用户名: 密码: 验证码:
恶性黑素瘤中SOX4的表达及其对Wnt/β-catenin信号途径作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分SOX4在人恶性黑素瘤组织中的表达
     目的:研究SOX4在人类恶性黑素瘤组织中的表达情况,探讨SOX4与恶性黑素瘤之间可能存在的关系。
     方法:用免疫组化SP法检测30例恶性黑素瘤组织中的SOX4的表达情况。
     结果:在恶性黑素瘤组织中,肿瘤细胞的细胞核内可见棕黄色至深褐色颗粒,胞浆也可着色。30例恶性黑素瘤组织中,有17例SOX4表达为阳性,阳性率为56.7%,而正常人皮肤组织中未见阳性表达,两组间SOX4表达阳性率具有显著性差异(P<0.05)。
     结论:在恶性黑素瘤组织中SOX4出现异常的阳性表达,SOX4可能与恶性黑素瘤的发病机制有关。
     第二部分采用RNA干扰技术抑制恶性黑素瘤细胞中SOX4的表达并研究其对Wnt/β-catenin信号途径活性的影响
     目的:研究恶性黑素瘤A375细胞中SOX4对Wnt/β-catenin信号途径中Wnt3A及β-catenin的表达的影响以及对Wnt/β-catenin信号途径活性的影响,探讨恶性黑素瘤A375细胞中SOX4对Wnt/β-catenin信号途径的调控作用及其可能的机制。
     方法:采用RNA干扰技术,将两段SOX4 siRNA导入恶性黑素瘤A375细胞,使SOX4基因沉默,分别采用实时荧光定量PCR法和蛋白质印迹法检测干扰后Wnt/p-catenin信号途径中Wnt3A及β-catenin的mRNA及蛋白表达情况的变化,并采用TOPflash/FOPflash双质粒报告基因系统检测恶性黑素瘤A375细胞中Wnt/β-catenin信号途径活性随RNA干扰变化的情况。
     结果:本研究使用的两段SOX4 siRNA均成功转染恶性黑素瘤A375细胞并有效抑制SOX4基因表达(P<0.05),发挥了对SOX4的基因沉默作用。转染SOX4 siRNA对Wnt3A的mRNA及蛋白表达水平无显著影响(P>0.05),对β-catenin的mRNA表达水平亦无显著性影响,但使得细胞内β-catenin蛋白量减少(P<0.05)。同时,转染了SOX4 siRNA的A375内Wnt/β-catenin信号途径活性较转染非特异性siRNA的A375细胞及空白对照组为低,差异具有显著性(P<0.05)。
     结论:在恶性黑素瘤A375细胞中,SOX4对Wnt/β-catenin信号途径具有正向调控作用,这种调控作用与β-catenin有关。SOX4上调A375细胞中β-catenin蛋白含量,其作用发生在转录后水平,可能是SOX4抑制β-catenin降解的结果,也有可能与转录后调控或翻译调控等有关。
     第三部分SOX4 siRNA对恶性黑素瘤细胞中Survivin的表达及细胞增殖的影响
     目的:研究SOX4对恶性黑素瘤A375细胞中Wnt/β-catenin信号途径的靶基因Survivin的基因表达的影响及对A375细胞增殖活力的影响
     方法:分别用实时荧光定量PCR法和蛋白质印迹法检测RNA干扰后A375细胞Survivin的mRNA及蛋白表达水平的变化;用MTT法检测A375细胞的增殖活力。
     结果:(1)SOX4 siRNA使得A375细胞Survivin的mRNA及蛋白表达水平均显著下降(P<0.05)。(2)转染了SOX4 siRNA的A375细胞增殖活力较对照组明显下降(P<0.05)。
     结论:SOX4对恶性黑素瘤A375细胞的增殖具有促进作用,其机制可能与SOX4增强Wnt/β-catenin信号途径活性而上调Survivin的基因表达有关。
Part 1 Expression of SOX4 in melanoma
     Objective:To study the expression of SOX4 in melanoma tissues and to explore the possible role of SOX4 in hunman melanoma.
     Methods:SOX4 protein was detected by immunohistochemistry and normal skin of human was used as control.
     Results:Positive expression of SOX4 in nuclear was detected in 17 of all 30 melanoma tissues.However,no nuclear expression was found in all normal skin tissues.
