用户名: 密码: 验证码:
GILZ对巨噬细胞功能的影响及其在小鼠肝脏缺血再灌注中的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:GILZ具有炎症抑制、上皮细胞钠通道的调节等多项作用,目前认为是GCs发挥作用的重要介质。siRNA自被发现就誉为基因研究史上的革命性突破,其对靶mRNA的抑制作用具有特异性和高效性的特点,是特异性抑制基因表达的强效方法。本实验通过体外条件培养获得足够数量和纯度的小鼠腹腔巨噬细胞,应用已构建的编码小鼠GILZ基因的质粒载体和GILZ特异性siRNA体外转染小鼠腹腔巨噬细胞,检测GILZ基因的mRNA和蛋白表达水平,建立GILZ的高表达和沉默模型,为下一步研究巨噬细胞中GILZ基因特性奠定实验基础。方法:体外培养获得足够数量和纯度的小鼠腹腔巨噬细胞,法国Polyplus-transfection公司的INTERFERin~(TM)和jetPEI~(TM)转染试剂分别将siGILZ和GILZ转染至小鼠腹腔巨噬细胞中,干扰试验分为空白对照组、无关序列siC组、siGILZ组,分别取处理后1小时、3小时、6小时、12小时和24小时作为观察点。GILZ基因转染试验分为空白对照组、空质粒AAV组、GILZ组,也分别取处理后1小时、3小时、6小时、12小时和24小时作为观察点。RealtimePCR法检测各处理组细胞GILZ的mRNA水平的表达,Western-blot检测各处理组细胞GILZ的蛋白水平的表达。结果:干扰试验中与对照组和无关序列siC组相比较,siGILZ组明显降低6小时后GILZ的mRNA水平和蛋白水平的表达(p<0.05);GILZ基因转染试验中,与对照组和空质粒AAV组相比较,GILZ组明显升高GILZ的mRNA水平和蛋白水平的表达(p<0.05),其中6h组表达最高。结论:GILZ的高表达和沉默模型成功构建,可以转染试剂处理6小时作为GILZ干扰和转染的处理时间。
     目的:巨噬细胞是固有免疫系统中重要的细胞组成部分,具有包括吞噬作用、抗原提呈及分泌细胞因子等功能,在不同微环境中,巨噬细胞主要分为M1型和M2型,M1型巨噬细胞可直接吞噬和杀伤病原微生物和肿瘤细胞、分泌促炎性细胞因子,专职呈递抗原参与正向免疫应答;M2型巨噬细胞表现为较低的抗原呈递能力,并通过分泌抑制性细胞因子IL-10和TGF-β等下调免疫应答。本实验试图探讨GILZ能否通过促进腹腔巨噬细胞转变为M2型巨噬细胞而发挥负向调控作用。方法:以小鼠腹腔巨噬细胞为研究对象,试验分为空白对照组、DEX组、GILZ处理组、siGILZ处理组。RealtimePCR法检测各处理组M1和M2标志性分子表达情况、ELISA法进行细胞因子的检测,流式检测处理后巨噬细胞的吞噬能力,Western-blot检测各组TLR4信号通路分子的表达。结果:与对照组相比较,Dex组与GILZ处理组高表达M2标志性分子Arginase-1、FIZZ-1和Ym-1,低表达M1标志性分子i-NOS;抑制促炎症因子IL-1β、IL-6、TNF-α及IL-12的表达,而提高抗炎症因子IL-10的表达,抑制腹腔巨噬细胞的吞噬能力,下调TLR4、IRAK1、IRAK2和TRAF6等TLR4信号通路分子的表达;而siGILZ却低表达M2标志性分子Arginase-1、FIZZ-1和Ym-1,高表达M1标志性分子i-NOS;促进促炎症因子IL-1β、IL-6、TNF-α及IL-12的表达,而抑制抗炎症因子IL-10的表达,提高腹腔巨噬细胞的吞噬能力,上调TLR4、IRAK1、IRAK2和TRAF6等TLR4信号通路分子的表达(p<0.05)。结论:GILZ促进M2型巨噬细胞的产生,抑制促炎症因子的表达,而促进抗炎症因子IL-10的表达,并可能是通过抑制TLR4信号通路分子的机制。
     目的:肝脏缺血再灌注损伤是肝脏外科疾病中常见的病理生理过程,地塞米松通过直接抑制中性粒细胞的氢过氧化物生成和中性粒细胞游出,阻止磷脂酶A2和花生四烯酸代谢,从而抑制中性粒细胞介导的缺血再灌注损伤。本实验探讨GILZ是否可通过促进腹腔巨噬细胞转变为M2型巨噬细胞来降低肝脏缺血再灌注损伤。方法:通过invivojetPEI~(TM)转染试剂构建GILZ体内转染于小鼠肝脏缺血再灌注模型,试验分为空白对照组、Dex组、AAV空质粒处理组、GILZ处理组,取再灌注4小时作为观察点。检测ALT和AST情况、HE染色看病理学变化,ELISA法进行细胞因子的检测。结果:与对照组和AAV空质粒处理组比较,Dex组和GILZ处理组明显降低ALT和AST的表达(p<0.05),较明显减少小鼠肝脏缺血再灌注的组织损伤,抑制促炎症因子IL-1β、IL-6、TNF-α及IL-12的表达,而提高抗炎症因子IL-10的表达(p<0.05)。结论:本实验从体内研究环境发现GILZ通过诱导M2型巨噬细胞产生,保护缺血再灌注肝脏的肝功能的作用,降低炎症因子的表达,进而保护缺血再灌注的肝脏的结构相对完整。
Objective: GILZ have ability of anti-inflammation and regulation of epithelialsodium channels and many other effects.It’s a new important mediator ofglucocorticoid action.SiRNA was looked as a revolutionary breakthrough in thehistory of genetic research, has the specificity and efficiency of the characteristics ininhibition of target mRNA . SiRNA technique is a powerful ways to inhibit geneexpression specifically. The present study, GILZ and siGILZ plasmid vector that hasbeen constructed transfect to the mouse peritoneal macrophages with sufficientquantity and purity in vitro , and detect expression of GILZ mRNA and proteinlevels.The model of high expression and silence of GILZ has been established forfurther study of the genetic characteristics of GILZ in macrophages. METHODS:Cultured sufficient quantity and purity of mouse peritoneal macrophages, siGILZ andGILZ transfected into mouse peritoneal macrophages by the French companyPolyplus-transfection's transfection reagents INTERFERin~(TM) and jetPEI~(TM)respectively. The interference test is divided into a blank Control group, siC group andsiGILZ group and 1 hour, 3 hours, 6 hours, 12 hours and 24 hours were taken as theobservation point. GILZ gene transfer trials were divided into control group, emptyvector AAV group and GILZ group, were also taken after 1 hour, 3 hours, 6 hours, 12hours and 24 hours for observation. Realtime PCR detected the mRNA expressionlevels of GILZ in each treatment group, Western-blot detected expression of theprotein GILZ of cells in each treatment group. Results: Compared with the controlgroup and siC group, siGILZ significantly decreased the mRNA level and proteinlevels of GILZ after transfected for 6 hours (p <0.05); GILZ gene transferexperiments, compared with the control group and empty plasmid AAV group, GILZwas significantly increased the expression of GILZ in mRNA and protein levels (p<0.05), in which the highest expression of 6h group. Conclusion: Overexpression andsilence model of GILZ has been builded successfully.
     Objective: Macrophages are important innate immune cell, it’s functions includingphagocytosis, antigen presentation and secretion of cytokines and other functions.In adifferent microenvironment, macrophages consists of M1 and M2-type model, M1Macrophage can directly engulf and destruct the pathogenic microorganisms andtumor cells, present antigen and secrete proinflammatory cytokines, involved in ppositive immune responserofessionally; M2 macrophages showed lowerantigen-presenting ability, ana secreted the inhibitory Cytokine such as IL-10 andTGF-βthat reduced immune response. This study attempts to explore whether GILZpromoting peritoneal macrophages changed to the M2-type macrophages and playinga role in the negative regulation. Methods: Mouse peritoneal macrophages was thestudyobject, the test divided into control group, DEX group, GILZ treatment groupand siGILZ treatment group. Realtime PCR Detected expression of symbol moleculeof M1 and M2 in each treatment group, ELISA method for detection of cytokines,flow cytometry for macrophage phagocytosis , Western-blot to detect the expression ofTLR4 signaling molecules. Results: Compared with the control group, Dex treatmentgroup and GILZ group express high level of Arginase-1, FIZZ-1 and Ym-1 of M2,low level of i-NOS of M1; inhibition of pro-inflammatory factor IL-1β, IL-6, TNF-αand IL-12 expression, and increased anti-inflammatory factor IL-10 expression,inhibition of macrophage phagocytic capacity, reduced the expression of TLR4signaling pathway molecules such as TLR4, IRAK1, IRAK2 and TRAF6; WhilesiGILZ has the low expression of Arginase-1, FIZZ-1 and Ym-1 of M2, highexpression of M1 molecules i-NOS; to promote pro-inflammatory factorαIL-1β, IL-6,TNF- and IL-12 Expression, and inhibition of anti-inflammatory factor IL-10expression, enhance macrophage phagocytosis , increased TLR4 signaling moleculesexpression such as TLR4, IRAK1, IRAK2 and TRAF6 (p <0.05). Conclusion: GILZ promote the production of M2 macrophages, inhibit the expression ofproinflammatory factors, the promot of anti-inflammatory factor IL-10 expression,and probably by inhibiting the mechanism of TLR4 signaling molecules.
    
     Objective: Hepatic ischemia reperfusion injury is a common pathophysiology of liversurgical diseases. Through the direct inhibition generation of neutrophil hydrogenperoxide and neutrophil swim out ,dexamethasone block the phospholipase A2 andarachidonic acid metabolism, thereby inhibiting neutrophil-mediatedischemia-reperfusion injury. This study investigated whether GILZ reduce the hepaticischemia-reperfusion injury by promoting peritoneal macrophages changes to theM2-type macrophages. Methods: Build GILZ transfection by transfection reagent invivo jetPEI~(TM) in mouse liver ischemia-reperfusion model in vivo.test divided intocontrol group, Dex group, AAV empty plasmid treated group, GILZ treatment group,taking 4 hours after reperfusion as observation point. ALT and AST test performed,HE staining for pathological changes, the level of cytokines by ELISA. Results:Compared with the control group and the AAV empty plasmid treatment group, Dextreatment group and GILZ group significantly reduced the expression of ALT andAST (p <0.05), significantly reduced liver ischemia reperfusion injury in pathology,inhibition expression of proinflammatory factors IL-12IL-1β, IL-6 and TNF-α, andincreased anti-inflammatory factor IL-10 expression (p <0.05). Conclusion: Thisstudy found that GILZ protecting the function of liver in liver ischemia /reperfusion ,reducing the expression of inflammatory cytokines by inducingproduction of M2-type macrophages, thereby protecting Structural integrity of liver inischemia-reperfusion.
引文
[1] Grinyo JM.Reperfusion injury.Transplant Proc,1997,29:59-62.
    [2] Jaeschke H.Mechanisms of reperfusion injury after warm ischemia of liver.J HepatobiliaryPancreat Surg,1998,5:402-408.
    [3]Dolan RW, Kerr D, Schneiderman T, Arena S.Reducing ischemia-reperfusion injury in ratisland groin flaps using dexamethasone. Ann Plast Surg,1995, 35(3):285-289.
    [4]D’Adamio, F., Zollo, O., Moraca, R., Ayroldi, E., Bruscoli, S.,Bartoli, A., Cannarile, L.,Migliorati, G., and Riccardi, C. A new dexamethasone-induced gene of the leucinezipper family protects T lymphocytes from TCR/CD3-activated cell death.Immunity,1997,7:803–812
    [5]Ayroldi, E., Migliorati, G., Bruscoli, S., Marchetti, C., Zollo, O.,Cannarile, L., D’Adamio, F.,and Riccardi, C. Modulation of T-cell activation by the glucocorticoid-induced leucine zipperfactor via inhibition of nuclear factor-КB. Blood,2001,98:743–753
    [6]Delfino, D. V., Agostini, M., Spinicelli, S., Vito, P., and Riccardi,C. Decrease of Bcl-xL andaugmentation of thymocyte apoptosis in GILZ overexpressing transgenic mice.Blood,2004,104:4134–4141
    [7]Ayroldi, E., Zollo, O., Bastianelli, A., Marchetti, C., Agostini, M.,Di Virgilio, R., andRiccardi, C. GILZ mediates the antiproliferative activity of glucocorticoids by negativeregulation of Ras signaling. J. Clin. Invest,2007,117:1605–1615
    [8]Cannarile, L., Fallarino, F., Agostini, M., Cuzzocrea, S., Mazzon,E., Vacca, C., Genovese,T., Migliorati, G., Ayroldi, E., and Riccardi, C. Increased GILZ expression in transgenicmice up-regulates Th-2 lymphokines. Blood,2006,107:1039–1047
    [9]Cannarile, L., Cuzzocrea, S., Santucci, L., Agostini, M., Mazzon,E., Esposito, E., Muia, C.,Coppo, M., Di Paola, R., and Riccardi,C. Glucocorticoid-induced leucine zipper is protective inTh1-mediated models of colitis. Gastroenterology,2009,136:530–541
    [10]Cohen, N., Mouly, E., Hamdi, H., Maillot, M. C., Pallardy, M.,Godot, V., Capel, F.,Balian, A., Naveau, S., Galanaud, P.,Lemoine, F. M., and Emilie, D. GILZexpression in human dendritic cells redirects their maturation and prevents antigen-specific Tlymphocyte response. Blood,2006,107:2037–2044
    [11]Hamdi, H., Godot, V., Maillot, M. C., Prejean, M. V., Cohen, N.,Krzysiek, R., Lemoine, F. M.,Zou, W., and Emilie, D. Induction of antigen-specific regulatory T lymphocytes by humandendritic cells expressing the glucocorticoid-induced leucine zipper.Blood,2007,110:211–219
    [12]Muller, O. G., Parnova, R. G., Centeno, G., Rossier, B. C., Firsov,D., and Horisberger, J. D.Mineralocorticoid effects in the kidney: correlation between alphaENaC, GILZ, and Sgk-1 mRNAexpression and urinary excretion of Na+ and K+. J. Am.Soc. Nephrol,2003,14:1107–1115
    [13]Soundararajan, R., Zhang, T. T., Wang, J., Vandewalle, A., and Pearce, D. A novel rolefor glucocorticoid-induced leucine zipper protein in epithelial sodium channel-mediated sodiumtransport. J. Biol. Chem,2005,280:39970–39981
    [14]Emira Ayroldi,Carlo Riccardi1. Glucocorticoid-induced leucine zipper (GILZ): a newimportant mediator of glucocorticoid action. FASEB J,2009,23:3649–3658
    [15]Dominique Berrebi, Stefano Bruscoli, Nicolas Cohen, Arnaud Foussat, Graziella Migliorati,Laurence Bouchet-Delbos,Marie-Christine Maillot, Alain Portier, Jacques Couderc, PierreGalanaud, Michel Peuchmaur, Carlo Riccardi, Dominique Emilie. Synthesis ofglucocorticoid-induced leucine zipper (GILZ) by macrophages:an anti-inflammatory andimmunosuppressive mechanism shared by glucocorticoids and IL-10. Blood,2003,101:729-738
    [16]Nicolas Cohen, Enguerran Mouly, Haifa Hamdi, Marie-Christine Maillot, Marc Pallardy,Ve′ronique Godot, Francis Capel, Axel Balian,Sylvie Naveau, Pierre Galanaud, Franc?ois M.Lemoine, Dominique Emilie. GILZ expression in human dendritic cells redirects their maturationand prevents antigen-specific T lymphocyte response. Blood, 2006,107:2037-2044
    [17]Gordon S,Taylor PR.Monocyte and macrophage heterogeneity. Nat Rev Immu nol ,2005 ,5 :953-964
    [18]Gordon S.Macrophage heterogeneity and tissue lipids.J Clin Invest , 2007 ,117 :89-93
    [19]Gordon S.Alternative activation of macrophages.Nat Rev Immunol, 2003,3:23-35
    [20]Mantovani A,Sica A,Locati M.Macrophage polarization comes of age . Immunity,2005 ,23:3442-346
    [21]Mantovani A,Sica A,Sozzani S,et al.The chemokine system in diverse forms of macrophageactivation and polarization. Trends Immunol , 2004 ,25:677-686
    [22]Van Ginderachter JA,Movahedi K,Hassanzadeh Ghassabeh G, et al. Classical andalternative activation of mononuclear phagocytes: picking the best of both worldsfor tumor promotion. Immunobiology , 2006 ,211 :487-501
    [1]D’Adamio F,Zollo O,Moraca R,et a1.A new dexamethasone-induced gene of the leucinezipper family protects T lymphocytes from TCR/CD3一activated cell death.Immunity,1997,7(6):803-812
    [2]Kester HA,Blanchetot C,den Hertog J,et a1.Transforming growth factor-beta-stimulatedclone-22 is a member of a family of leucine zipper proteins that can homo- and heterodimerizeand has transcriptional repressor activity.J Biol Chem,1999,274(39):27439-27447
    [3]Ayroldi E,Migliorati G,Bruscoli S,et a1.Modulation of T-cell activation by theglucocorticoid-induced leucine zipper factor via inhibition of nuclear factor kappa B.Blood,2001,98(3):743-753
    [4]Bhalla V,Soundararajan R,Pao AC,et a1.Disinhibitory pathways for control of sodiumtransport:regulation of ENaC by SGK1 and GILZ.Am J Physiol Renal Physiol,2006,291(4):714-721
    [5]Fire A,Xu SQ,Montgomery MK,et a1.Potent and specific genetic interference bydouble-stranded RNA in Caenorhabditis elegans.Nature,1998,391(6669):806-8l1
    [6]Thomas T,Arndt B.Small interfering RNA:a revolutionary tool for the analysis of genefuction and gene therapy.Mol Unterventions,2002,2:158-167.
    [7]Zamore PD,Tuschl T,Sharp PA,et a1.RNAi:Double-stranded RNA directs theATP-dependent Cleavage of mRNA at 21 to 23 nucleotide intervals.cell,2000,101(1):25-33.
    [8]Morrissey DV,Lockridge JA,Shaw L,et a1.Potent and persistent in vivo anti-HBV activityof chemically modified siRNAs.N Biotechnol,2005,23(8):1002-1007.
    [9]Kim SH,Jeong JH,Lee SH,et a1.Local and systemic delivery of VEGF siRNA usingpolyelectrolyte complex micelles for effective treatment of cancer.Controlled Release,2008.129(2):107-116.
    [10]Ayroldi, E., Migliorati, G., Bruscoli, S., Marchetti, C., Zollo, O.,Cannarile, L., D’Adamio, F.,and Riccardi, C. Modulation of T-cell activation by the glucocorticoid-induced leucine zipperfactor via inhibition of nuclear factor-КB. Blood,2001,98:743–753
    [11]Delfino, D. V., Agostini, M., Spinicelli, S., Vito, P., and Riccardi,C. Decrease of Bcl-xL andaugmentation of thymocyte apoptosis in GILZ overexpressing transgenic mice.Blood,2004,104:4134–4141
    [12]Ayroldi, E., Zollo, O., Bastianelli, A., Marchetti, C., Agostini, M.,Di Virgilio, R., andRiccardi, C. GILZ mediates the antiproliferative activity of glucocorticoids by negativeregulation of Ras signaling. J. Clin. Invest,2007,117:1605–1615
    [13]Cannarile, L., Zollo, O., D’Adamio, F., Ayroldi, E., Marchetti, C., Tabilio, A., Bruscoli,S., and Riccardi, C. Cloning,chromosomal assignment and tissue distribution ofhuman GILZ, a glucocorticoid hormone-induced gene. Cell Death Differ,2001,8:201–203
    [14]Soundararajan, R., Wang, J., Melters, D., and Pearce, D. Differential activities ofglucocorticoid-induced leucine zipper protein isoforms. J. Biol. Chem,2007,282:36303–36313
    [15]Ayroldi, E., Migliorati, G., Bruscoli, S., Marchetti, C., Zollo, O.,Cannarile, L., D’Adamio, F.,and Riccardi, C. Modulation of T-cell activation by the glucocorticoid-induced leucine zipperfactor via inhibition of nuclear factor-КB. Blood,2001,98:743–753
    [16]Di Marco, B.,Massetti, M., Bruscoli, S., Macchiarulo, A., Di Virgilio, R.,Velardi, E., Donato,V., Migliorati,G.,and Riccardi,C. Glucocorticoid-induced leucine zipper (GILZ)/NF-КBinteraction: role of GILZ homo-dimerization and C-terminal domain. Nucleic AcidsRes,2007,35:517–528
    [17]Ayroldi, E., Zollo, O., Macchiarulo, A., Di Marco, B., Marchetti,C., and Riccardi, C.Glucocorticoid-induced leucine zipper inhibits the Raf-extracellular signal-regulatedkinase pathway by binding to Raf-1. Mol. Cell. Biol,2002,22:7929–7941
    [18]Ayroldi, E., Zollo, O., Bastianelli, A., Marchetti, C., Agostini, M.,Di Virgilio, R., andRiccardi, C. GILZ mediates the antiproliferative activity of glucocorticoids by negativeregulation of Ras signaling. J. Clin. Invest,2007,117:1605–1615
    [19]Berrebi, D., Bruscoli, S., Cohen, N., Foussat, A., Migliorati, G.,Bouchet-Delbos, L., Maillot,M.C.,Portier,A.,Couderc, J.,Galanaud, P., Peuchmaur, M., Riccardi, C., and Emilie, D. Synthesisof glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatoryand immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood,2003,101:729–738
    [20]Hamdi,H.,Bigorgne,A.,Naveau,S.,Balian,A.,Bouchet-Delbos,L.,Cassard-Doulcier,A.M.,Maillot, M.C., Durand-Gasselin, I., Prevot, S., Delaveaucoupet, J., Emilie, D.,and Perlemuter,G.Glucocorticoid-induced leucine zipper: A key protein in the sensitization of monocytes tolipopolysaccharide in alcoholic hepatitis. Hepatology,2007,46:1986–1992
    [21]Berrebi, D., Bruscoli, S., Cohen, N., Foussat, A., Migliorati, G.,Bouchet-Delbos, L., Maillot,M.C.,Portier,A.,Couderc, J.,Galanaud, P., Peuchmaur, M., Riccardi, C., and Emilie, D. Synthesisof glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatoryand immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood,2003,101:729–738
    [22]Bai, X. J., Li, B., Wang, H. P., Yang, Z. H., and Li, S. Q. Primary investigation of therelationship between glucocorticoid induced leucine zipper and in flammatory reaction. ZhongguoWei Zhong Bing Ji Jiu Yi Xue,2007,19:7–10
    [1] Gordon S.Taylor PR.Monocyte and macrophage heterogeneity.Nat Rev Immunol,2005,5(12):953-964
    [2]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-timequantitative PCR and the 2(-Delta Delta C(T))Method. Methods,2001,25: 402-408.
    [3]Kramer JM, Kochinke K, Oortveld MA, Marks H, Kramer D, de Jong EK et al. Epigeneticregulation of learning and memory by Drosophila EHMT/G9a. PLoS biology,2011,9: e1000569
    [4]Van Ginderachter JA,Movahedi K,Hassanzadeh Ghassabeh G, et al. Classical andalternative activation of mononuclear phagocytes: picking the best of both worlds fortumor promotion. Immunobiology , 2006 ,211 :487-501.
    [5]Rauh MJ,Ho V,Pereira C,et al.SHIP represses the generation of alternatively activatedmacrophages. Immunity, 2005,23:361-374 .
    [6]Herbert DR,Hlscher C,Mohrs M,et al.Alternative macrophage activation is essential forsurvival during schistosomiasis and down modulates T helper 1 responses andimmunopathology. Immunity, 2004,20:623-635.
    [7]Arnold LA.Henry F,Poron Y,et al.Inflammatory monocytes recruited after skeletal muscleinjury switch into antiinflammatory macrophages to support myogenesis. J Exp Med ,2007 ,204 :1057-1069 .
    [8]Lumeng CN,Bodzin JL,Saltiel AR.Obesity induces a phenotypic switch in adipose tissuemacrophage polarization.J Clin Invest , 2007,117:175-184 .
    [9]Biswas SK,Gangi L,Paul S,et al.A distinct and unique transcriptional program expressed bytumor-associated macrophages (defective NF-kappaB and enhanced IRF23/ STAT1 activation).Blood , 2006 ,107 :2112-2122 .
    [10]Odegaard JI,Ricardo-Gonzalez RR,Goforth MH,et al.Macrophage-specific PPAR controlsalternative activation and improves insulin resistance. Nature, 2007, 447 :1116-1120.
    [11]Anthon RM,Urban JF,Alem F,et al.Memory T(H)2 cells induce alternatively activatedmacrophages to mediate protection against nematode parasites. Nat Med ,2006 ,12 :955-960 .
    [12]Weber MS,Prod’homme T,Youssef S,et al.Type II monocytes modulate T cell-mediatedcentral nervous system autoimmune disease.Nat Med,2007, 13:935-943 .
    [13]Denning TL,Wang YC,Patel SR,et al.Laminapropria macrophages and dendritic cellsdifferentially induce regulatory and interleukin 17-producing T cell responses . Nat Immunol ,2007 ,8:1086-1094 .
    [14]Stratis A,Pasparakis M,Rupec RA,et al.Pathogenicrole for skin macrophages in a mousemodel of keratinocyte-induced psoriasis-like skin inflammation. J ClinInvest ,2006 ,116 :2094-2104.
    [15]Luo Y,Zhou H,Krueger J,et al.Targeting tumor-associated macrophages as a novel strategyagainst breast cancer. J Clin Invest, 2006 ,116 :2132-2141.
    [16] Tiemessen MM , J agger AL, Evans HG, et al. CD4+CD25+Foxp3+ regulatory T cellsinduce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci USA ,2007 ,104 :19446-19451 .
    [17]Biswas SK,Gangi L,Paul S,et a1.A distinct and unique transcriptional programme expressedby tumor-associated macrophages(defective NF-κB and enhanced IRF-3/STATIactivation).Blood,2006,107(5):2112-2122.
    [18]Rodriguez PC,Quiceno DG,Zabaleta J,et a1.Arginase I production in the tumormicroenvironment by mature myeloid cells inhibits T-ceIl receptor expression and antigen-specificT-ceIl responses [J].Cancer Res,2004,64(16):5839-5849.
    [19]Talmadge JE,Donkor M,Scholar E.Inflammatory cell infiltration of tumors:Jekyll orHyde.Cancer Metastasis Rev,2007,26(3-4):373-400.
    [20]Guiducci C,Vicari AP,Sangaletti S,et a1.Redirecting in vivo elicited tumor infiltratingmacrophages and dendritic cells towards tumor rejection.CancerRes,2005,65(8):3437-3446.
    [21]Van Ginderachter JA.Movahedi K.Hassanzadeh Ghassabeh G, et a1.Classical andalternative activation of mononuclear phagocytes:picking the best of both worlds for tumorpromotion.Immunobiol,2006,211(6-8):487-501.
    [22] Lien E,Ingalls RR.Toll—like receptors.Crit Care Med,2002,30(1):S1-S11.
    [23]Akira S,Takeda K.Toll—like receptor signalling.Nat Rev Immunol,2004,4(7):499-511.
    [24]Barton GM,Medzhitov R.Toll-like receptor signaling pathways.Science,2003,300(5625):1524-1525
    [1] Grinyo JM.Reperfusion injury.Transplant Proc,1997,29:59-62.
    [2] Jaeschke H.Mechanisms of reperfusion injury after warm ischemia of liver.J HepatobiliaryPancreat Surg,1998,5:402-408.
    [3]Dolan RW, Kerr D, Schneiderman T, Arena S.Reducing ischemia-reperfusion injury in ratisland groin flaps using dexamethasone. Ann Plast Surg,1995, 35(3):285-289.
    [4]Khandoga A,Biberthaler P,Enders G,et a1.P-selectin mediates platelet-endothelial cellinteractions and repeffusion injury in the mouse liver in vivo.Shock,2002,18(6):529-535.
    [5]Shirasugi N,Wakabayashi G,Shimazu M,et a1.Up-regulation of oxygen-derived free radicalsby interleukin-1 in hepatic ischemia/reperfusion injury.Transplantation,1997,64(10):1398-1403.
    [6]Papadimitfiou JC,Phelps PC,Shin ML,et a1.Effects of Ca deregulation on mitochondrialmembrane potential and cell viability in nucleated cells following lytic complement attack.CellCalcium,1994,15(3):217-227.
    [7]Anderson CD,Pierce J,Nicoud I,et a1.Modulation of mitoehondrial calcium managementattenuates hepatic warm ischemia/reperfusion injury.Liver Transpl,2005,11(6):663-668.
    [8]Montalvo-Jave EE,Escalante-Tattersfield T,Omega-Salgado JA,et a1.Factors in thepathophysiology of the liver ischemia/reperfusion injury.J Surg Res,2008,147 (1):153-159.
    [9]Rentsch M,Post S,Palma P,et a1.Anti-ICAM-1 blockade reduces postsinusoidal WBCadherence following cold ischemia and reperfusion,but does not improve early graft function inrat liver transplantation.J Hepatol,2000,32(5):821-828.
    [10]Lemasters JJ,Ji S,Thurman RG.Centrilobular injury following hypoxia in isolated,perfusedrat liver.Science,1981,213(4508):661-663.
    [11]Tsukamoto H.Redox regulation of cytokine expression in Kupffer cells.Antioxid RedoxSignal,2002,4(5):741-748.
    [12]Nakamitsu A,Hiyama E,Imamura Y,et a1.Kupffer cell function in isehemic andnonischemic livers after hepatic partial ischemia/reperfusion.Surg Today,2001,31(2):140-148.
    [13]Teoh N,Field J,Sutton J,et a1.Dual role of tumor necrosis factor-alpha in hepaticischemia/reperfusion injury:studies in tumor necrosis factor-alpha gene knockout mice.Hepatology,2004,39(2):412-421.
    [14]Rtidiger HA,Clavien PA.Tumor necrosis factor alpha,but not Fas,mediates hepatocellularapoptosis in the mufine ischemic liver.Gastroenterology,2002,122(1):202-210.
    [15]Colletti LM,Green M.Lung and liver injury following hepatic ischemia/reperfusion in the ratis increased by exogenous lipopolysaccharide which also increases hepaticTNF production in vivoand in vitro.Shock,2001,16(4):312-319.
    [16] Kiuchi T,Oldhafer KJ,Schlitt HJ,et a1.Background and prognostic implications ofperlreperfusion tissue injuries in human liver transplants:a panel histochemical study.Transplantation,1998,66(6):737-747.
    [17]Kato A,Gabay C,Okaya T,et a1.Specific role of interleukin-1 in hepatic neutrophilrecruitment after ischemia/reperfusion.Am J Pathol,2002,161(5):1797-1803.
    [18]Cressman DE,Greenbaum LE,DeAngelis RA,et a1.Liver failure and defective hepatocytcregeneration in interleukin-6-deficient mice.Science,1996,274(5291):1379-1383.
    [19]Yoshidome H,Kato A,Edwards MJ,et a1.Interleukin-10 suppresses hepaticischemia/reperfusion injury in mice:implications of a central role for nuclear factor kappa B.Hepatology,1999,30(1):203-208.
    [1]Cupps, T. R., and Fauci, A. S. Corticosteroid-mediated immunoregulation in man. Immunol.Rev, 1982, 65:133–155
    [2]Barnes, P. J., and Adcock, I. Anti-inflammatory actions of steroids: molecular mechanisms.Trends Pharmacol. Sci, 1993,14:436–441
    [3]Hoffman, G. S. Immunosuppressive therapy for autoimmune diseases. Ann. Allergy,1993, 70:263–274
    [4]Simons, S. S., Jr. What goes on behind closed doors:physiological versus pharmacologicalsteroid hormone actions.Bioessays,2008,30:744–756
    [5]Rhen, T., and Cidlowski, J. A. Antiinflammatory action of glucocorticoids–new mechanisms forold drugs. N. Engl. J. Med, 2005,353:1711–1723
    [6]De Bosscher, K., Vanden Berghe, W., and Haegeman, G. Mechanisms of anti-inflammatoryaction and of immunosuppression by glucocorticoids: negative interference of activatedglucocorticoid receptor with transcription factors. J. Neuroimmunol, 2000,109:16–22
    [7]Almawi, W. Y., Abou Jaoude, M. M., and Li, X. C. Transcriptional andpost-transcriptional mechanisms of glucocorticoid antiproliferative effects. Hematol.Oncol,2002,20:17–32
    [8]Riccardi, C., Zollo, O., Nocentini, G., Bruscoli, S., Bartoli, A.,D’Adamio, F., Cannarile,L., Delfino, D., Ayroldi, E., and Migliorati, G. Glucocorticoid hormones in the regulationof cell death. Therapie,2000,55:165–169
    [9]Kofler, R. The molecular basis of glucocorticoid-induced apoptosis of lymphoblastic leukemiacells. Histochem. Cell Biol,2000,114:1–7
    [10]Wyllie, A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenousendonuclease activation. Nature,1980,284:555–556
    [11] Migliorati, G., Nicoletti, I., D’Adamio, F., Spreca, A., Pagliacci,C., and Riccardi,C.Dexamethasone induces apoptosis in mouse natural killer cells and cytotoxic Tlymphocytes.Immunology,1994,81:21–26
    [12]Thompson, E. B. Stepping stones in the path of glucocorticoid-driven apoptosis oflymphoid cells. Acta Biochim.Biophys. Sin , Shanghai. 2008,40:595–600
    [13]Adcock, I. M., and Barnes, P. J. Molecular mechanisms of corticosteroid resistance.Chest,2008,134:394–401
    [14]Norman, M., and Hearing, S. D. Glucocorticoid resistance—what is known? Curr. Opin.Pharmacol,2002,2:723–729
    [15]Gross, K. L., Lu, N. Z., and Cidlowski, J. A. Molecular mechanisms regulating glucocorticoidsensitivity and resistance.Mol. Cell. Endocrinol,2009,300: 7–16
    [16]Falkenstein, E., and Wehling, M. Nongenomically initiated steroid actions. Eur. J. Clin. Invest.30. Suppl,2000, 3:51–54
    [17]Kumar, R., and Thompson, E. B. Gene regulation by the glucocorticoid receptor:structure:function relationship. J. Steroid Biochem. Mol. Biol,2005,94:383–394
    [18]Bianchini, R., Nocentini, G., Krausz, L. T., Fettucciari, K., Coaccioli, S., Ronchetti, S., andRiccardi, C. Modulation of pro- and antiapoptotic molecules in double-positive[CD4+CD8+] thymocytes following dexamethasone treatment. J. Pharmacol.Exp.Ther.,2006,319:887–897
    [19]Cinque, B., Fanini, D., Di Marzio, L., Palumbo, P., La Torre, C.,Donato, V., Velardi, E.,Bruscoli, S., Riccardi, C., and Cifone,M. G. Involvement of cPLA2 inhibition indexamethasone-induced thymocyte apoptosis. Int. J. Immunopathol. Pharmacol,2008,21:539–551
    [20]Marchetti, M. C., Di Marco, B., Cifone, G., Migliorati, G., and Riccardi, C.Dexamethasone-induced apoptosis of thymocytes: role of glucocorticoid receptor-associated Srckinase and caspase-8 activation. Blood,2003,101:585–593
    [21]Cifone, M. G., Migliorati, G., Parroni, R., Marchetti, C., Millimaggi, D., Santoni, A., andRiccardi, C. Dexamethasone-induced thymocyte apoptosis: apoptotic signal involvesthe sequential activation of phosphoinositide-specific phospholipase C, acidicsphingomyelinase, and caspases. Blood,1999, 93:2282–2296
    [22]Payne, D. N., and Adcock, I. M. Molecular mechanisms of corticosteroid actions. Paediatr.Respir. Rev,2001,2:145–150
    [23]Goulding, N. J., and Guyre, P. M. Regulation of in flammation by lipocortin 1. Immunol.Today,1992,13:295–297
    [24]Abraham, S. M., Lawrence, T., Kleiman, A., Warden, P., Medghalchi, M., Tuckermann, J.,Saklatvala, J., and Clark, A. R. Antiinflammatory effects of dexamethasone are partlydependent oninduction of dual specificity phosphatase 1. J.Exp. Med,2006,203:1883–1889
    [25]Scheinman, R. I., Cogswell, P. C., Lofquist, A. K., and Baldwin,A. S., Jr. Role oftranscriptional activation of IΚB alpha in mediation of immunosuppression byglucocorticoids. Science,1995,270:283–286
    [26]Davies, L., Karthikeyan, N., Lynch, J. T., Sial, E. A., Gkourtsa, A.,Demonacos, C., andKrstic-Demonacos, M. Cross talk of signaling pathways in the regulation of theglucocorticoid receptor function. Mol. Endocrinol,2008,22:1331–1344
    [27]Barnes, P. J. Anti-inflammatory actions of glucocorticoids: molecular mechanisms.Clin. Sci , Lond. 1998,94:557–572
    [28]Gottlicher, M., Heck, S., and Herrlich, P. Transcriptional cross-talk, the second mode ofsteroid hormone receptor action.J. Mol. Med,1998,76:480–489
    [29]D’Adamio, F., Zollo, O., Moraca, R., Ayroldi, E., Bruscoli, S.,Bartoli, A., Cannarile, L.,Migliorati, G., and Riccardi, C. A new dexamethasone-induced gene of the leucinezipper family protects T lymphocytes from TCR/CD3-activated cell death.Immunity,1997,7:803–812
    [30]Ayroldi, E., Migliorati, G., Bruscoli, S., Marchetti, C., Zollo, O.,Cannarile, L., D’Adamio, F.,and Riccardi, C. Modulation of T-cell activation by the glucocorticoid-induced leucine zipperfactor via inhibition of nuclear factor-КB. Blood,2001,98:743–753
    [31]Delfino, D. V., Agostini, M., Spinicelli, S., Vito, P., and Riccardi,C. Decrease of Bcl-xL andaugmentation of thymocyte apoptosis in GILZ overexpressing transgenic mice.Blood,2004,104:4134–4141
    [32]Ayroldi, E., Zollo, O., Bastianelli, A., Marchetti, C., Agostini, M.,Di Virgilio, R., andRiccardi, C. GILZ mediates the antiproliferative activity of glucocorticoids by negativeregulation of Ras signaling. J. Clin. Invest,2007,117:1605–1615
    [33]Cannarile, L., Fallarino, F., Agostini, M., Cuzzocrea, S., Mazzon,E., Vacca, C.,Genovese, T., Migliorati, G., Ayroldi, E., and Riccardi, C. Increased GILZ expressionin transgenic mice up-regulates Th-2 lymphokines. Blood,2006,107:1039–1047
    [34]Cannarile, L., Cuzzocrea, S., Santucci, L., Agostini, M., Mazzon,E., Esposito, E., Muia, C.,Coppo, M., Di Paola, R., and Riccardi,C. Glucocorticoid-induced leucine zipper is protective inTh1-mediated models of colitis. Gastroenterology,2009,136:530–541
    [35]Cohen, N., Mouly, E., Hamdi, H., Maillot, M. C., Pallardy, M.,Godot, V., Capel, F.,Balian, A., Naveau, S., Galanaud, P.,Lemoine, F. M., and Emilie, D. GILZexpression in human dendritic cells redirects their maturation and prevents antigen-specific Tlymphocyte response. Blood,2006,107:2037–2044
    [36]Hamdi, H., Godot, V., Maillot, M. C., Prejean, M. V., Cohen, N.,Krzysiek, R., Lemoine, F. M.,Zou, W., and Emilie, D. Induction of antigen-specific regulatory T lymphocytes by humandendritic cells expressing the glucocorticoid-induced leucine zipper.Blood,2007,110:211–219
    [37]Muller, O. G., Parnova, R. G., Centeno, G., Rossier, B. C., Firsov,D., and Horisberger, J. D.Mineralocorticoid effects in the kidney: correlation between alphaENaC, GILZ, and Sgk-1 mRNAexpression and urinary excretion of Na+ and K+. J. Am.Soc. Nephrol,2003,14:1107–1115
    [38]Soundararajan, R., Zhang, T. T., Wang, J., Vandewalle, A., and Pearce, D. A novel rolefor glucocorticoid-induced leucine zipper protein in epithelial sodium channel-mediated sodiumtransport. J. Biol. Chem,2005,280:39970–39981
    [39]Cannarile, L., Zollo, O., D’Adamio, F., Ayroldi, E., Marchetti, C., Tabilio, A., Bruscoli,S., and Riccardi, C. Cloning,chromosomal assignment and tissue distribution ofhuman GILZ, a glucocorticoid hormone-induced gene. Cell Death Differ,2001,8:201–203
    [40]Ash, D. M., Hackney, J. F., Jean-Francois, M., Burton, N. C., and Dobens, L. L. Adominant-negative allele of the Drosophila leucine zipper protein Bunched blocks bunchedfunction during tissue patterning. Mech. Dev,2007,124:559–569
    [41]Di Marco, B.,Massetti, M., Bruscoli, S., Macchiarulo, A., Di Virgilio, R.,Velardi, E., Donato,V., Migliorati,G.,and Riccardi,C. Glucocorticoid-induced leucine zipper (GILZ)/NF-КBinteraction: role of GILZ homo-dimerization and C-terminal domain. Nucleic AcidsRes,2007,35:517–528
    [42]Blake, J. A., Richardson, J. E., Bult, C. J., Kadin, J. A., and Eppig,J. T. MGD: the mousegenome database. Nucleic Acids Res,2003,31:193–195
    [43]Fiol, D. F., and Kultz, D. Rapid hyperosmotic coinduction of two tilapia [Oreochromismossambicus] transcription factors in gill cells. Proc. Natl. Acad. Sci,U. S. A. 2005,102:927–932
    [44]Fiol, D. F., Mak, S. K., and Kultz, D. Specific TSC22 domain transcripts are hypertonicallyinduced and alternatively spliced to protect mouse kidney cells during osmoticstress.FEBS J,2007, 274:109–124
    [45]Soundararajan, R., Wang, J., Melters, D., and Pearce, D. Differential activities ofglucocorticoid-induced leucine zipper protein isoforms. J. Biol. Chem,2007,282:36303–36313
    [46]Asselin-Labat, M. L., David, M., Biola-Vidamment, A., Lecoeuche,D., Zennaro, M. C.,Bertoglio, J., and Pallardy, M. GILZ, a new target for the transcription factor FoxO3, protects Tlymphocytes from interleukin-2 withdrawal-induced apoptosis. Blood,2004,104:215–223
    [47]Wang, J. C., Derynck, M. K., Nonaka, D. F., Khodabakhsh, D. B.,Haqq, C., and Yamamoto, K.R. Chromatin immunoprecipitation [ChIP] scanning identifies primary glucocorticoidreceptor target genes. Proc. Natl. Acad. Sci,U. S. A. 2004,101:15603–15608
    [48]Tynan, S. H., Lundeen, S. G., and Allan, G. F. Celltype-specific bidirectional regulation of the glucocorticoid-induced leucine zipper [GILZ] gene byestrogen. J. Steroid Biochem.Mol. Biol,2004,91:225–239
    [49]Asselin-Labat, M. L., Biola-Vidamment, A., Kerbrat, S., Lombes,M., Bertoglio, J., andPallardy, M. FoxO3 mediates antagonistic effects of glucocorticoids and interleukin-2on glucocorticoid-induced leucine zipper expression. Mol. Endocrinol,2005,19: 1752–1764
    [50]Chen, W., Rogatsky, I., and Garabedian, M. J. MED14 and MED1 differentially regulatetarget-specific gene activation by the glucocorticoid receptor. Mol. Endocrinol,2006,20:560–572
    [51]Van der Laan, S., Sarabdjitsingh, R. A., Van Batenburg, M. F.,Lachize, S. B., Li, H., Dijkmans,T. F., Vreugdenhil, E., de Kloet,E. R., and Meijer, O. C. Chromatin immunoprecipitation scanningidentifies glucocorticoid receptor binding regions in the proximal promoter of a ubiquitouslyexpressed glucocorticoid target gene in brain. J. Neurochem,2008, 106:2515–2523
    [52]Bruscoli, S., Di Virgilio, R., Donato, V., Velardi, E., Baldoni, M.,Marchetti, C., Migliorati, G.,and Riccardi, C. Genomic and non-genomic effects of different glucocorticoids on mousethymocyte apoptosis. Eur. J. Pharmacol,2006,529:63–70
    [53]Eddleston, J., Herschbach, J., Wagelie-Steffen, A. L., Christiansen, S. C., and Zuraw, B. L.The anti-inflammatory effect of glucocorticoids is mediated by glucocorticoid-induced leucinezipper in epithelial cells. J. Allergy Clin. Immunol,2007, 119,115–122
    [54]Kaur,M.,Chivers,J.E.,Giembycz,M.A.,and Newton,R.Long-acting beta2-adrenoceptoragonists synergistically enhance glucocorticoid-dependent transcription in human airwayepithelial and smooth muscle cells. Mol. Pharmacol,2008,73: 203–214
    [55]Gupta, V., Awasthi, N., and Wagner, B. J. Specific activation of theglucocorticoid receptor and modulation of signal transduction pathways in humanlens epithelial cells. Invest. Ophthalmol. Vis. Sci,2007,48:724–1734
    [56]Ingram, W. J., Wicking, C. A., Grimmond, S. M., Forrest, A. R.,and Wainwright, B. J. Novelgenes regulated by Sonic Hedgehog in pluripotent mesenchymal cells.Oncogene,2002,21:8196–8205
    [57]Shi, X., Shi, W., Li, Q., Song, B., Wan, M., Bai, S., and Cao, X. A glucocorticoid-inducedleucine-zipper protein, GILZ,inhibits adipogenesis of mesenchymal cells. EMBORep,2003,4:374–380
    [58]Zhang, W., Yang, N., and Shi, X. M. Regulation of mesenchymal stem cell osteogenicdifferentiation by glucocorticoid-induced leucine zipper (GILZ). J. Biol. Chem,2008,283:4723–4729
    [59]Godot, V., Garcia, G., Capel, F., Arock, M., Durand-Gasselin, I.,Asselin-Labat, M. L.,Emilie, D., and Humbert, M. Dexamethasone and IL-10 stimulateglucocorticoid-induced leucine zipper synthesis by human mast cells. Allergy,2006,61:886–890
    [60]Perez, S. A., Mahaira, L. G., Demirtzoglou, F. J., Sotiropoulou,P. A., Ioannidis, P., Iliopoulou,E. G., Gritzapis, A. D., Sotiriadou, N. N., Baxevanis, C. N., and Papamichail, M. Apotential rolefor hydrocortisone in the positive regulation of IL-15-activated NK-cell proliferation andsurvival. Blood,2005,106:158–166
    [61]Kolbus, A., Blazquez-Domingo, M., Carotta, S., Bakker, W.,Luedemann, S., vonLindern, M., Steinlein, P., and Beug, H. Cooperative signaling between cytokine receptors and theglucocorticoid receptor in the expansion of erythroid progenitors: molecular analysisby expression profiling. Blood,2003,102:3136–3146
    [62]Ellestad, L., Malkiewicz, S., Guthrie, H., Welch, G., and Porter,T. Expression and regulationof glucocorticoid-induced leucine zipper (GILZ) in the developing anterior pituitarygland. J. Mol. Endocrinol,2009,42:171–183
    [63]Berrebi, D., Bruscoli, S., Cohen, N., Foussat, A., Migliorati, G.,Bouchet-Delbos, L., Maillot,M.C.,Portier,A.,Couderc, J.,Galanaud, P., Peuchmaur, M., Riccardi, C., and Emilie, D. Synthesisof glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatoryand immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood,2003,101:729–738
    [64]Gleissner, C. A., Zastrow, A., Klingenberg, R., Kluger, M. S.,Konstandin, M., Celik, S.,Haemmerling, S., Shankar, V., Giese,T., Katus, H. A., and Dengler, T. J. IL-10inhibits endothelium-dependent T-cell costimulation by up-regulation of ILT3/4 in human vascularendothelial cells. Eur. J. Immunol,2007,37:177–192
    [65]Zhao, B., Koon, D., and Bethin, K. E. Identification of transcription factors at the siteof implantation in the later stages of murine pregnancy. Reproduction,2006,131:561–571
    [66]Glynne,R.,Ghandour,G.,Rayner,J.,Mack, D.H., and Goodnow,C.C.B-lymphocyte quiescence,tolerance and activation as viewed by global gene expression profiling onmicroarrays. Immunol. Rev,2000,176:216–246
    [67]Mittelstadt, P. R., and Ashwell, J. D. Inhibition of AP-1 by the glucocorticoid-inducibleprotein GILZ. J. Biol. Chem,2001,276:29603–29610
    [68]Ayroldi, E., Zollo, O., Macchiarulo, A., Di Marco, B., Marchetti,C., and Riccardi, C.Glucocorticoid-induced leucine zipper inhibits the Raf-extracellular signal-regulatedkinase pathway by binding to Raf-1. Mol. Cell. Biol,2002,22:7929–7941
    [69]Robert-Nicoud, M., Flahaut, M., Elalouf, J. M., Nicod, M.,Salinas, M., Bens,M., Doucet, A., Wincker, P., Artiguenave, F.,Horisberger, J. D., Vandewalle, A., