用户名: 密码: 验证码:
电子辅助化学气相沉积法(EACVD)制备纳米金刚石薄膜及其光电性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作提出了采用正偏压,即EACVD方法,在α-SiC陶瓷和(100)Si晶片抛光衬底表面上沉积纳米金刚石薄膜。研究了气压、连续正偏压和正偏压增强成核对沉积金刚石薄膜的影响。用激光拉曼光谱,X射线衍射,场发射扫描电镜,高分辨透射电镜,原子力显微镜,Hall效应,I-V特性,光致发光光谱和椭偏光谱等方法对制备的金刚石薄膜的结构和性能以及相互间的影响机制进行了系统表征和分析。
     研究表明,在1kPa气压下,随偏压电流从OA至10A逐渐增加,电子轰击显著加速了奇异面和邻位面上的成核生长。即:一,电子轰击使表面脱氢加速,表面悬挂键和碳氢基团吸附及成键增加,因而,成核率增加。晶核和晶芽表面较易出现(111)择优取向晶面。二,当在生成的台阶表面上又生成了大量晶芽及台阶时,表面将出现不同择优取向的晶面,而且,二次成核率明显上升。三,当表面悬挂键进一步增多时,氢对金刚石结构的稳定作用减弱。当在1kPa气压下,施加6A偏流增强成核时,在(100)Si晶片和α-SiC陶瓷抛光表面上,电子轰击使(111)金刚石晶面上产生较多(110)台阶,这些台阶以及台阶边伸出的悬挂键不但显著地提高了成核率,而且这些台阶边缘伸出的悬挂键方向与(100)晶面悬挂键方向一致,可以成为(100)定向生长的成核位置,在4 kPa气压下生长出(100)定向金刚石薄膜。在α-SiC陶瓷抛光表面存在许多(0001)邻晶面和台阶,有利于金刚石(111)晶面的成核生长。因而,在4 kPa气压下,施加连续偏流6A使α-SiC陶瓷衬底上薄膜呈现较强的(111)织构取向;而在(100)Si晶片上薄膜则呈现较强的(110)织构取向。在1kPa气压下,施加连续偏流8A时,表面出现了各种取向的晶芽和台阶,二次成核率有较大提高。因而,沉积的纳米金刚石膜表面粗糙度最低可达11nm(2μm×2μm),晶粒尺寸最小可达18nm。
     Hall效应测试表明,施加连续正偏压使纳米金刚石薄膜呈现较强的p型半导体特性,空穴浓度达10~(14)cm~(-2),载流子迁移率为150 cm~2v~(-1)s~(-1),体电阻率为10~3Ω·cm。电子轰击形成的晶粒体内空位和位错缺陷中的悬挂键导致了纳米薄膜较强的p型半导体特性。该薄膜与低阻n型Si晶片衬底形成异质结,其I-V特性曲线具有明显的整流特性。而不施加连续正偏压制得的纳米薄膜具有较高的体电阻率,达到10~8Ω·cm。
     椭偏光谱分析表明,不施加正偏压沉积制得的纳米膜折射率为2.33,低于天然金刚石折射率,消光系数接近于零。而施加连续正偏压后沉积制得的纳米膜折射率增加至2.50,大于天然金刚石折射率,消光系数也有所增加。光致发光谱分析表明,施加连续正偏压后,纳米薄膜在470 nm波长处出现较强兰色光致发光峰。而不施加正偏压沉积制得的纳米薄膜光致发光峰极其微弱。电子轰击形成的晶粒体内空位和位错缺陷中的悬挂键导致了光致发光特性。
In this work,positive bias technology,that is,electron assistance chemical vapor deposition,was applied to deposit nanocrystalline diamond films on polished surface ofα-SiC ceramics and(100)Si wafer substrates.The effects of technological parameters on the films deposition were studied.They concluded gas pressure change with positive bias,nucleation enhanced by positive bias and positive bias applied successively with deposition of the diamond films.The films structure,the films properties and their relation were characterized and analyzed by Raman spectroscopy,X-ray diffraction,field emission scanning electron microscopy,high resolution transmission electron microscopy,atomic force microscopy,Hall effective, I-V characteristic curves,photoluminescence spectroscopy and ellipsometry spectroscopy.