     Conclusions:Our work showed that SOX4 was overexpressed in melanoma tissues.There should be some relationship between SOX4 and melanoma.
     Part 2 Gene silence of SOX4 by RNA interference and its influence on Wnt/β-catenin pathway in melanoma cells
     Objective:To investigate the effects of siRNA mediated SOX4 gene silencing on Wnt/β-catenin pathway of human malignant melanoma cells.
     Methods:Two types of dsRNA of SOX4 were constructed and transfected into A375 cells,untreated cells and cells transfected by scramble RNA were used as control groups.The expression levels of mRNA and protein of SOX4,Wnt3A,P-catenin were detected by real-time PCR and Western blot respectively. TOPflash/FOPflash reporter assay was uesd for assessing Wnt/β-catenin signaling pathway activity.
     Results:Our results showed that the two types of SOX4 siRNA were transferred into A375 cells successfully.Compared with control cells, SOX4 siRNAs had no significant influence on Wnt3A.Nevertheless, SOX4 siRNAs led to the decrease ofβ-catenin protein without significant change ofβ-catenin mRNA expression. Wnt/β-catenin signaling pathway activity was inhibited significantly.
     Conclusions:Our study suggested that SOX4 may play an important role in Wnt/β-catenin signaling pathway in human malignant melanoma cells by influenceβ-catenin protein.lt may be a possible mechanism of SOX4 in the progression of malignant melanoma.
     Part 3 Effects of SOX4 siRNA on Survivin expression and proliferation of melanoma cells
     Objective:To explore the role of SOX4 in A375 cell proliferation and the possible mechanism.
     Methods:The expression levels of mRNA and protein of survivin were detected by real-time PCR and Western blot respectively. MTT assay was used to observe cell proliferation.
     Resuls:Our results showed that SOX4 siRNA reduced Survivin expression at both mRNA level and protein level. SOX4 siRNAs inhibited proliferation of A375 cells significantly.
     Conclusions:SOX4 promotes Survivin expression and cell proliferation of A375 cells by one possible mechanism of increasing the activity of Wnt/β-catenin signaling pathway.
引文
[1]Hur W, Rhim H, Jung CK, et al. SOX4 overexpression regulates the p53-mediated apoptosis in hepatocellular carcinoma:clinical implication and functional analysis in vitro.Carcinogenesis,2010,31 (7):1298-1307.
    [2]Medina PP, Castillo SD, Blanco S, et al. The SRY-HMG box gene, SOX4, is a target of gene amplification at chromosome 6p in lung cancer. Hum Mol Genet,2009,18 (7):1343-1352.
    [3]Harris ML, Baxter LL, Loftus SK, Pavan WJ. SOX proteins in melanocyte development and melanoma. Pigment Cell Melanoma Res.2010 Aug;23 (4):496-513.Epub2010Apr22.
    [4]吴雄文;梁智辉.实用免疫学实验技术.第一版.武汉:湖北科学技术出版社,2009.43-118.
    [5]Remmele W, Hildebrand U, Hienz HA, et al.Comparative histological, histochemical, immunohistochemical and biochemical studies on oestrogen receptors, lectin receptors, and Barr bodies in human breast cancer.Virchows Arch A Pathol Anat Histopathol,1986,409 (2):127-147.
    [6]van Beest M, Dooijes D, van De Wetering M, et al.Sequence-specific high mobility group box factors recognize 10-12-base pair minor groove motifs. J Biol Chem,2000,275 (35):27266-27273.
    [7]Dy P, Penzo-Mendez A, Wang H, et al. The three SOXC proteins--SOX4, SOX11 and SOX12--exhibit overlapping expression patterns and molecular properties. Nucleic Acids Res,2008,36 (9):3101-3117.
    [8]Hoser M, Potzner MR, Koch JM, et al. SOX12 deletion in the mouse reveals nonreciprocal redundancy with the related SOX4 and SOX 11 transcription factors. Mol Cell Biol,2008,28 (15):4675-4687.
    [9]Farr CJ, Easty DJ, Ragoussis J, et al.Characterization and mapping of the human SOX4 gene. Mamm Genome,1993,4 (10):577-584.
    [10]Hur EH, Hur W, Choi JY, et al. Functional identification of the pro-apoptotic effector domain in human SOX4. Biochem Biophys Res Commun. 2004,325 (1):59-67.
