska H P, HillD W, ChouM C, et al. Free-standing non-polar gallium nitride substrates[J]. Opto-electronics Review,2003,11(1):7-17.
    [65]Nikolaev A E, Rendakova S V, Nikitina K V, et al. GaN grown by hydride vapor phase epitaxy on p-type 6H-SiC layers[J]. Journal of Electronic Materials,1998,27(4):288-291.
    [66]Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconductor oxides[J]. Science,2001, 291(5510):1947-1949.
    [67]张立德,解思深,范守善,等.《纳米材料和纳米结构:国家重大基础研究项目新进展》,化学工业出版社,2005,114-114.
    [68]顾彪,徐茵,孙凯,等. (001)GaAs衬底上异质外延的立方GaN薄膜与界面[J].半导体学报,1998,19(4):241-244.
    [69]刘洪飞,陈弘,李志强,等. GaAs(001)衬底上分子束外延生长立方和六方GaN薄膜[J].物理学报,2000,49(6):1132-1134.
    [70]窦宝锋,顾彪,史庆军.A1203衬底上低温生长GaN薄膜的一种新方法[J].佳木斯大学学报(自然科学版),2002,20(1):5-8.
    [71]Duan P, Feng Q, Hao Y. XPS and PL studies of GaN epilayers grown on SiC substrate[J]. Acta PhotonicaS inica,2003,32(13):1510-1513.
    [72]Han W Q, Fan S S, Li Q Q, et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction[J]. Science,1997,277(29):1287-1289.
    [73]杨国伟.一维量子材料制备新进展[J].1998,27(11):641-642.
    [74]Goldberger J, He R, Zhang Y F, et al. Single-crystal gallium nitride nanotubes[J]. Nature, 2003,22(4):599-602.
    [75]Cheng G S, Chen S H, Zhu X G, et al. Highly ordered nanostructures of single crystalline GaN nanowires in anodic alumina membranes[J]. Materials Science and Engineering A,2000, 286(1):165-168.
    [76]Duang X F, Lieber C M. Laser-assisted catalytic growth of single crystal GaN nanowires[J]. Journal of the American Chemists Society,2000,122 (1):188-189.
    [77]Ha B, Seo S H, Cho J H, et al. Optical and field emission properties of thin single-crystalline GaN nanowires[J]. Journal of Physics Chemistry B,2005,109(22): 11095-11099.
    [78]Dinh D V, Kang S M, Yang J H, et al. Synthesis and field emission properties of triangular-shaped GaN nanowires on Si(100) substrates[J]. Journal of Crystal Growth,2009, 311(3):495-499.
    [79]Shin T I, Lee H J, Song W Y, et al. High quality GaN nanowires synthesized from Ga2O3 with graphite powder using VPE method[J]. Colloids and Surfaces A:Physicochem. Engineering Aspects,2008,313-314:52-55.
    [80]Simpkins B S, Ericson L M, Stroud R M, et al. Gallium-based catalysts for growth of GaN nanowires[J]. Journal of Crystal Growth,2006,290(1):115-120.
    [81]Zhong Z H, Qian F, Wang D L, et al. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices[J.] Nano Letters,2003,3:343-346.
    [82]Chen J H, Xue C S, H Z Zhuang, et al. Synthesis of GaN nanowires by Tb catalysis[J]. Applied Surface Science,2008,254(15):4716-4719.
    [83]Yang Z Z, Xue C S, Zhuang H Z, et al. Fabrication, morphology, and photoluminescence properties of GaN nanowires and nanorods by ammoniating Ga2O3/V films on Si(111)[J]. Applied Surface Science,2008,254(13):4166-4170.
    [84]Guo Y F, Xue C S, Liu W J, et al. Fabrication of GaN nanowires on Pd-coated sapphire substrates by magnetron sputtering technique[J]. Materials Characterization,2010,61(4): 381-385.
    [85]Xue C S, Li H, Zhuang H Z, et al. Synthesis of GaN nanowires with tantalum catalyst by magnetron sputtering[J]. Rare Metal Materials and Engineering,2009,38(7):1129-1131.