     The results show,when positive bias was applied from 0A to 10A bias current at 1kPa gas pressure,nucleation and growth were accelerated notably by electron bombardment on singular faces and vicinal faces.That is,first,with electron bombardment H desorptions speeded up,more dangling bonds were produced and adsorption and bonding of CH groups were increased on surface,therefore, nucleation rate increase remarkably.Surfaces of embryos and nucleus often appeared (111) facet;Secondly,when another embryos and nucleus were formed again on the surfaces of steps which had been produced previously,the film surfaces appeared various orientation faces,and the secondary nucleation rates increased notably; Thirdly,when dangling bonds increased further with electron bombardment,the effect of H on stability of diamond structure was reduced.When bias current 6A was applied at 1kPa gas pressure to enhance nucleation on the polished surface of the (100) Si wafer andα-SiC ceramics,electron bombardment produced more(110) steps on the diamond(111) facets.More dangling bonds on the edge of the steps increased remarkably nucleation rate.However,the dangling bond directions agreed with the ones on(100) faces,so the steps with the dangling bonds became suitable nucleation sites which can be used to grow(100) oriented diamond films.Therefore, nucleation rate of(100) oriented growth was increased tremendously by these dangling bonds.Under the condition of 4kPa gas pressure,(100) oriented diamond film can grow on these nucleation sites.There are many(0001) vicinal faces and steps on the polished surface ofα-SiC ceramics,which aid in increasing growth rate on(111) diamond face.So,applying positive bias successively leads to stronger(111) texture of the diamond films onα-SiC ceramics substrates and stronger(110) texture of the diamond films on(100) Si wafer substrates.When bias current 8A was applied successively at 1kPa gas pressure with deposition of the films,surfaces appeared various orientation embryos and steps,and the second nucleation rate increased notably.So,the surface roughness of the nanocrystalline diamond films can reach to lowest value 11nm(scan size:2μm×2μm );the grain size can reach to smallest value 18nm.
     Hall effective measurement show,when positive bias was applied successively with deposition,the nanocrystalline films deposited exhibited stronger p type semiconductor characterization,hole concentration reached to 10 ~(14) cm~(-2) carrier migration rate reached to 150cm~2v~(-1)s~(-1),bulk resistance rate reached to 10 ~3Ωcm. The dangling bonds in vacancy and dislocation,which were produced by electron bombardment,resulted in the stronger p type semiconductor characterization of the films.Heterojunction between the nanocrystalline films and low resistance n type Si wafer substrate has obvious rectification characteristic showed in I-V curve.Without applying positive bias,bulk resistance of the nanocrystalline films deposited can reach to 10 ~8Ωcm.
     Ellipsometry spectroscopy measurement show,when the nanocrystalline diamond films were deposited without biasing,the films had an index of refraction of 2.33 which was lower than that of natural diamond,and coefficient of extinction was close to zero.When the nanocrystalline diamond films were deposited with positive bias applied successively,the index of refraction of the films increased to 2.50 which was higher than that of natural diamond,meanwhile the coefficient of extinction of the films increased.Photoluminescence spectroscopy measurement show,when positive bias was applied successively with deposition,the nanocrystalline diamond films exhibited a stronger blue photoluminescence peak at 470nm wave length;but the photoluminescence peak of the films deposited without applying positive bias was very weak.The dangling bonds in vacancy and dislocation,which were produced by electron bombardment,resulted in blue photoluminescence peak of the films.