    [11]Penzo-Mendez AI.Critical roles for SOXC transcription factors in development and cancer.Int J Biochem Cell Biol,2010,42 (3):425-428.
    [12]Wilson ME, Yang KY, Kalousova A, et al. The HMG box transcription factor SOX4 contributes to the development of the endocrine pancreas. Diabetes, 2005,54 (12):3402-3409.
    [13]Nissen-Meyer LS, Jemtland R, Gautvik VT, et al. Osteopenia, decreased bone formation and impaired osteoblast development in SOX4 heterozygous mice. J Cell Sci,2007,120 (Pt 16):2785-2795.
    [14]Sattler H, Lensch R, Rohde V, et al. Novel amplification unit at chromosome 3q25-q27 in human prostate cancer [J]. Prostate,2000,45 (3):207-215.
    [15]Giire A, Stockert E, Scanlan M, et al. Serological identification of embryonic neural proteins as highly immunogenic tumor antigens insmall cell lung cancer. Proc Natl Acad Sci,2000,97 (8):4198-4203.
    [16]Weigle B, Ebner R, Temme A, et al. Highly specific overexpression of the ranscription factor SOX 11 in human malignant gliomas.Oncol Rep,2005,13 (1):139-144.
    [17]Bondurand N, Pingault V,Goerich D, et al. Interaction among SOX10,PAX3 and MITF, three genes altered in Waardenburg syndrome.Hum Mol enet,2000,9 (13):1907-1917.
    [18]Tavazoie SF, Alarcon C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis.Nature,2008,451 (7175):147-152.
    [19]Chen Q, Zheng W, Yao W, et al. Analysis of SOX4 gene mutation in non-small cell lung cancer tissues. Chin J Medi Genet,2007,24 (5):505-509.
    [20]Liu P, Ramachandran S, Ali Seyed M, et al. Sex-determining region Y box 4 is a transforming oncogene in human prostate cancer cells. Cancer Res,2006,66 (8):4011-4019.
    [21]Reichling T, Goss KH, Carson DJ,et al. Transcriptional profiles of intestinal tumors in Apc (Min) mice are unique from those of embryonic intestine and identify novel gene targets dysregulated in human colorectal tumors. Cancer Res,2005,65 (1):166-176.
    [22]Andersen CL, Christensen LL, Thorsen K, et al. Dysregulation of the transcription factors SOX4, CBFB and SMARCC1 correlates with outcome of colorectal cancer. Br J Cancer,2009,100 (3):511-523.
    [23]Aaboe M, Birkenkamp-Demtroder K, Wiuf C, et al. SOX4 expression in bladder carcinoma:clinical aspects and in vitro functional characterization. Cancer Res,2006,66 (7):3434-3442.
    [24]郑江华,简志祥,金浩生等。SOX4基因的表达与肝癌术后早期复发及临床意义。南方医科大学学报,2010,30(4):818-822.
    [25]Liao YL, Sun YM, Chau GY, et al. Identification of SOX4 target genes using phylogenetic footprinting-based prediction from expression microarrays suggests that overexpression of SOX4 potentiates metastasis in hepatocellular carcinoma. Oncogene,2008,27 (42):5578-5589.
    [26]Zhou D, He QS, Wang C, Zhang J, et al.RNA interference and potential applications.Curr Top Med Chem,2006,6 (9):901-911.
    [27]Sotiropoulou G, Pampalakis G, Lianidou E et al. Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA,2009,15:1443-1461.
    [28]Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of posttranscriptional regulation by microRNAs:are the answers in sight?.Nat Rev Genet,2008,9 (2):102-114.
    [29]Wellcome Trust Sanger Institute. miRBase sequence database, release 11.0, April 2008 [online]. Available from URL:http://microrna.sanger.ac.uk/ sequences [Accessed 2009 Jan 16].
    [30]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell,2004,116 (2):281-297.
    [31]ChengY, Tan N, Yang J, et a.l A translational study of circulating cell-freemicroRNA-1 in acutemyocardial infarction. Clin Sci,2010,119(2): 87-95.
    [32]Meister G, Tuschl T.Mechanisms of gene silencing by double-stranded RNA. Nature,2004,431 (7006):343-349.
    [33]Sinner D, Kordich JJ, Spence JR, et al. SOX17 and SOX4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Mol Cell Biol,2007,27 (22):7802-7815.