    [86]Stach E A, Pauzauskie P J, Kuykendall T, et al. Watching GaN nanowires grow[J]. Nano Letters,2003,3(6):867-869.
    [87]Shi W S, Zheng Y F, Wang N, et al. Microstructure of gallium nitride nanowires synthesized by oxide-assisted method[J]. Chemical Physics Letters,2001,345(5-6):377-380.
    [88]吕伟,吴莉莉,邹科,等.氮化镓低维纳米结构的制备与表征[J].山东大学学报(工学版),2007,37(1):10-14.
    [89]Ristic J, Sanchez-Garcia M A, Calleja E, et al. Growth of GaN layers on SiC/Si(111) substrate by molecular beam epitaxy[J]. Materials Science and Engineering B,2002,93(1-3): 172-176.
    [90]林郭强,曾一平,王晓亮,等.以金属为缓冲层在Si(111)上分子束外延GaN及其表征[J].半导体学报2008,29(10):1998-2002.
    [91]Gerlach J W, Hoche T, Frost F, et al. Ion beam assisted MBE of GaN on epitaxial TiN films[J]. Thin Solid Films,2004,459(1-2):13-16.
    [92]Kingsley C R, Whitaker T J, Wee A T S, et al. Development of chemical beam epitaxy for the depositon of gallium nitride[J]. Materials Science Engineering B,1995,29(1-3):78-82.
    [93]杨利,魏芹芹,孙振翠,等.氮化镓薄膜研究进展[J].山东师范大学学报(自然科学版),2003,]8(4):27-30.
    [94]Liu L, Edgar J H. Substrates for gallium nitride epitaxy[R]. Materials Science and Engineering,2002,37(3):61-127.
    [95]Nishida T, Kobayashi N. Ten-milliwatt operation of an AlGaN-based light emitting diode grown on GaN substrate[J]. Physica Status Solidi(a),2001,188(1):113-116.
    [96]Canham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers[J]. Applied Physics Letters,1990,57(10):1046-1048.
    [97]赖天树,王嘉辉,张莉莉,等.GaN薄膜的蓝光和红光发射机理研究[J].光学学报,2003,23(12):1493-]496.
    [98]Ma H L, Yang Y G, Xue C S, et al. Structure and luminescence of GaN films by sputtering post-annealing-reaction technique[J]. Diamond and Related Materials,2003,12(8): 1402-1405.
    [99]Huang H Y, Chuang C H, Shu C K, et al. Photoluminescence and photoluminescence excitation studies of as-grown andp-implanted GaN:on the nature of yellow luminescence[J]. Applied Physics Letters,2002,80(18):3349-3351.
    [100]Yi G C, Wessels B W. Compensation in n-type GaN[J]. Applied Physics Letters,1996, 69(20):3028-3030.
    [101]Glaser E R, Kennedy T A, Doverspike K, et al. Optically detected magnetie resonance of GaN films grown by organometallic chemical-vapor deposition[J]. Physical Review B,1995, 51(19):13326-13336.
    [102]Niebuhr R, Bachem K, Dombrowski K, et al. Basic studies of gallium nitride growth on sapphire by metalorganic chemical vapor deposition and optical properties of deposited layers[J]. Journal of Electronic Materials,1995,24 (11):1531-1534.
    [103]周江峰,王建朝,李昌义,等.氮化镓微米晶须及纳米线的制备与研究[J].材料科学与工艺,2002,10(1):11-]3.
    [104]曹文田,孙振翠,魏芹芹,等.Si(111)衬底上生长GaN晶绳的研究[J].功能材料与器件学,2003,9(4):464-468.
    [105]Lan Z H, Liang C H, Hsu C W, et al. Nanohomojunction (GaN) and Nanoherterojunction (InN) Nanorods on One-Dimensional GaN Nanowire Substrates[J]. Advanced Functional Materials,2004,14(3):233-237.
    [106]Shin M J, Moon J Y, Kwon H Y, et al. Synthesis of GaN nanochestnuts by hydride vapour phase epitaxy[J]. Materials Letters,2010,64(10):1238-1241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700