用户名: 密码: 验证码:
基于磁球技术的DNA单分子的体积放大以及电化学检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分为二章,第一章是基于体积放大技术的DNA单分子目视检测;第二章是基于纳米磁球介导酶联DNA单分子电化学检测。
     在第一章中我们提出了一种简单的基于体积放大技术的DNA单分子检测方法。该方法分为三步:首先利用生物素与链霉亲和素的特异性反应将生物素化的DNA捕捉探针固定在链霉亲和素修饰的聚乙烯板上,然后滴加目标DNA溶液,使其与捕捉探针杂交。第二步,取一定量链霉亲和素修饰的5.91μm的磁球与过量的生物素化的检测探针反应,利用磁分离除去过量的检测探针。最后,将第一、第二两步反应的产物按一定比例混合,进行第二次杂交反应,通过目标DNA与检测探针的杂交,使形成捕捉探针—目标—检测探针—磁球的结构,进而将磁球固定在聚乙烯板上。用倒置显微镜以×25倍或×40倍物镜用CCD照像或×250或×400倍用眼观察。如果在上面的第一步中,使固定在微孔板上的目标DNA足够稀,通过杂交反应最终一个磁球上只结合一个目标DNA分子,这样,通过对磁球的计数检测,就等于实现对单个DNA分子的计数检测。该方法的最大优点是不需用复杂而昂贵的仪器,只用普通的显微镜配合常用的CCD(也可用目视)就可进行单个目标DNA分子的检测。本章就杂交缓冲溶液的浓度、杂交方式、清洗次数和反应时间进行了讨论,得到了最佳的杂交实验条件。使用MetaMorph软件对磁球进行计数,实现了对目标DNA单分子计数检测,线性范围5×10~(-16)-1×10~(-14)mol/L。
     在第二章中,建立了一种电化学检测单个DNA分子的新方法。该方法基于核酸功能化的纳米磁球实现DNA的初步放大,然后利用磁球表面的碱性磷酸酶的催化反应实现第二次信号放大,最后利用毛细管作为单分子取样通道并于柱端进行电化学检测。该方法具有以下几个优点:(1)灵敏度高。在本实验中,不是通过检测目标DNA而是碱性磷酸酶催化底物得到的产物苯酚,苯酚通过磁球技术的DNA放大以及酶放大两步放大反应得到,使检测信号大大增强。(2)重现性好。在电化学检测中电极表面的电化学活性的不稳定常会导致电信号的重现性变差,而本方法不是根据信号的强度,而是根据峰的个数来检测目标DNA,所以信号强度的重现性对实验不是很重要。这一特点使方法的重现性优于常规的电化学检测。(3)该实验不需要昂贵的仪器设备,磁球与链霉亲和素修饰的聚苯乙烯板都已经商品化。通过磁球技术与酶催化两步放大相结合实现了用电化学手段对单个DNA分子的定性及定量检测,检测线性范围5×10~(-16)-1×10~(-13)mol/L。
In chapter one of this thesis,we provided a novel method to detect single DNA molecules.A sandwich-type hybridization assay is performed on a streptavidin-coated substrate.A large number of biotinylated capture DNAs(c-DNAs)are first covalently bound to the substrate through the interaction between streptavidin and biotin.Then, the complementary target DNAs(t-DNAs)are hybridized with the c-DNAs attached to the substrate,followed by hybridization between t-DNAs and biotinylated first probe DNAs(p-DNAs)conjugated to streptavidin-coated magnetic microparticles (MMPs).In this case,one t-DNA binds one MMP which could be observed under an optical microscope.To quantitatively determine t-DNAs,The images of all MMPs were taken by DP70,then the number of MMPs on the images were obtained by using a MateMorph software.The number of the MMPs is linearly proportional to the concentration of t-DNA in a range of 5×10~(-16)-1×10~(-14)mol/L。Additionally,we disscuss the influence of hybridization time,hybridization form,hybridization buffered solution and the times of the cleaning to hybridization effect.This size amplification method was simple and could be applied to other biomolecules.