    [34]Grossman D, Kim P J, Schechner J S,et al. Inhibition of melanoma tumor growth in vivo by survivin targeting. Proc Natl Acad Sci USA,2001,98 (2):635-640.
    [35]Wall N R, O'Connor D S, Plescia J, et al. Suppression of survivin phosphorylation on Thr34 by flavopiridol enhances tumor cell apoptosis. Cancer Res,2003,63 (1):230-235.
    [36]Grube M, Moritz S, Obermann EC, et al.CD8+T cells reactive to survivin antigen in patients with multiple myeloma. Clin Cancer Res,2007,13 (3):1053-1060.
    [37]Andersen MH, Pedersen LO, Becker JC, et al. Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res,2001,61 (3):869-872.
    [38]Reker S, Becker JC, Svane IM, et al.HLA-B35-restricted immune responses against survivin in cancer patients. Int J Cancer,2004,108 (6):937-941.
    [39]Wotton D, Lake RA, Farr CJ, et al. The high mobility group transcription factor, SOX4, transactivates the human CD2 enhancer. J Biol Chem, 1995,270 (13):7515-7522.
    [40]Bergsland M, Werme M, Malewicz M, et al. The establishment of neuronal properties is controlled by SOX4 and SOX11. Genes Dev,2006,20 (24):3475-3486.
    [41]Schilham MW, Oosterwegel MA, Moerer P, et al. Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking SOX-4.Nature,.1996,380 (6576):711-714.
    [42]Wilson M, Koopman P. Matching SOX:partner proteins and co-factors of the SOX family of transcriptional regulators. Curr Opin Genet Dev,2002,12 (4):441-446.
    [43]McCracken S, Kim CS, Xu Y, et al. An alternative pathway for expression of p561ck from type Ⅰ promoter transcripts in colon carcinoma.Oncogene, 1997,15 (24):2929-2937.
    [44]Ahn SG, Kim HS, Jeong SW, et al.SOX-4 is a positive regulator of Hep3B and HepG2 cells' apoptosis induced by prostaglandin (PG) A (2) and delta (12)-PGJ (2). Exp Mol Med,2002,34 (3):243-249.
    [45]Kim BE, Lee JH, Kim HS, et al. Involvement of SOX-4 in the cytochrome c-dependent AIF-independent apoptotic pathway in HeLa cells induced by Delta 12-prostaglandin J2. Exp Mol Med,2004,36 (5):444-453.
    [46]McCracken S, Kim CS, Xu Y, et al. An alternative pathway for expression of p561ck from type Ⅰ promoter transcripts in colon carcinoma.Oncogene,1997,15 (24):2929-2937.
    [47]Shen R, Pan S, Qi S, et al. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer. Biochem Biophys Res Commun,2010,394 (4):1047-1052.
    [48]Ikushima H, Todo T, Ino Y, et al. Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell,2009,5 (5):504-14. Erratum in:Cell Stem Cell, 2009,5 (6):666.
    [49]Frierson HF Jr, El-Naggar AK, Welsh JB, et al. Large scale molecular analysis identifies genes with altered expression in salivary adenoid cystic carcinoma. Am J Pathol,2002,161 (4):1315-1323.
    [50]Jafarnejad SM, Wani AA, Martinka M, et al.Prognostic significance of SOX4 expression in human cutaneous melanoma and its role in cell migration and invasion. Am J Pathol,2010,177 (6):2741-52.
    [51]Amiri KI, Richmond A. Role of nuclear factor-kappa B in melanoma. Cancer Metastasis Rev,2005,24 (2):301-313.
    [52]Shen HM, Tergaonkar V. NFkappaB signaling in carcinogenesis and as a potential molecular target for cancer therapy. Apoptosis,2009,14 (4):348-363.
    [53]Pan X, Zhao J, Zhang WN, et al. Induction of SOX4 by DNA damage is critical for p53 stabilization and function. Proc Natl Acad Sci U S A, 2009,106 (10):3788-3793.
    [54]Aaboe M, Birkenkamp-Demtroder K, Wiuf C, et al. SOX4 expression in bladder carcinoma:clinical aspects and in vitro functional characterization. Cancer Res,2006,66 (7):3434-3442.