引文
[1]王林军,方志军,张明龙,沈沪江,夏义本,金刚石膜/氧化铝陶瓷复合材料的介电特性和热学性能研究,无机材料学报,Vol.19,2004,pp.902-906
    [2]L.J.Wang,Y.B.Xia,Z.J.Fang,M.L.Zhang,H.J.Shen,Studies on the Properties of Diamond film/alumina Composites for ICs with Ultra-high Speed and High Power,Chinese Physics Letters,Vol.21,2004,pp.1161-1163
    [3]夏义本,王林军,张明龙,苏青峰,CVD金刚石核探测材料与器件,原子能科学与技术,Vol.39,2005,pp.63-66
    [4]L.J.Wang,Y.Y.Lou,Q.F.Su,W.M.Shi,Y.B.Xia,CVD diamond alpha-particle detectors with different electrode geometry,Opt.Express,Vol.13,2005,pp.8612-8617
    [5]Vandenbulcke,L.,De Barros,M.I.,Deposition,structure,mechanical properties and behavior of polycrystalline to smooth fine-grained diamond coatings[J].Surface and Coatings Technology,Vol.146-147,2001,pp.417
    [6]Frolov,V.D.,Karabutov,A.V.,Similarity in field electron emission from nano- crystalline diamond and related materials[J].Diamond and Related Materials,Vol.10,No.9-10,2001,pp.1719-1726
    [7]Krauss,A.R.,Gruen,D.M.,and Zhou D.,Morphology and electron emission properties of nanocrystalline CVD diamond thin films.Materials Research Society Symposium-Proceedings,Vol.495,Chemical Aspects of Electronic Ceramics Processing,1998,pp.299-310
    [8]Gruen D M,Krauss A R,Thou D et al.In Chemical Vapor Deposition.Allendorf M D,Bernard C ed.Pennington,NJ:Electrochem.Soc.,1997.325
    [9]Yoshimura M.,Honda K.,Electrochemical characterization of nanoporous honeycomb diamond electrodes in non-aqueous electrolytes[J].Diamond and Related Materials,vVol.10,No.3-7,2001,pp.620-626
    [10]Krauss A.R.,Gruen D.M.,Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices[J].Diamond and Related Materials,Vol10,No.11,2001,pp.1952-1961
    [11]杨武保、吕反修、唐伟忠,MPCVD法纳米金刚石膜的制备及分析.人工晶体学报,2000,vol.29,No.1,pp.54-58
    [12]Chen K.H.,Bhusari D.M.,Highly transparent nano-crystalline diamond films via substrate pretreatment and methane fraction optimization[J].Thin Solid Films,Vol.332,No.1-2,1998,pp.34-39
    [13]Levenson M.D.,Extending optical lithography to the gigabit era[J].Solid State Technology,Vol.38,No.2,1995,pp.57-66
    [14]Shoki.Tsutomu,Yamaguchi.Yoh-ichi,Optical properties of polycrystalline β-SiCmembrane for x-ray mask. Proceedings of SPIE - The International Society for Optical Engineering, Vol.2254, 1994, pp.313-319
    [15] Moel. Alberto, Itoh. Masamitsu, Mask distortion analysis for the fabrication of 1 GBit dynamic random access memories by X-ray lithography. Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, Vol.32, No. 12B, 1993, p p.5947-5950
    [16] M.F.Ravet, F.Rousseaux, Status of diamond as membrane material for X-ray lithography masks[J]. Diamond and Related Materials, Vol.5, 1996, pp.812-818
    [17] R Meilunas, M S Wong et al., Early Stages of Plasma Synthesis of Diamond Film Grown on Various Substrates. Appl Phys Lett, 54 (22), 1989, p2204-2206
    [18] B E Williams, J T Glass Characterization of Diamond Thin Films: Diamond Phase Identification, Surface Morphology and Defect Structure, J Mater Res, 4 (2), 1989, p373-384
    [19] R W Collins, Y Cong et al., Real-time and spectroscopic ellipsometry characterization of diamond and diamond-like carbon, Thin Solid Filmsl81, 1989, p565-578
    [20] P O Joffreau, R Haubner et al., Low pressure diamond growth on refractory metals, Inter J Ref Hard Metals, 7, 1988, p186-194
    [21] S Yugo, T Kimura et al., Nucleation process of diamond by plasma CVD. Proc of 1~(st) Inter Conf of New Diamond Science and Technology: KTK Scientific Pub,TOKYO, 1990, p119-123
    [22] K O Schweitz, R B Schou-Jensen et al., Ultrasonic pre-treatment for enhanced diamond nucleation, Diamond Relat. Mater. 5, 1996, p206-210