     In chapter two,we describe a magnetic nanobead-based single-molecule electrochemical detection method of DNA by combining DNA amplification and enzyme-catalysis amplification.A sandwich-type hybridization assay is performed on a streptavidin-coated substrate.A large number of biotinylated capture DNAs (c-DNAs)are first covalently bound to the substrate through the interaction between streptavidin and biotin.Then,the complementary target DNAs(t-DNAs)are hybridized with the c-DNAs attached to the substrate,followed by hybridization between t-DNAs and biotinylated first probe DNAs(p-DNA1s)conjugated to streptavidin-coated magnetic nanobeads(MNBs).In this case,one t-DNA binds one MNB.Subsequently,the MNBs are released from the substrate and transferred to another vessel.Then,biotinylated second probe DNAs(p-DNA2s)are hybridized to the p-DNA1s on the surface of the MNBs.After magnetic separation from the reaction media,the biotinylated p-DNA2 on the MNBs are labeled with alkaline phosphatase(AP)conjugated by streptavidin through the interaction between streptavidin and biotin.The MNBs with DNA hybrid labeled by AP(AP-DNA-MNBs) with enzyme substrate disodium phenyl phosphate(DPP)are continuously introduced by pressure through a capillary as the microsampler and microreactor by means of a microsyringe pump.AP on the AP-DNA-MNBs converts a huge number of DPP into its product phenol around each AP-DNA-MNB during AP-DNA-MNB movement in the capillary.The phenol zones with the moving AP-DNA-MNBs are continuously delivered to the capillary outlet and detected by electrochemical detection.One phenol zone corresponding to one t-DNA produces one peak on elution curve.The number of the peaks is linearly proportional to the concentration of t-DNA in a range of 5.0×10~(-16)-1.0×10~(-13).The high sensitivity is because that in this method,phenol is detected rather than t-DNA.The phenol is generated through double amplification, one t-DNA molecule produces 7000 AP molecules on the surface of one AP-DNA-MNB(DNA amplification)and one AP molecule produces 5×10~4 phenol molecules(enzyme amplification).Therefore,an amplification factor of 10~8 is obtained in the method,which leads to that electrochemical technique can detect single DNA molecules.The quantitative method relies on counting the number of the peaks corresponding to single t-DNA molecules rather than signal intensity of the peaks.Thus,the detected signal intensity is not important.This feature guarantees the reliability of the electrochemically quantitative assay for DNA.Additionally,the selectivity of the method is high.
引文
[1]Nie S,Chiu D T R.Zare N.Probing individual molecules with confocal fluorescence microscopy[J].Science.1994,266(5187),1018-1021.
    [2]Xue Q,Yeung E S.Differences in the chemical reactivity of individual molecules of an enzyme[J].Nature,1995,373,681-683.
    [3]Fan F F,Bard A J.Electrochemical detection of a single molecule[J].Science.1995,267(5199),871-874.
    [4]Xu X,Yeung E S.Direct measurement of single-molecule diffusion and photodecomposition in free solution[J].Science,1997,275(5303),1106-1109.
    [5]Xu X Yeung E S.Long-range electrostatic trapping of single-protein molecules at a liquid-solid interface[J].Science.1998,281,1650-1653.
    [6]Keller R A,Ambrose W P,Arias A A,Cai H,Emory,S R,Goodwin P M,Jett J H.Analytical applications of single-molecule detection[J].Anal Chem,2002,74(11)317A-324A.
    [7]Fister J C,Jacobson S C,Davis L M,Ramsey J M.Counting single chromophore molecules forultrasensitive analysis and separations on microchip devices[J].Anal Chem,1998,70.431-437.
    [8]Loscher F,Bohme S,Martin J,Seeger S.Counting of single protein molecules at interfaces and application of this technique in early-stage diagnosis[J].Anal Chem,1998.70.3202-3205.
    [9]Li H,Zhou D,Browne H,Balasubramanian S,Klenerman D.Molecule by molecule direct and quantitative counting of antibody-protein complexes in solution[J].Anal Chem.2004,76.4446-4451.