    [55]Ahn SG, Kim HS, Jeong SW, et al.SOX-4 is a positive regulator of Hep3B and HepG2 cells' apoptosis induced by prostaglandin (PG) A (2) and delta (12)-PGJ (2). Exp Mol Med,2002,34 (3):243-249.
    [56]Ahn SG, Cho GH, Jeong SY, et al. Identification of cDNAs for SOX-4, an HMG-Box protein, and a novel human homolog of yeast splicing factor SSF-1 differentially regulated during apoptosis induced by prostaglandin A2/delta12-PGJ2 in Hep3B cells. Biochem Biophys Res Commun. 1999,260 (1):216-221.
    [57]Gendra E, Moreno A, Alba MM, et al. Interaction of the plant glycine-rich RNA-binding protein MA16 with a novel nucleolar DEAD box RNA helicase protein from Zea mays. Plant J,2004,38 (6):875-886.
    [58]Orian A, Schwartz AL, Israel A, et al.Structural motifs involved in ubiquitin-mediated processing of the NF-kappaB precursor p105:roles of the glycine-rich region and a downstream ubiquitination domain. Mol Cell Biol,1999,19 (5):3664-3673.
    [59]Romero MF, Henry D, Nelson S, et al. Cloning and characterization of a Na+-driven anion exchanger (NDAE1). A new bicarbonate transporter. J Biol Chem,2000,275 (32):24552-24559.
    [60]Manalo DJ, Rowan A, Lavoie T, et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood,2005,105 (2):659-669.
    [61]van Beijnum JR, Dings RP, van der Linden E, et al. Gene expression of tumor angiogenesis dissected:specific targeting of colon cancer angiogenic vasculature. Blood,2006,108 (7):2339-48.
    [62]Harvell DM, Richer JK, Allred DC, et al.Estradiol regulates different genes in human breast tumor xenografts compared with the identical cells in culture. Endocrinology,2006,147 (2):700-713.
    [63]Banno T, Gazel A, Blumenberg M. Effects of tumor necrosis factor-alpha (TNF alpha) in epidermal keratinocytes revealed using global transcriptional profiling. J Biol Chem,2004,279 (31):32633-32642.
    [64]Ruebel KH, Leontovich AA, Tanizaki Y, et al. Effects of TGFbetal on gene expression in the HP75 human pituitary tumor cell line identified by gene expression profiling. Endocrine,2008,33 (1):62-76.
    [65]Akiyama H, Lyons JP, Mori-Akiyama Y, et al. Interactions between SOX9 and beta-catenin control chondrocyte differentiation. Genes Dev,2004,18 (9):1072-1087.
    [66]Bastide P, Darido C, Pannequin J, et al. SOX9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. J Cell Biol,2007,178 (4):635-648.
    [67]Baltus GA, Kowalski MP, Tutter AV, et al. A positive regulatory role for the mSin3A-HDAC complex in pluripotency through Nanog and SOX2. J Biol Chem,2009,284 (11):6998-7006.
    [68]Bernard P, Sim H, Knower K, et al. Human SRY inhibits beta-catenin-mediated transcription. Int J Biochem Cell Biol,2008,40 (12):2889-2900.
    [69]Lee CJ, Appleby VJ, Orme AT,et al.Differential expression of SOX4 and SOX11 inmedulloblastoma.J Neurooncol,2002,57 (3):201-214.
    [70]Tavazoie SF, Alarcon C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis.Nature,2008,451 (7175):147-152.
    [71]Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol,2006,4 (4):e115.
    [72]Weeraratna AT. A Wnt-er wonderland--the complexity of Wnt signaling in melanoma. Cancer Metastasis Rev,2005,24 (2):237-250.
    [73]Larue L, Delmas V. The WNT/Beta-catenin pathway in melanoma. Front Biosci,2006,11 (1):733-742.
    [74]Arheden K, Mandahl N, Strombeck B, et al.Chromosome localization of the human oncogene INT1 to 12q13 by in situ hybridization.Cytogenet Cell Genet,1988,7 (1-2):86-87.
    [75]Blasband A, Schryver B, Papkoff J. The biochemical properties and transforming potential of human Wnt-2 are similar to Wnt-1. Oncogene,1992, 7 (1):153-161.
    [76]Kashani-Sabet M, Rangel J, Torabian S, et al. A multi-marker assay to distinguish malignant melanomas from benign nevi. Proc Natl Acad Sci U S A.,2009,106 (15):6268-6272.
    [77]Klein D, Demory A, Peyre F, Kroll J,et al.Wnt2 acts as an angiogenic growth factor for non-sinusoidal endothelial cells and inhibits expression of stanniocalcin-1. Angiogenesis,2009,12 (3):251-265.
    [78]Park JK, Song JH, He TC, et al. Overexpression of Wnt-2 in colorectal cancers. Neoplasma.,2009,56 (2):119-123.
    [79]Benhaj K, Akcali KC, Ozturk M. Redundant expression of canonical Wnt ligands in human breast cancer cell lines. Oncol Rep,2006,15 (3):701-707.
    [80]Khan NI, Bradstock KF, Bendall LJ. Activation of Wnt/beta-catenin pathway me diates growth and survival in B-cell progenitor acute lymphoblastic leukaemia.Br J Haematol,2007,138 (3):338-348.
    [81]Rhee CS, Sen M, Lu D, et al. Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene,2002,21 (43):6598-6605.
    [82]Chien AJ, Conrad WH, Moon RT. A Wnt survival guide:from flies to human disease. J Invest Dermatol,2009,129 (7):1614-1627.
    [83]Chien AJ, Moore EC, Lonsdorf AS, et al. Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Natl Acad Sci U S A,2009,106 (4):1193-1198.
    [84]Jeays-Ward K, Hoyle C, Brennan J, et al.Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development,2003,130 (16):3663-3670.
    [85]Miyakoshi T, Takei M, Kajiya H, et al. Expression of Wnt4 in human pituitary adenomas regulates activation of the beta-catenin-independent pathway. Endocr Pathol,2008,19 (4):261-273.
    [86]Bittner M, Meltzer P, Chen Y, et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature.2000,406 (6795):536-540.
    [87]O'Connell MP, Fiori JL, Kershner EK, et al. Heparan sulfate proteoglycan modulation of Wnt5A signal transduction in metastatic melanoma cells. J Biol Chem,2009,284 (42):28704-28712.
    [88]Morioka K, Tanikawa C, Ochi K, et al. Orphan receptor tyrosine kinase ROR2 as a potential therapeutic target for osteosarcoma. Cancer Sci, 2009,100 (7):1227-1233.
    [89]Saitoh T, Katoh M. Expression and regulation of WNT5A and WNT5B in human cancer:up-regulation of WNT5A by TNFalpha in MKN45 cells and up-regulation of WNT5B by beta-estradiol in MCF-7 cells. Int J Mol Med, 2002,10 (3):345-349.
    [90]Le Grand F, Jones AE, Seale V, et al. Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell,2009,4 (6):535-547.
    [91]Rajagopal J, Carroll TJ, Guseh JS,et al. Wnt7b stimulates embryonic lung growth by coordinately increasing the replication of epithelium and mesenchyme. Development,2008,135 (9):1625-1634.
    [92]Pham K, Milovanovic T, Barr RJ, et al. Wnt ligand expression in malignant melanoma:pilot study indicating correlation with histopathological features. Mol Pathol,2003,56 (5):280-285.
    [93]Swiatek W, Tsai IC, Klimowski L, et al.Regulation of casein kinase I epsilon activity by Wnt signaling. J Biol Chem,2004,279 (13):13011-13017.
    [94]Martinez G, Wijesinghe M, Turner K, et al. Conditional mutations of beta-catenin and APC reveal roles for canonical Wnt signaling in lens differentiation. Invest Ophthalmol Vis Sci,2009,50 (10):4794-4806.
    [95]Matsumoto K, Miki R, Nakayama M, et al. Wnt9a secreted from the walls of hepatic sinusoids is essential for morphogenesis, proliferation, and glycogen accumulation of chick hepatic epithelium. Dev Biol,2008,319 (2):234-247.
    [96]Juriloff DM, Harris MJ, McMahon AP, et al. Wnt9b is the mutated gene involved in multifactorial nonsyndromic cleft lip with or without cleft palate in A/WySn mice, as confirmed by a genetic complementation test.Birth Defects Res A Clin Mol Teratol,2006,76 (8):574-579.
    [97]Ordway JM, Bedell JA, Citek RW, et al. Comprehensive DNA methylation profiling in a human cancer genome identifies novel epigenetic targets. Carcinogenesis,2006,27 (12):2409-2423.