    [23] T Hartnett, R Miller et al., Intermediate layers for the deposition of polycrystalline diamond films, J Vac Sci Tech A8(3), 1990, p2129-2136
    [24] D E Meyer, R O Dillon et al., Radio-frequency plasma chemical vapor deposition growth of diamond, J Vac Sci Tech A7(3), 1989, p2325-2327
    [25] K V Ravi, C A Koch Nucleation enhancement of diamond synthesized by combustion Flame techniques, Appl Phys Lett 57(4), 1990, p348-350
    [26] A Badzian, T Badzian Nucleation and growth phenomena in CVD diamond coatings, Surf Coat Tech 36,1988, p283-293
    [27] M Sommer, F W Smith Importance of filament reactivity for CVD diamond growth, MRS 162, 1989, p139-144
    [28] Y Chakk, R Brener et al., Mechanism of diamond formation on substrates abraded with a mixture of diamond and metal powders, Diamond Relat Mater 5, 1996, p286-291
    [29] J T Wang, J O Carlsson A Thermochemical model for diamond growth from the vapor phase, Surf Coatings Tech 43/44, 1990, p1 -9
    [30] J C Angus, H A Will et al., Growth of diamond seed crystals by vapor deposition, J Appl Phys 39, 1968, p2915-2922
    [31] B J Waclawski, D T Pierce et al., Direct verification of hydrogen Termination of the semiconducting diamond (111) surface, J Vac Sci Tech 21, 1982, p368-370
    [32] M Frenlach The role of hydrogen in vapor deposition of diamond, J Appl Phys 65(12), 1989,p5142-5149
    [33] B V Deryagin, D V Fedoseev et al., Expitaxial diamond graphite films, Sov Phys Cryst 21, 1976,p239-240
    [34]C H Wu, M A Tamor et al., A study of gas chemistry during hot filament vapor deposition of diamond films using methane hydrogen and acetylene hydrogen gas mixtures, J Appl Phys 68(9), 1990,p4825-4829
    
    [35] K E Spear Diamond ceramic coating of the future, J Am Ceram Soc 72(2), 1989,p 171 -191
    [36]T R Anthony Metastable synthesis of diamond, Vacuum41(4-6), 1990, p1356-1359
    [37] S J Harris, L R Martin Methyl Versus Acetylene as diamond growth speeies, J Mater Res 5(11), 1990, p2313-2319
    [38] S P Chauha, J C Angus et al., Kinetics of carbon deposition on diamond powder, J Appl Phys 47(11), 1976, p4746-4753
    [39] A Badzian, R Devries Crystalline of diamond from the gas phase, Mater Res Bull 23(3), 1988,p385-400
    [40] B V Spitsyn Chemical crystallization of diamond from the activated vapor phase, J Cryst Growth 99(1-4), 1990, p1162-1167
    [41] J E Bulter, F G Celii Vapor phase diagnostics in CVD diamond deposition, Proc of 1~(st) Inter Symp on Diamond and Diamond like Films, Electrochem Soc Proc 89,1989, p317-329
    [42] F G Celii, J E Bulter Hydrogen atom detection in the filament assisted diamond deposition environment, Appl Phys Lett 54(11), 1989, pl031-1033
    [43] M Sommer, F W Smith Activity of Tungsten and Rhenium filamentd in CH_4/H_2 and C_2H_2/H_2 mixtures importance for diamond CVD, J Mater Res 5(11), 1990, p2433-2440
    [44] W A Yarbrough Thermodynamics of Metastable diamond, MRS 162,1990, p75-83
    [45] D G Jeng, H S Tuan et al., Oriented cubic nucleation and local epitaxy during diamond growth on silicon (100) substrates, Appl Phys Lett, 56(20), 1990, p1968-1970
    [46]Sun Z., Shi J. R., UV Raman characteristics of nanocrystalline diamond films with different grain size [J]. Diamond and related materials, Vol.9, No. 11, 2000,pp. 1979-1983
    [47] Gruen D.M., Liu S., and Krauss A. R., Buckyball microwave plasmas: Fragmentation and diamond-film growth [J]. J. Appl. Phys. ,Vol.75, 1994, pp.1758
    [48] Gruen M., Nanocrystalline Diamond Films [J]. Annu. Rev. Mater. Sci., Vol.29, 1999, pp.211-259
    [49] Zhou D., McCauley T. G., and Qin L.C., Synthesis of nanocrystalline diamond thin films from an Ar-CH4 microwave plasma [J]. J. Appl. Phys., Vol.83, 1998, pp.540