    [10]Li H,Ying L,Green J J,Balasubramanian S,Klenerman D.Ultrasensitive coincidence fluorescence detection of single DNA molecules[J].Anal Chem,2003,75(7),1664-1670.
    [11]Anazawa T,Matsunaga H,Yeung E S.Electrophoretic quantitation of nucleic acids without amplification by single-molecule imaging[J].Anal Chem.2002,74(19),5033-5038.
    [12]Fang X,Tan W.Imaging single fluorescent molecules at the interface of an optical fiber probe by evanescent wave excitation[J].Anal Chem.1999,71,3101-3105.
    [13]Fan F F,Bard A J.Electrochemical detection of single molecules[J].Science,1995,267,871-874.
    [14]肖履中;赵青,PCR检测炭疽杆菌的研究.[J].中国动物检疫,2004,21(10),25-27.
    [15]何湘;黄留玉,炭疽杆菌治病性研究进展.[J].微生物学通报,2004,31(4),101-105
    [16]展德文;王凡;王令春等,炭疽芽胞杆菌疫苗研究进展.[J].微生物学报,2005,45(1),149-152.
    [17]王津;宋亚军;郭兆彪等,用复合PCR检测炭疽芽孢的研究.[J].中国人兽共患病杂志,2002,18(6),52254.
    [18]吴伟农,什么是炭疽热.[J].中国供销合作经济,2001,11,51.
    [19]Shffer,D.,Increased US prescription trends associated with the CDC Bacillus anthracis antimicrobial post exposure prophylaxis campaign.[J].Pharmacoepidemiol Drug Saf.2003,12(3),177-82.
    [20]Read,T.D.;Salzberg,S.L.;Pop,M.,Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis.[J].Science,2002,296,2028-2033.
    [21]Taton,T.A.;Mirkin,C.A.;Letsinger,R.L.,Scanometric DNA array detection with nanoparticle probes.[J].Science,2000,289(5485),1757-1760.
    [22]Zhao,X.J.;Tapec-Dytioco,R..;Tan,W.H.,Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles.[J].J.Am.Chem.Soc.,2003,125(38),11474-11475.
    [23]Nam,J.M.;Stoeva,S.I.;Mirkin,C.A.,Bio-Bar-Code-Based DNA detection with PCR-like sensitivity.[J].J.Am.Chem.Soc.,2004,126(19),5932-5933.
    [24]Bailey,R.C.;Nam,J.M.;Mirkin,C.A.;Hupp,J.T.,Real-Time multicolor DNA detection with chemoresponsive diffraction gratings and nanoparticle probes.[J].J.Am.Chem.Soc.. 2003,125(44),13541-13547.
    [25]Saiki R K,Scharf S,Falloona F.Mullis K B,Horn G T,Erlich H A,Arnheim N.Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia[J].Science,1985,230(4732),1350-1354.
    [26]Bustin,S.A.,Quantification of mRNA using real-time reverse transcription PCR(RT-PCR):trends and problems.[J].J.Mol.Endocrinol.2002,29(1),23-39.
    [27]Kopp M U,Mello A J,Manz A.Chemical amplification:continuous-flow PCR on a chip[J].Science,1998,280(5336),1046-1048.
    [28]Makrigiorgos G M,Chakrabarti S,Zhang Y,Daur M,Price B D.A PCR-based amplification method retaining the quantitative difference between two complex genomes[J].Nat Biotechnol,2002,20(9),936-939.
    [29]Nicewarner-Pena,S.R.;Freeman,R.G;Reiss,B.D.;He,L.:Pena,D.J.;Walton,I.D.:Cromer,R.;Keating,C.D.;Natan,M.J.,Submicrometer metallic barcodes.[J].Science.2001,294(5540),137-141.
    [30]Han,M.Y.;Gao,X.H.;Su,J.Z.;Nie,S.,Quantum-dot-tagged microbeads for multiplexed optical coding ofbiomolecules.[J].Nat.Biotechnol,2001,19(7),631-635.