    [98]Ulrich F, Krieg M, Schotz EM, et al. Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin. Dev Cell,2005,9 (4):555-964.
    [99]Hook V, Toneff T, Bogyo M, et al. Inhibition of cathepsin B reduces beta-amyloid production in regulated secretory vesicles of neuronal chromaffin cells:evidence for cathepsin B as a candidate beta-secretase of Alzheimer's disease. Biol Chem,2005,386 (9):931-940.
    [100]van Es JH, Barker N, Clevers H. You Wnt some, you lose some:oncogenes in the Wnt signaling pathway.Curr Opin Genet Dev,2003,13 (1):28-33.
    [101]Williams BO, Insogna KL.Re-evaluating the role of Frat in Wnt-signal transduction.Cell Cycle,2005,4 (8):1065-1072.
    [102]Williams BO, Insogna KL.Where Wnts went:the exploding field of Lrp5 and Lrp6 signaling in bone. J Bone Miner Res,2009,24 (2):171-178.
    [103]Clark EA, Golub TR,Lander ES, et al. Genomic analysis of metastasis reveals an essential role for RhoC. Nature,2000,406 (6795):532.
    [104]Ogawa T, Tashiro H, Miyata Y, et al. Rho-associated kinase inhibitor reduces tumor recurrence after liver transplantation in a rat hepatoma model. American Journal of Transplantation,2007,7 (2):347.
    [105]Takeda K, Yasumoto K, Takada R, et al. Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J Biol Chem,2000,275 (19):14013-14016.
    [106]Dunn KJ, Brady M, Ochsenbauer-Jambor C, et al. WNT1 and WNT3a promote expansion of melanocytes through distinct modes of action. Pigment Cell Res,2005,18 (3):167-180.
    [107]Lucero OM, Dawson DW, Moon RT, et al. A re-evaluation of the "oncogenic" nature of Wnt/beta-catenin signaling in melanoma and other cancers. Curr Oncol Rep,2010,12 (5):314-318.
    [108]Dissanayake SK, Olkhanud PB, O'Connell MP, et al.Wnt5A regulates expression of tumor-associated antigens in melanoma via changes in signal transducers and activators of transcription 3 phosphorylation.Cancer Res, 2008,68 (24):10205-10214.
    [109]You L, He B, Xu Z, et al. An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth.Cancer Res,2004,64 (15):5385-5389.
    [110]Jonsson M, Smith K, Harris AL. Regulation of Wnt5a expression in human mammary cells by protein kinase C activity and the cytoskeleton. Br J Cancer,1998,78 (4):430-438.
    [111]Zhang X, Gaspard JP, Chung DC. Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res, 2001,61 (16):6050-6054.
    [112]Yamamoto T,Tanigaxa N. The role of surviving as a new target of diagnosis and treatment in human cancer. Med Electron Microse,2001,34:207-212.
    [113]Kim PJ, Plescia J, Clevers H, et al. Survivin and molecular pathogenesis of colorectal cancer. Lancet,2003,362 (9379):205-209.
    [114]Huh R, Foe I, Hayb A,et al. The Drosophila inhibitor of apoptosis (IAP) DIAP2 is dispensable for cell survival,required for the innate immune response to gram-negative bacterial infection, and can be negatively regulated by the reaper/hid/grim family of IAP-binding apoptosis inducers.J Biol Chem,2007,282 (3):2056-2068.
    [115]Verhagen A M,Kartina K,Vaux D L,et al.Identification of mammalian mitochondrial proteins that interact with IAPs via N-terminal IAP binding motifs.Cell Death Differ,2007,14 (2):348-357.
    [116]Suzuki A,Hayashid A M,Ito T,et al. Tumor cell "dead or alive":caspase and survivin regulate cell death,cell cycle and cell survival. Oncogene,2005,16 (2):583-593.
    [117]Chandele A,Prasad VJagtap C. Upregulation of survivin in G2/M cells and inhibition of caspase-9 activity enhances resistance in staurosporine-induced apoptosis.Neoplasia,2004,6 (1):29-40.
    [118]Hadrup SR, Gehl J, S(?)rensen RB, et al.Persistence of survivin specific T cells for seven years in a melanoma patient during complete remission. Cancer Biol Ther,2006,5 (5):480-482.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700