用户名: 密码: 验证码:
用于边界面法的三维体网格生成方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于边界积分方程的边界面法具有很多优点。一般边界面法只需要离散问题域的表面,并且可以采用不连续单元。因此,用于边界面法的网格生成方法可以更加灵活。边界面法在分析非线性问题和非均质问题时,需要三维网格来进行体积分,并且需要三维网格进行后处理显示。在三维网格生成的研究中,目前已可以实现复杂实体的四面体网格自动生成。六面体单元能够获得更好的计算结果,但全六面体网格的自动生成依然是一个难点。要得到复杂实体的全六面体网格,需要通过大量的人机交互才能完成。因此,本文在用于边界面法的三维网格自动生成方面做了一系列的尝试和探索。同时,利用边界面法的优点,尝试采用一些特殊的单元,达到降低网格生成难度,提高效率的目的。本文主要完成了以下研究工作:
     (1)为实现对复杂三维实体的网格自动生成,本文构建了一个三维网格生成框架。该框架分为网格数据管理、特征识别、虚拟分解和网格生成方法四个部分。本文设计了一个统一的数据管理器来管理网格数据,很好地实现了数据存储量和数据获取所需的计算量之间的平衡。统一的网格数据管理让程序的调整、维护和扩充十分便捷。在该框架中可以实现各种三维网格生成方法,可以将所得的网格单元转换为计算单元,并且可以导出到其他模块。
     (2)为实现对复杂三维实体的四面体网格自动生成,本文提出了一种采用推进波前法生成域内点的Delaunay方法。该方法采用推进波前法来生成域内点,采用Delaunay内核将该点插入到网格中。本文加入了对前沿的识别,筛选出适合用来生成新点的前沿,剔除不满足要求的前沿,提高了算法的效率。该方法能够生成高质量的网格,具有较高的效率并且可以保证网格生成的收敛。
     (3)为完成对复杂三维实体的六面体网格自动生成,本文提出了网格特征的概念,并构造了网格特征的识别方法。该方法能够从复杂三维实体中识别出可扫掠部分,并且可以自动识别出扫掠体的源面、目标面和连接面。然后采用虚拟体分解技术将可扫掠部分从实体中分解出来。分解得到的可扫掠子域可以采用扫掠法生成六面体网格。对分解得到子域全部可扫掠的情况,就可以实现六面体网格的自动生成。
     (4)为实现了对含有细小管道的三维实体的网格自动生成,本文提出了一种混合网格自动生成方法。同时构造了一种五面体网格的生成方法来解决四面体网格和六面体网格之间的相容性问题。该方法在管道周围生成六面体网格,用四面体单元对剩余区域进行填充,采用金字塔五面体单元来连接这两种网格。该方法能够完成对含有细小管道的三维实体的高质量网格自动生成。为采用边界面法对含有细小管道的三维实体进行弹性力学分析,本文构造了管单元和含有空缺的三角形单元。采用这两种计算单元,降低了计算网格的生成难度,在提高了计算效率的同时有很高的计算精度。
     (5)为了能够完成对混凝土坝的自动分析,采用本文的方法,通过特征识别,自动完成了对子域网格生成方法的判断,从而实现了对整个混凝土坝的三维网格自动生成。基于生成的网格,采用边界面法完成了对混凝土坝浇筑建造过程的模拟。
The boundary face method (BFM) based on the boundary integral equation (BIE) exhibits some extraordinary merits. Generally, the BFM only needs to discretize the boundary of the domain. And the mesh can be obtained by discretizing each piece wise continuous panel of the body's surface without restriction of element connectivity, hence, considerably simplifies the discretization task and the mesh generation method can be much more flexible. BFM also needs three-dimensional mesh to carry out the postprocess and analysis. The tetrahedral mesh can be generated automatically for complex solids. All-hexahedral meshes are preferred than tetrahedral mesh. But all-hexahedra meshing methods have proven to be more challenging. In order to discretize a complex solid, the volume needs to be decomposed manually, which is a time consuming and difficult task. Therefore, this dissertation conducts some useful researches and trials on the automatical three-dimensional mesh generation method for BFM. Based on the advantages of the BFM, some special elements are used to discretize the boudray of the domain. Hence, the discretization of the surface is very simple, resulting in substantial savings in both data preparation and computing costs. As a result, the following studies are carried out in this dissertation.