    [31]Zhao,X.J.;Yapec-Dytioco,R.;Tan,W.H.,Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles.[J].J.Am.Chem.Soc..2003,125(38),11474-11475.
    [32]Lortie,L.A.;Harel,J.:Fairbrother,J.M.;Dubreuil,J.D.,Immunodot detection of Escherichia coli heat-stable enterotoxin by using enhanced chemiluminescence reaction.[J].J.Clin.Microbiol,1991,29(10),2250-2252.
    [33]Yu,C.J.;Wan,Y J.;Yowanto,H.;Li,J.;Tao,C.L.;James,M.D.;Tan,C.L.;Nlackburn.G F.;Meade,T.,Electronic detection of single-base mismatches in DNA with ferrocene-modified probes.[J].J.Am.Chem.Soc..2003,123(45),11155-11161.
    [34]Taton,T.A.:Mirkin,C.A.:Letsinger,R L.,Scanometric DNA array detection with nanoparticle probes.[J].Science.2000,289(5485),1757-1760.
    [35]Park,S.J.;Taton,T.A.;Mirkin,C.A.,Array-based electrical detection of DNA with nanoparticle probes.[J].Science,2002,295(5559),1503-1506.
    [36]Murakami,T.;Nishikiori,T.;Nohira,T.;Ito,Y.,Electrolytic synthesis of ammonia in molten salts under atmospheric pressure.[J].J.Am.Chem Soc.,2003,125(2),344-345.
    [37]Storhoff,J.J.;Marla,S.S.;Bao,P;Hagenow,S.;Meht,H.;Lucas,A.;Garimella,V.;Patno,T.;Buckingham,W.;Cork,W.;Muller,U.R.,Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system.[J].Biosens Bioelectron,2004,19(8),875-883.
    [38]H.凯勒;M.M马纳克,DNA探针技术.[M].北京:科学出版社,1992,8.
    [39].Phillip H.Rogers,Eric Michel,Carl A.Bauer,Stephen Vanderet,Selective,Controllable,and Reversible Aggregation of Polystyrene Latex Microspheres via DNA Hybridization.[J].Langmuir,2005,21,5562-5569
    [40]王廷华;冯忠堂,Jean Philippe Merlio.,分子杂交理论与技术.[M].北京:科学出版社,2005.11.
    [1]Yeung,E.S..Chemical charaterization of single ceils and single molecules.[J].J.Chin.Chem.Soc.,1999,46,351-362.
    [2]Hirschfeld,T.,Optical microscopic observation of small molecules.[J].App l.Opt.1976.15 2965-2966.
    [3]Moemer,W.E;Orrit,M.,Illuminating single molecules in condensed matter.[J].Science.1999,283,1670-1676.
    [4]Weiss,S.,Fluorescence Spectroscopy of single biomolecules.[J].Science,1999,283,1676-1683.
    [5].Lu H.P;Xie X.S.,Single-molecule spectral fluctuations at room temperature.[J].Nature,1996,385,143-146.
    [6]Nie S.;M.;Zare,R.;N.,Optical detection of single molecules.[3].Annu.Rev.Biophys.Biomol.Struct.,1997,26,567-596.
    [7]Wouters,F.S.;Verveer,P.J.;Bastiaens,P.I.H.,Imaging biochemistry inside cells.[J].Trends in Cell Biology,2001,11,203-211.
    [8]Stephens,D.J.;Allan,V.;J.,Light microscopy techniques for live cell imaging.[J].Science.2003,300,82-86.
    [9]应立明:谢晓亮,单分子的光学检测及应用.[J].大学化学,1999,14,1-6.
    [10]Ishii,Y.;Yanagida,T.,Single molecule detection in life science.[3].Single Mol.,2000,1,5-6.
    [11]Schutz,G.J.;Hinterdorfer,P.,Single molecule fluorescence and force microscopy.[J].Experimental Gerontology,2002,37,1493-1509.