    [50] Zhang Y. F., Zhang F., The roles of argon addition in the hot filament chemical vapor deposition system [J]. Diamond and related Materials, Vol.10, 2001, pp.1523-1527
    [51] Vandenbulcke L., De Barros, M.I., Deposition, structure, mechanical properties and tribological behavior of polycrystalline to smooth fine-grained diamond coatings [J]. Surface and Coatings Technology, Vol. 146-147, 2001, pp.417-424
    [52] Chakrabarti, K., Chakrabarti, R., Nano-diamond films produced from CVD of camphor [J]. Diamond and Related Materials , Vol.7, No.6, 1998, pp.845-852
    [53] Chakrabarti, K., Chakrabarti, R., Submicrocrystalline diamond film deposited by CVD of Freon 22: fabrication of pressure sensing devices [J]. Diamond and Related Materials, Vol.7, No.8, 1998, pp. 1227-1232
    [54]Cui, J.B., Shang, N.G., Growth and characterization of diamond films deposited by d.c. discharge assisted hot filament chemical vapor deposition [J]. Thin Solid Films, Vol.334, No.4, 1998, pp. 156-160
    [55] Cui J., Fang R.J., Characterization of the diamond growth process using optical emission spectroscopy [J]. Appl. Phys, Vol.81,1997, pp.2856-2862
    [56] Sharda T., μmeno M., and Soga T., Growth of nanocrystalline diamond films by biased enhanced microwave plasma chemical vapor deposition: A different regime of growth [J]. Appl. Phys. Leet., Vol.77, 2000, pp.4304-4306
    [57] Sharda T., Soga T., and Jimbo T., Biased enhanced growth of nanocrystalline diamond films by microwave plasma chemical vapor deposition [J]. Diamond and related Materials, Vol.9, 2000, pp.1331-1335
    [58] Shigesato Y., Boekenhauer R. E., Emission spectroscopy during direct-current-biased, microwave-plasma chemical vapor deposition of diamond [J]. Appl. Phys. Lett., Vol.63, 1993, pp.314-316
    [59] Robertson J., Gerber J., and Sattel S., Mechanism of bias-enhanced nucleation of diamond on Si [J]. Appl. Phys. Lett., Vol.66, No.24, 1995, pp.3287-3289
    [60] Lifshitz, Y., Lempert, G.D., and Grossman, E., Substantiation of subplantation model for diamond like film growth by atomic force microscopy [J]. Physical Review Letters, Vol.72, No.17,1994,pp.2753-2756
    [61] Jiang, X., Schiffmann, K., Coalescence and overgrowth of diamond grains for improved heteroepitaxy on silicon (001) [J]. Journal of Applied Physics, Vol. 83, No. 5,1998, pp.2511
    [62] A. Mainwood, Recent developments of diamond detectors for particles and UV radiation, Semi. Sci. Tech. 15 (2000) R55-R63.
    [63] Y. Bagaturia, O. Baruth, H.B. Dreis, et al. Studies of aging and HV break down problems during development and operation of MSGC and GEM detectors for the inner tracking system of HERA-B, Nucl. Instr. and Meth. A 490 (2002) 223-242.
    [64] X.Jiang, C.P.Klages et al., Epitaxial diamond thin films on (001) silicon substrates, Appl. Phys.Lett.62(26), 1993, p3438-3440
    [65] M.J.Chiang, M.H.Hon Enhanced nucleation of diamond films assisted by positive dc bias, Thin Solid Films 389, 2001, p68-74
    [66] J.Patscheider, B.Oral Nucleation studies of thin diamond films on model substrates, Thin Solid Films 253, 1994, p114
    [67] A. Sawabe, T. Inuzuka Growth of Diamond Thin Films by Electron-Assisted Chemical Vapour Deposition and Their Characterization, Thin Solid Films 137, 1986, p89
    [68] W.Chen, C.Xiao et al., The effects of bias polarity on diamond deposition by hot-filament chemical vapor deposition, Can. J. Phys. 83, 2005, p753
    [69] S. Huang, H.Hsu et al., Growth of diamond films with high surface smoothness, Dia. Relat. Mater. 15, 2006,p22-28
    [70] J.B.Cui, R.C.Fang The influence of bias on gaseous composition and diamond growth in a hot-filament chemical vapor deposition process, J. Phys. D: Appl. Phys. 29, 1996, p2759-2762
    [71] H.Y.Zhou, R.J.Zhan et al., Change from micrometre to nanometre size for diamond grains by plasma chemical vapor deposition, Nanotechnology 15, 2004, p 1609-1612
    
    [72] 朱晓东, 温晓辉 等, EACVD沉积金刚石过程中气相化学研究, 核技术 23(9),2000, p621-625
    [73] A Sawabe, T.Inuzuka Growth of Diamond Thin Films by Electron-Assisted Chemical Vapour Deposition, Appl.Phys.Lett.46(2),1985,pl46-147
    [74] J.Cui, R.Fang Evidence of the role of positive bias in diamond growth by hot filament chemical vapor deposition, Appl.Phys.Lett.69(23),1996, p3507-3509
    [75] C.Su et al Hydrogen chemisorption and thermal desorption on the diamond C(111) surface J.Chem.Phys.107(18)1997,p7543-7558 M.McGonigal et al Isothermal hydrogen desorption from the diamond(100)2×1 surface, J.Vac.Sci.Technol.A14(4)1996,p2308-2314
    [76] D.W.Brenner, Phys.Rev.B42, 1990,p9458
    [77] C.A.Fox, G.D.Kubiak et al., in Proceedings of the Third International Symposium on Diamond Materials, edited by J.P.Dismukes and K. V. Ravi (The Electrochemical Society, Pennington, 1993), p64
    
    [78] K.Bobrov, B.Fisgeer et al., Diamond Relat. Mater. 6, 1997, p736
    [79] M.Stemberg, M.Kaukonen, et al., Growth of (110) diamond using pure dicarbon, Phys. Rev. B63,2001, p165414
    [80] K.Larsson, J.Carlsson, Surface migration during diamond growth studied by molecular orbital calculations, Phys. Rev. B59(12),1999, p8315
    [81]C.Kanai,Y.Shichibu,et al.,Ab initio study on surface segregation of hydrogen from diamond C(100) surfaces,Phys.Rev.B65,2002,p153312
    [82]S.Hong,M.Y.Chou Effect of hydrogen on the surface energy anisotropy of diamond and silicon,Phys.Rev.B57(11),1998,p6262
    [83]M.Sternberg,P.Zapol et al.,Carbon dimers on the diamond(100) surface:Growth and nucleation,Phys.Rev.B68,2003,p205330
    [84]R.C.Brown,C.J.Cramer et al.,An ab initio electronic structure study of methyl adsorption and reaction on cluster model for the diamond surface,Dia.Relat.mater.10,2001,p39-47
    [85]K.Larsson Adsorption of hydrocarbon species on a stepped diamond(111) surface,Phys.Rev.B56,1997,p 15452
    [86]D.R.Alfonso,D.A.Drabold et al.,Structural,electronic,and vibrational properties of diamond(100),(111) and(110) surfaces from ab initio calculations,Phys.Rev.B51(20),1995,p14669
    [87]H.Tamura,H.Zhou et al.,First principle study on reactions of diamond(100) surface with hydrogen and methyl radicals,Phys.Rev.B62(24),2000,p16995
    [88]荣垂庆 李延欣,金刚石(111)氢化表面脱氢势垒的量子化学研究,高等学校化学学报 16(4),1995,p613-617
    [89]A.Hoffman,A.Laikhtman et al.,Stimulated desorption of D from diamond:surface versus sub-surface processes via resonance dissociative electron attachment,Diamond Relat.Mater.11,2002,p867-871
    [90]J.Sun,Y.Zhang et al.,A chemical adsorption growth model for hot filament chemical vapor deposition diamond,Diamond Relat.Mater.9,2000,p 1668-1672
    [91]L.S.Foord,K.P.Loh et al.,Surface studies of the reactivity of methyl,acetylene and atomic hydrogen at CVD diamond surfaces,Sur.Sci.399,1998,p1-14
    [92]于洋,徐力方 等,氢吸附金刚石(001)表面的第一性原理研究,物理学报,53(8),2004,p2710-2714
    [93]W.E.Pickett,M.R.Pederson et al.,Modeling CVD diamond with density functional theory,Nanotechnology 5,1994,p172-178
    [94]E.J.Dawnkaski,D.Srivastava et al.,Growth of diamond films on a diamond {001}(2×1):H surface by time dependent Monte Carlo simulations,J.Chem.Phys.,104(15),1996,p5997
    [95]T.Nishimori,H.Sakamoto et al.,Methane adsorption and hydrogen isothermal desorption kinetics on a C(001)-(1×1) surface,J.Vac.Sci.Technol.A 13(6),1995,p2781-2786
    [96]K.Bobrov,H.Shechter et al.,A study of deuterium interaction with diamond(110) single crystal surface by TPD,EELS and LEED,Diamond Relat.Mater.,8,1999,p705-711
    [97]唐壁玉 靳九成 等,化学气相沉积金刚石薄膜的表面过程,湖南大学学报,23(4),1996,p18-21
    [98]L.Dong,J.Chen et al.,Dissociation process of CH_4/H_2 gas mixture during EACVD,Thin Solid Films 390,2001,p93-97
    [99]L.Dong,Y.Zhang et al.,Monte Carlo simulation of spatial distribution of atomic hydrogrn in electron assisted CVD,Diamond Relat.Mater.11,2002,p1648-1652
    [100]董丽芳,陈俊英 等,EACVD金刚石薄膜中氢分解过程的研究,核聚变与等离子体 物理20(4),2000,p233-236
    [101]J.Robertson,Mechanism of bias enhanced nucleation and heteroepitaxy of diamond on Si,Diamond Delat.Mater.4,1995 p549-552
    [102]J.Y.Shim,E.J.Chi et al.,Effect of substrate bias on the structural and field emission properties of diamond films,J.Vac.Sci.Technol.B 18(2),2000,p 1040-1043
    [103]W.L.Wang,G.Sanchez,et al.,Nucleation and initial growth of diamond by biased hot filament chemical vapor deposition,Appl.Phys.A65,1997,p241-249
    [104]K.Iakoubovskii,G.J.Adriaenssens Optical detection of defect centers in CVD diamond,Diamond Relat.Mater.,9,2000,p 1349-1356
    [105]陈达,李清山等,无氢类金刚石膜的光致发光特性研究,江西科学 23(5),2005,p534-537
    [106]Silva F.,Gicquel A.,and Tardieu,A.,Control of an MPACVD reactor for polycrystalline textured diamond films synthesis:Role of microwave power density[J].Diamond and Related Materials,Vol.5,No.3-5,1996,pp.338-344
    [107]Yin Z.,Akkerman Z.,and Smith F.W.,and Yang B.X.Optical properties and microstructure of CVD diamond films[J].Diamond and Related Materials,Vol.6,No.1,1997,pp.153-158
    [108]McNamara K.M.,Scruggs B E.,and Gleason K.K.,Effect of impurities on the IR absorption of chemically vapor deposited diamond[J].Thin Solid Films,Vol.253,No.1-2,1994,pp.157-161
    [109]Yiben Xia,Yaowu Mo,et al.Chinese Physics Letter Vol.7,1996,pp.557
    [110]张振刚,廖克俊 等,直流等离子体CVD金刚石膜的阴极发光性质的研究,无机材料学报10(2),1995,p219-224
    [111]叶峰,廖源 等,金刚石薄膜的蓝光发射,发光学报 19(3),1998,p230-232
    [112]L.H.Robins,L.P.Cook et al.,Cathodoluminescence of defects in diamond films and particles grown by hot filament chemical vapor deposition,Phys.Rev.B39(18),1989,p 13367-13377
    [113]Wang L.J.,Xia Y.B.,Efficient luminescence from CVD diamond film-coated porous silicon[J].Journal of Physics:Condensed Matter Vol.12,No.13,2000,pp.257-260
    [114]McMarr,P.J.,Vedam,K.,and Narayan,J.,Spectroscopic Ellipsometry:A new tool for nond estructive depth profiling and characterization of interfaces[J].Journal of Applied Physics,Vol.59,NO.3,1986,pp.694-701
    [115]Bruggeman D.A.,The calculation of Various physical constant of heterogeneous substances[J].Annual Physics,Vol'5,No.24,1935,pp.636-791
    [116]F.Jansen et al,The deposition of diamond films by filament techniques[J]J.Vac.Sci.Technol.A8,(1990) 3785
    [117]S.Yugo et al,Generation of diamond nuclei by electric field in plasma chemical vapor deposition[J]Appl.Phys.Lett.58,(1991) 1036
    [118]X.Jiang et al,Heteroepitaxial diamond growth on(100) silicon[J]Diam.Relat.Mater.2(1993) 1112-1113
    [119]F.Le Normand et al,Formation of β-SiC nanocrystals on Si(111) monocrystal during the HFCVD of diamond[J]Appl.Surf.Sci.177(2001) 298-302
    [120]J.C.Angus et al,Growth of Diamond Seed Crystals by Vapor Deposition[J]J.Appl.Phys.39(1968) 2915
    [121]W.A.Yarbrough J.Am.Ceram.Soc.75(1992) 3179
    [122]S.T.Lee et al Science 287(2000) 104
    [123]J.C.Arnault et al Eur.J.Phys.Chem.B11(1999) 327
    [124]M.Schreck et al New Diamond and Frontier Carbon Technology 11(2001) 189
    [125]K.H.Thurer et al,Limiting processes for diamond epitaxial alignment on silicon[J]Phys.Rev.B57(1998) 15454
    [126]D.Wittorf et al,Electron microscopy of interfaces in chemical vapour deposition diamond films on silicon[J]Diam.Relat.Mater.9(2000) 1696-1702
    [127]M.Stammler et al,Diamond nucleation on silicon during bias treatment in chemical vapour deposition as analysed by electron microscopy[J]Diam.Relat.Mater.6(1997) 747-751
    [128]J.Ristein Appl.Phys.A(2005)
    [129]M.Frenklach et al Growth mechanism of vapor-deposited diamond[J]J.Mater.Res.3(1988)133-140
    [130]T.Sharda et al Biased enhanced growth of nanocrystalline diamond films by microwave plasma chemical vapor deposition[J]Diam.Relat.Mater.9(2000) 1331-1335
    [131]N.Jiang et al Reducing the grain size for fabrication of nanocrystalline diamond[J]J.Crys.Growth 222(2001)591-59
    [132]杨武保 等 MPCVD法纳米金刚石膜的制备及分析[J]人工晶体学报 29(2000)54-58
    [133]R.Erz et al Preparation of smooth and nanocrystalline diamond films[J]Diam.Relat.Mater.3(1993) 449-453
    [134]蔡让歧 等 纳米金刚石涂层上化学气相沉积金刚石薄膜的场电子发射[J]科学通报48(2003)1282-1285
    [135]Y.Liu et al Effects of hydrogen additive on microwave plasma CVD of nanocrystalline diamond in mixtures of argon and methane[J]Diam.Relat.Mater.13(2004)671-678
    [136]M Y Liao et al Nanodiamond formation by hot filament chemical vapor deposition on carbon ions bombarded Si[J]J.Crys.Growth236(2002)85-89
    [137]赵庆勋 等 激光辅助EACVD低温生长纳米金刚石薄膜[C]量子电子学报,第三届全国光学前沿问题讨论会论文摘要 581-582
    [138]Z.Sun et al UV Raman characteristics of nanocrystalline diamond films with different grain size[J]Diam.Relat.Mater.9(2000)1979-1983
    [139]T.S.Yang et al Growth of faceted ballas-like and nanocrystalline diamond films deposited in CH_4/H_2/Ar MPCVD[J]Diam.Relat.Mater.10(2001)2161-2166
    [140] L.Chow et al Chemical vapor deposition of noval carbon materials[J] Thin Solid Films 368(2000)193-197
    [141] T.Wang et al the fabrication of nanocrystalline diamond films using hot filament CVD[J] Diam.Relat.Mater. 13(2004)6-13
    [142] T.D.Corrigan et al The effect of nitrogen addition to Ar/ plasmas on the growth,morphology and field emission of ultrananocrystalline diamond [J] Diam.Relat.Mater. 11(2003)43-48
    [143] S.Hogmark et al direct current bias applied to hot flame diamond deposition produces smooth low friction coatings[J] Wear200(1996)225-232
    [144] H.W.Xin et al Composite films with smooth surface and the structural influence on dielectric properties[J] Diam.Relat.Mater. 11(2002)228-233
    
    [145] 张志明 等 热丝CVD法生长纳米金刚石薄膜的研究[J]微细加工技术 3(2003) 27-33
    [146] M.S.Kang et al Morphology variation of diamond with increasing pressure up to 400 torr during deposition using hot filament CVD[J] Thin Solid Films398-399(2001)175-179
    [147] Y.Hiromichi et al synthesis of nanocrystalline diamond films using microwave plasma CVD[J] Diam.Relat.Mater. 10(2001) 1588-1591
    [148] M.I.De Barros et al Plasma assisted chemical vapor deposition process for depositing smooth diamond coatings on titanium alloys at moderate temperature[J] Diam.Relat.Mater. 9(2000)1862-1866
    [149] N.Sieber et al Synchrotron x-ray photoelectron spectroscopy study of hydrogen-terminated 6H-SiC {0001}surfaces[J] Phys.Rev.B67(2003)205304
    [150] B.Dischler et al Resolved donor-acceptor pairrecombination lines in diamond luminescence [J] Phys.Rev.B49(l994)1685-1689
    [151] R.J.Graham et al Cathodoluminescence investigation of impurities and defects in single crystal diamond grown by the combustion flame method[J] Appl.Phys.Lett.66(1992) 1310-1312
    [152] N.Yamamoto et al Cathodoluminescence and polarization studies from individual dislocation in diamond[J] Phil.Mag>B49(1984)609-629
    [153] C.Manfredotti et al Blue-violet electroluminescence and photocurrent spectra from polycrystalline chemical vapor deposited diamond film[J] Appl.Phys.Lett.67(1995) 3376-3378

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700