     (1) In order to construct an automatical mesh generator, a program framework for three-dimensional mesh generation is developed. In the framework, some C++classes are designed to performing different tasks needed in overall mesh generation, such as mesh data management, feature recognition, virtual decomposition, and mesh generation methods. A mesh data manager is developed, the conflicting requirements of compactness and computational efficiency is well balanced. The uniform mesh database is convenient for modification, maintenance and expansion of the programme. A variety of three-dimensional mesh generation methods can be implemented in this framework. The resulting mesh cells can be converted into elements for analysis and dumped to postprocess module.
     (2) A Delaunay method coupled with the advancing front method for automatical tetrahedral mesh generation is presented. The internal points are created by advancing front method and inserted into the mesh by Delaunay kernel procedure. To get better efficiency, a front identification and field point generation method is proposed and applied. The background mesh is used to specify mesh size distributions over arbitrarily shaped domains. The grid is applied to manage the background mesh, thus the point can be quickly located in the backgroud mesh. The mesh generation method combines the advantages of the high point placement quality of the advancing front method and the high efficiency and convergence guaranty of the Delaunay algorithm.
     (3) The sweep method is applied to generate hexahedral mesh. The mesh feature recognition method is proposed to recognize the sweepable part from the complex solid. And the source surface, linking surfaces and target surface can be settled automatically. The virtual decomposition is applied to extract the sweepable part from the solid. Then, the sweepable part can be discretized by sweep method. If all of sub-domains are sweepable, the all-hexahedral mesh can be generated for the solid.
     (4) A new conforming hybrid mesh generation method is proposed and applied to generate mesh for three-dimensional solids with open-ended tubular holes. A pyramidal element generation method is presented to solve the non-conforming problem. The regions around the tubular holes are presented by hexahedral elements. The tetrahedral mesh is generated to tessellate the rest of the domain. The pyramid elements are constructed at the interface between hexahedral and tetrahedral elements. High-quality hybrid mesh can be automatically created by the proposed method. Two kinds of special surface elements, tube element and triangular element with negative parts, are proposed for modeling solids containing many slender open-ended tubular shaped holes. The discretization of the surface is very simple by using these special elements, resulting in substantial savings in both data preparation and computing costs.
     (5) The feature recognition method is applied to automatically determine the meshing algorithm for each solid of dams. And the mesh can be generated automatically by the presented methods. Thus, the whole dam can be meshed automatically without user interaction. The BFM is applied to predict the thermal evolution of dams during their construction with the generated mesh.
引文
[1]蔡兰,顾寄南.制造业信息化的发展方向和发展对策.数字制造科学,2003,1:61-72
    [2]董其伍,刘启玉.CAE技术回顾与展望.计算机工程与应用,2002,38(14):82-84
    [3]李根国,桂亚东,刘欣.浅谈高性能计算的地位及应用.计算机应用与软件,2006,23(9):125-129
    [4]王有智.CAE技术的过去,现在与未来.计算机辅助设计与制造,1998(12):8-11
    [5]钟万勰.发展自主CAE软件的战略思考.计算机辅助工程,2008,17(3):1-11
    [6]钟万勰,陆仲绩.加强以装备制造业发展需求为导向的自主CAE软件产业建设.计算机应用与软件,2006,23(9):1-2
    [7]曾攀.有限元分析及应用.北京:清华大学出版社,2004
    [8]王勖成,邵敏.有限单元法基本原理和数值分析.北京:清华大学出版社,1997
    [9]龙述尧,蒯行成,刘腾喜编著.计算力学.湖南:湖南大学出版社,2001
    [10]Hughes T J R, Cottrell J A, Bazilevs Y. Isogeometric analysis. CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanic Engineering,2005,194:4135-4195
    [11]Bazilevs Y, Calo V M, Cottrell J A, et al. Isogeometric analysis using T-splines. Computer Methods in Applied Mechanic Engineering,2010,199: 229-263
    [12]Zhang J M, Qin X Y, Han X, et al. A boundary face method for potential problems in three dimensions. International Journal for Numerical Methods in Engineering,2009,80:320-337
    [13]张见明.基于边界面法的完整实体应力分析理论与应用(专稿).计算机辅助工程,2010,19(3):5-10
    [14]Qin X Y, Zhang J M, Li G Y, et al. An element implementation of the boundary face method for 3D potential problems. Engineering Analysis with Boundary Elements,2010,34:934-943
    [15]www.5aCAE.com
    [16]Huang C, Zhang JM, Qin XY, et al. Stress analysis of solids with open-ended tubular holes by BFM. Engineering Analysis with Boundary Elements 2012,36: 1908-1916
    [17]Qin XY, Zhang JM, Liu LP. Steady-state heat conduction analysis of solids with small open-ended tubular holes by BFM. International Journal of Heat and Mass Transfer 2012,55:6846-6853
    [18]Zhou FL, Xie GZ, Zhang JM. Transient heat conduction analysis of solid with small open-ended tubular cavities by boundary face method. Engineering Analysis with Boundary Elements 2013,37:542-550
    [19]Wang XH, Zhang JM, Zhou FL, et al. An adaptive fast multipole boundary face method with higher order elements for acoustic problems in three-dimension. Engineering Analysis with Boundary Elements,2013,37: 114-152
    [20]Zhou F L, Zhang J M, Sheng X M, et al. A dual reciprocity boundary face method for 3D non-homogeneous elasticity problems. Engineering Analysis with Boundary Elements,2012,36:1301-1310
    [21]胡恩球,张新访,向文,等.有限元网格生成方法发展综述.计算机辅助设计与图形学学报,1997,9(4):378-383
    [22]吕军,王忠金,王仲仁.有限元六面体网格的典型生成方法及发展趋势.哈尔滨工业大学学报,2001,33(4):485-490
    [23]关振群,宋超,顾元宪,等.有限元网格生成方法研究的新进展.计算机辅助设计与图形学学报,2003,15(1):2-14
    [24]Jan Frykestiong. Advancing front mesh generation technique with application to the finite element method. Department of Structural Mechanics of Chalmers University of Technology,1994,138-139
    [25]Watson D. Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. The Computer Journal,1981,24(2):167-172
    [26]Bowyer A. Computing Dirichlet tessellations. The Computer Journal,1981, 24(2):162-166
    [27]S. Rebay. Efficient Unstructured Mesh Generation by Means of Delaunay Triangulation and Bowyer-Watson Algorithm. Journal of Computational Physics.1993.106(1):125-138
    [28]Baldwin K H, Schreyer H L. Automatic generation of quadrilateral elements by a conformal mapping. Engineering with Computers,1985,2(3):187-194
    [29]Tarn T K H, Armstrong C G.2D Finite element meshgeneration by medial axis subdivision. Advances in Engineering Software,1991,13 (5):313-324
    [30]Blacker T D, Stephenson M B. Paving:A new approach to automated quadrilateral mesh generation. International Journal for Numerical Methods in Engineering,1991,32(4):811-847
    [31]胡向红,陈康宁.由区域生长算法实现四边形网格划分,计算机辅助设计与图形学学报,2004,16(1):29-34
    [32]杜群贵,迟永滨,手塚明.波前法网格生成中最后剩余多面体的剖分,贵州工业大学学报(自然科学版),2002,31(4):76-79
    [33]Ruppert J, Seidel R. On the difficulty of triangulating three-dimensional nonconvex polyhedra. Discrete & Computational Geometry,1992,7(3):227-253
    [34]George P L, Hecht F, Saltel E. Automatic mesh generator with specified boundary. Comput erMethods in Applied Mechanics and Engineering,1991, 92(3):269-288
    [35]Weatheril N P, Hassan O. Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constrains International Journal for Numerical Methods in Engineering,1994,37(12):2005-2039
    [36]Canvendish J C, Field D A, Frey W H. An approach to automatic three-dimensional finite element mesh generation. International Journal for Numerical Methods in Engineering,1985,21(2):329-347
    [37]Price M A, Armstrong C G. Hexahedral mesh generation by medial surface subdivision:Part I. International Journal for Numerical Methods in Engineering, 1995,38(19):3335-3359
    [38]Price M A, Armstrong C G. Hexahedral mesh generation by medial surface subdivision:Part II. International Journal for Numerical Methods in Engineering,1997,40(1):111-136
    [39]Roca X, Sarrate J, Huerta A. Surface mesh projection for hexahedral mesh generation by sweeping. In:Proc of the 13th international meshing roundtable. Williamburg,2004,169-179
    [40]Knupp PM. Next-generation sweep tool:a method for generating all-hex meshes on two-and-one-half dimensional geometries. In:Proc of the 7th international meshing roundtable. Dearborn,1998,505-513
    [41]Staten ML, Canann SA, Owen SJ. BMSweep:locating interior nodes during sweeping. In:Proc of the 7th international meshing roundtable. Dearborn, 1998,7-18
    [42]邵辉,陈文亮,彭威.基于多轴扫掠的六面体网格划分算法.现代设计与先 进制造技术,2006,40(13):25-27
    [43]房芳,陈文亮.基于多对多六面体扫掠算法的研究.中国制造业信息化技术,2006,35(19):5-8
    [44]Schneiders R. A grid based algorithm for the generation of hexahedral element meshes. Engineering With Computers,1996,12(34):168-177
    [45]Schneiders R, Schindler R, Weiler F. Octree based generation of hexahedral element meshes. In:Proc of the 5th International Meshing Roundtable. Pittsburgh,1996,205-216
    [46]Loic M. A new approach to octree based hexahedral meshing.In:Proc of the 10th Internat ional Meshing Roundtable. Newport Beach,2001,209-221
    [47]Tautges T J, Blacker T, Mitchell S. The whisker weaving algorithm:A connectivity based method for constructing all hexahedral finite element meshes. International Journal for Numerical Methods in Engineering,1996, 39(19):3327-3349
    [48]Blacker T D, Meyers R J. Seams and wedges in plastering:A 3D hexahedral mesh generation algorithm. Engineering With Computers,1993,9(2):83-93
    [49]左旭,卫原平,陈军,阮雪榆.三维六面体有限元网格自动划分中的一种单元转换优化算法.计算力学学报,1999,16(3):343-347
    [50]Bennis C, Borouchaki H, Flandrin N.3D conforming power diagrams for radial LGR in CPG reservoir grids. Engineering with Computers,2008,24(3): 253-265
    [51]Athanasiadis A N, Deconinck H. Object-oriented three-dimensional hybrid grid generation. International journal for numerical methods in engineering, 2003,58(2):301-318
    [52]Khawaja A, Kallinderis Y. Hybrid grid generation for turbomachinery and aerospace applications. International Journal for Numerical Methods in Engineering,2000,49(1):145-166
    [53]Chand K K. Component-based hybrid mesh generation. International Journal for Numerical Methods in Engineering,2005,62(6):747-773
    [54]Owen S J, Saigal S. H-Morph:an indirect approach to advancing front hex meshing. International Journal for Numerical Methods in Engineering,2000, 49(1):289-312
    [55]R J Meyers, T J Tautges, P M Tuchinsky, The hex-tet hex-dominant meshing algorithm as implemented in cubit. In:Proc of the Seventh International Meshing Roundtable. Albuquerque,1998,151-158
    [56]Owen S J, Saigal S. Formation of pyramid elements for hexahedra to tetrahedra transitions. Computer methods in applied mechanics and engineering, 2001,190(34):4505-4518
    [57]Wu M C, Lit C R. Analysis on machined feature recognition techniques based on B-rep. Computer-Aided Design,1996,28(8):603-616
    [58]高曙明.自动特征识别综述.计算机学报,1998,21(3):282-287
    [59]Li B, Liu J. Detail feature recognition and decomposition in solid model. Computer-Aided Design,2002,34(5):405-414
    [60]Sakurai H. Volume decomposition and feature recognition:Part I:polyhedral objects. Computer-Aided Design,1995,27(11):833-843
    [61]Sakurai H, Dave P. Volume decomposition and feature recognition, Part II: curved objects. Computer-Aided Design,1996,28(6):519-537
    [62]White D R, Mingwu L, Benzley S E, et al. Automated hexahedral mesh generation by virtual decomposition. In:Proc of the 4th International Meshing Roundtable. Albuquerque,1995,165-176
    [63]Shih B Y, Sakurai H. Automated hexahedral mesh generation by swept volume decomposition and recomposition. In:Proc of the 5th International Meshing Roundtable. Albuquerque,1996,273-280
    [64]Lu Y, Gadh R, Tautges T J. Volume Decomposition and Feature Recognition for Hexahedral Mesh Generation. In:Proc of the 8th International Meshing Roundtable. Albuquerque,1999,269-280.
    [65]White D R, Tautges T J. Automatic scheme selection for toolkit hex meshing. International Journal for Numerical Methods in Engineering,2000,49(1): 127-144
    [66]Unruh V, Anderson D C. Feature-based modeling for automatic mesh generation. Engineering with computers,1992,8(1):1-12
    [67]陈军.UG二次开发中特征识别和设定.机械设计与制造工程,2002,31(4):45-46
    [68]Henry D P, Banerjee P K. Elastic analysis of three-dimensional solids with small holes by BEM. International Journal for Numerical methods in Engineering,1991,31:369-384
    [69]Henry D P, Banerjee P K. Elastic analysis of three-dimensional solids with small holes by BEM. International Journal for Numerical methods in Engineering,1991,31:369-384
    [70]Banerjee P K, Henry D P. Elastic analysis of three-dimensional solids with fiber inclusions by BEM. International Journal of solids and structures,1992, 29:2423-2440
    [71]Chatterjee J, Henry D P, Ma F, Banerjee P K. An efficient BEM formulation for three-dimensional steady-state heat conduction analysis of composites. International Journal of Heat and Mass Transfer,2008,51:1439-1452
    [72]Dargush G F, Banerjee P K. Advanced development of the boundary element method for steady-state heat conduction. International Journal for Numerical Methods in Engineering,1989,28:2123-2143
    [73]Barone M R, Caulk D A. Special boundary integral equations for approximate solution of potential problems in three-dimensional regions with slender cavities of circular cross section. IMA Journal of Applied Mathematics,1985, 35:311-325
    [74]Federico C B, Rogerio J M, A family of hole boundary elements for modeling materials with cylindrical voids. Engineering Analysis with Boundary Elements, 2008,32:578-590
    [75]Zhang J, Zheng X, Lu C, et al. A Geometric Mapping Cross Approximation method. Engineering Analysis with Boundary Elements,2013,37(12): 1668-1673
    [76]Garimella R V. Mesh data structure selection for mesh generation and FEA applications. International journal for numerical methods in engineering,2002, 55(4):451-478
    [77]Lohner R. Some useful data structures for the generation of unstructured grids. Communications in Applied Numerical Methods,1988,4(1):123-135
    [78]Celes W, Paulino G H, Espinha R. A compact adjacency-based topological data structure for finite element mesh representation. International Journal for Numerical Methods in Engineering,2005,64(11):1529-1556
    [79]Beall M W, Shephard M S. A general topology-based mesh data structure. International Journal for Numerical Methods in Engineering,1997,40(9): 1573-1596
    [80]Knupp P M. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part Ⅱ-a framework for volume mesh optimization and the condition number of the Jacobian matrix. International Journal for Numerical Methods in Engineering,2000,48(8): 1165-1185
    [81]Lohner R, Parikh P. Generation of three-dimensional unstructured grids by the advancing-front method. International Journal for Numerical Methods in Fluids, 1988,8(10):1135-1149
    [82]Moller P, Hansbo P. On advancing front mesh generation in three dimensions. International Journal for Numerical Methods in Engineering,1995,38(21): 3551-3569
    [83]Jin H, Tanner R I. Generation of unstructured tetrahedral meshes by advancing front technique. International Journal for Numerical Methods in Engineering, 1993,36(11):1805-1823
    [84]Rassineux A. Generation and optimization of tetrahedral meshes by advancing front technique. International Journal for Numerical Methods in Engineering, 1998,41(4):651-674
    [85]单菊林,关振群,宋超.一个高效可靠的三维AFT四面体网格生成算法.计算机学报,2007
    [86]宋超.非结构化自适应有限元网格生成的AFT方法:[大连理工大学博士论文].大连:大连理工大学,2004
    [87]单菊林.自适应有限元网格生成算法研究与应用:[大连理工大学博士论文].大连:大连理工大学,2007
    [88]http://www.hpfem.jku.at/netgen/
    [89]Schoberl J, NETGEN:An advancing front 2D/3D-mesh generator based on abstract rules. Computing and visualization in science,1997,1(1):41-52
    [90]覃先云.边界面法的单元实现及其在复杂结构分析中的应用:[湖南大学博士论文].长沙:湖南大学,2012
    [91]王盛玺.约束非结构网格生成方法研究:[国防科学技术大学博士论文].长沙:国防科学技术大学,2009
    [92]J D Muller, P L Roe, H Deconinck. A frontal approach for node generation in Delaunay triangulations. International Journal for Numerical Methods in Engineering.1993,17(3):241-255
    [93]Marcum D L, Weatherill N P. Unstructured grid generation using iterative point insertion and local reconnection. AIAA journal,1995,33(9):1619-1625
    [94]M.L. Merriam, An efficient advancing front algorithm for Delaunay triangulation. In:Proc of 29th Aerospace Sciences Meeting. Nevada, 1991,91-92
    [95]Pascal J. Frey, Houman Borouchaki, Paul-Louis George.3D delaunay mesh generation coupled with an advancing front approach. Comput. Meth. Appl. Mech. Engrg.1998,157:115-131
    [96]PL George, Automatic mesh generation:Application to Finite Element Methods. Wiley,1991
    [97]Lo S H, Lee C K. Generation of gradation meshes by the background grid technique. Computers & Structures,1994,50:21-32
    [98]Krause R and Rank E. A fast algorithm for point location in a finite element mesh. Computing.1996.57:49-62
    [99]Wang E, Nelson T, Rauch R. Back to elements-tetrahedra vs. hexahedra. In: Proc of 2004 International ANSYS Conference. Florida,2004,1-16
    [100]Benzley S E, Perry E, Merkley K, et al. A comparison of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic analysis. In: Proc of the 4th International Meshing Roundtable. Albuquerque,1995,179-191
    [101]Ramos A, Simoes J A. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur. Medical engineering & physics, 2006,28(9):916-924
    [102]董正卫,田立中等.UG/OPEN API编程基础.北京:清华大学出版社,2002
    [103]侯永涛,丁向阳编著.UG/Open二次开发与实例精解.北京:化学工业出版社,2002
    [104]柯映林,李岸.基于主方向高斯映射的旋转面特征提取.浙江大学学报:工学版,2006,40(6):942-946
    [105]刘定伟.基于UG的产品形态特征提取与参数化设计[东南大学硕士论文].南京:东南大学,2005
    [106]黎荣,王金诺.基于UG实体模型的特征信息提取技术研究.机械,2004,31(6):40-43
    [107]T Sheffer, J Blacker, M Bercovier. Virtual Topology Operators for Meshing. In:Proc of the 6th International Meshing Roundtable. Park City,1997,49-65
    [108]T J Tautges. The Common Geometry Model (CGM):A Generic, Extensible Geometric Interface. In:Proc of the 9th International Meshing Roundtable. New Orleans,2000,337-347
    [109]J Kraftchec. Virtual Geometry:A Mechanism for modification of CAD model topology for improved meshability, [Master Dissertation]. Wisconsin: University of Wisconsin,2000
    [110]Brebbia CA, Telles JCF, Wrobel LC. Boundary Element Techniques, Springer-Verlag:Berlin and New York,1984
    [111]Banerjee P K, Butterfield R. Boundary element methods in engineering science. London:McGraw-Hill,1981
    [112]Cheng A H D, Cheng D T. Heritage and early history of the boundary element method. Engineering Analysis with Boundary Elements,2005,29(3): 268-302
    [113]Guan ZQ, Shan JL, Zheng Y, et al. An extended advancing front technique for closed surfaces mesh generation. International Journal for Numerical Methods in Engineering 2008,74(4):642-667
    [114]Cuilliere JC. An adaptive method for the automatic triangulation of 3D parametric surfaces. Computer-Aided Design 1998,30(2):139-149
    [115]Chen Y, Wang C, Li S, et al. Simulation analysis of thermal stress of RCC dams using 3-D finite element relocating mesh method. Advances in engineering software,2001,32(9):677-682
    [116]Noorzaei J, Bayagoob K H, Thanoon W A, et al. Thermal and stress analysis of Kinta RCC dam. Engineering structures,2006,28(13):1795-1802
    [117]陈聿伦.龙羊峡主坝混凝土温度应力的设计.西北水电,1985,4:9-19
    [118]何建平,涂传林.向家坝水电站大体积混凝土温度应力与温度控制.人民长江,2009,11:20-23
    [119]魏道红,周厚贵,杨慧敏.向家坝水电站左岸坝体分缝温度控制研究.长江科学院院报,2009,26(5):54-57
    [120]Qin XY, Zhang JM, Liu LP. Steady-state heat conduction analysis of solids with small open-ended tubular holes by BFM. International Journal of Heat and Mass Transfer 2012,55:6846-6853
    [121]Zhou FL, Xie GZ, Zhang JM. Transient heat conduction analysis of solid with small open-ended tubular cavities by boundary face method Engineering Analysis with Boundary Elements 2013,37:542-550
    [122]陈建军.非结构化网格生成及其并行化的若干问题研究:[浙江大学博士论文].杭州:浙江大学,2006
    [123]Lohner R, Camberos J, Merriam M. Parallel unstructured grid generation. Computer Methods in Applied Mechanics and Engineering,1992,95(3): 343-357

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700