    [12]Ishijima,A.;Yanagida,T.,Single molecule nanobioscience.[3].Trends in Cell Biology,2001.26,438-444.
    [13]Ishii,Y.;Ishijima,A.;Yanagida,T.,Single molecule nanomanipulation.[J].Trends in Cell Biology,2001,19,211-216.
    [14]Mehta,,A.,D.;Rief,M.;Spudich,J.A.;Smith,D.A.;Simmons,R..M.,Single-molecule biomechanics with optical methods.[J].Science,1999,283,1689-1695.
    [15]Sako,Y.;Yanagida,T.,Single-molecule visualization in cell biology.[J],Imaging in Cell Biology,2003,ss1-ss5.
    [16]Sako,Y.;Uyemura,T.,Total internal reflection fluorescence microscopy for single-molecule imaging in living cells.[J].Cell Structure and Function,2002,27,357-365.
    [17]Brown,R.;Gallop,J.;Milton,M.,Review of techniques for single molecule detection in biological applications.[J].Npl.Report Coam,2001,1-38.
    [18]Azoulay,J.:Debarre,A.;Jaffiol R.;Tchenio,P.,Original tools for single molecule spectroscopy.[J].Single Mol.,2001,2,241-249.
    [19]Kuhnemuth,R.;Seidel,C.,Principles of single molecule multiparameter fluorescence spectroscopy.[J].Single Mol.,2001,2,251-254.
    [20]陈宜张,活细胞单分子实时视见研究,[J]生命科学2003,15,79-83。
    [21].王桂英;王琛;徐至展;陈宜张:生物单分子光学探测方法的进展.[J].激光生物学报,2003,127 174-178。
    [22]周拥军;陈德强:夏安东;黄文浩,单分子的荧光特性及其在生物学上的应用.[J]物理2000,29,657-661.
    [23]Xie,X.,S.;Trautman,J.K.,Optical studies of single molecules at room temperature.[J].Annu.Rev.Phys.Chem.,1998,49,441-480.
    [24]白春礼;苏明,单分子化学与物理。[J].世界科技研究与发展1999.21,12-15。
    [25]杨金龙;李震宇;侯建国;朱清时,单分子科学进展.[J]。物理:2000,9,579-583.
    [26]林克椿,生物单分子研究的进展[J].生物物理学报2001,17,411-418.
    [27]林章碧;苏星光;胡海;张家骅:金钦汉,单分子光谱检测法的新进展.[J].分析科学学报2003,19,288-292.
    [28]刘彦明;刘二保;程介克,检测溶液中的单分子。[J]分析化学2002,30,1000-1004。
    [29]袁倬斌;姚鑫,;王亮;胡建平,有机分析研究进展--单原子、单分子、单细胞的分析进恳[J]。分析实验室,2002,21,97-104。
    [30]蔡继业;曾洁铭;王煜;曾耀英,近场光学和单分子操纵.[J]。暨南大学学报2001:22:64-69
    [31]Toomre,D.;Manstein,D.J.,Lighting up the cell surface with evanescent wave microscopy.[J].Trends in Cell Biology,2001,11,298-303.
    [32]Hiterdorfer,P;Schutz,G.,Kienberger,F.:Schindler,H..Detection and charactrization of single bionolecules at surfaces.[J].Molecudar Biotechnology,2001,82,25-35.
    [33]Weiss,S.,Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy.[J].Nature structural biology,2000,7,724-729.
    [34]Kubitscheck,U.,Single protein molecules visualized and tracked in the interior of Eukaryotic cells.[J].Single Mol.,2002,3.267-274,
    [35]盖宏伟:白吉玲;林炳承,单分子毛细管电泳.[J]。分析化学2002,30:869-874.
    [36].Peccoud,J.;Jacob,C.,Theoretical urlcertainty of measurements using quantitative polymerase chain reaction.[J].Biophy.,1996,71(1),101-108.
    [37]Xue,Q.;Yeung,E.S.,Differences in rhe chemical reactivity' of individual molecules of an enzyme[J].Nature 1995,373,681-683.
    [38]Douglas B.Craig,Edgar A.Arriaga,Jerome C.Y.Wong,Hui Lu,Norman J.Dovichi.Studies on Single Alkaline Phosphatase Molecules:Reaction Rate and Activation Energy of a Reaction Catalyzed by a Single Molecule and the Effect of Thermal DenaturationsThe Death of an En.zyme.[J.]Am.Chem.Soc.1996,118,5245-5253.
    [39]Xiao-Hong Nancy Xu and Edward S.Yeung Long-range electrostatic trapping ofsingleprotein molecules at a liquid-solid interface[J].Science 1998,281,1650-1653.
    [40]Fister,I.,J.C.;Jacobson,S.C.;Davis,L.M.;Ramsey,J.M.Counting single chromophore molecules for ultrasensitive analysis and separations on microchip devices.[J].Anal.Chem.1998,70,431-437.
    [41]Fang,X.;Tan,W.Imaging single fluorescent molecules at the interface of an optical fiber probe by evanescent wave excitation[J]Anal Chem.1999,71,3101-3105.
    [42]Polakowski,R.;Craig,D.B.;Skelley,A.;Dovichi,N.Single molecules of highly purified bacterial alkaline phosphatase have identical activity.[J].J.Am.Chem.Soc.2000,122.4853-4855.
    [43]Lagally,E.T.;Medintz,I.;Mathies,R.A.Single-molecule DNA amplification and analysis in an integrated microfluidic device.[J].Anal.Chem.2001,73,565-570.
    [44]Singh-Zocchi,M.;Dixit,S.;Ivanov,V.;Zocchi,G.Proc:Natl.Single-molecule detection of DNA hybridization.[J].Acad Sci.U.S.A.2003,100,7605-7610.
    [45]Li,H.;Zhou,D.;Browne,H.;Balasubramanian,S.;Klenerman,D.Molecule by molecule direct and quantitative counting of antibody-protein complexes in solution[J].Anal.Chem.2004,76,4446-4451.
    [46]Li,H.W.;Yeung,E.S.Direct observation of anomalous single-molecule enzyme kinetics.[J].Anal.Chem.2005,77,4374-4377.
    [47]Agrawal,A.;Zhang,C.;Byassee,T.;Tripp,R.A.;Nie,S.Counting single native biomolecules and Intact viruses with color-coded nanoparticles.[J]Anal.Chem.2006,78.1061-1071.
    [48]Fan,F.F.;Bard,A.J.Electrochemical detection of single molecules.[J].Science,1995,267.871-874.
    [49]Fan,F.F.;Kwak,J.;Bard,A.Single molecule electrochemistry[J].J.Am.Chem.Soc.1996.118,9669-9675.
    [50]Fan,F.F.;Bard,A.J.Proc.Natl.Imaging of biological macromolecules on mica in humid air by scanning electrochemical microscopy.[J].Acad.Sci.U.S.A.1999,96,14222-14227.
    [51]Andreas P.Abel,Michael G.Weller,Gert L.Duveneck,Fiber-Optic Evanescent Wave Biosensor for the Detection of Oligonucleotides.[J].Anal.Chem.1996,68,2905-2912
    [52]Khosravi,M.,Application of the Biotin-(Strept)avidin System in Immunochemical Technique:Workshop #111,Clinical Ligand Assav Society Annual Meeting May 24(1995).
    [53]王廷华;冯忠堂,Jean Philippe Merlio.,分子杂交理论与技术.[M].北京:科学出版社,2005.11.
    [54]方允中,陈能乾,《医学酶学》,360-363页。人民卫生出版社,北京,1984
    [55]孙雪梅:山东大学博士学位论文 山东大学,2003,第二章,2.3.2.
    [56]李长春,罗英。鲁成。唐云明,家蚕碱性磷酸酶的分离纯化与部分性质.[J].西南师范大学学报,2005,30,930-934.
    [57][美]G。G.吉尔鲍特著,谬辉南,陈石根译《酶法分析手册》.第43页,上海科学技术出版社,上海。1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700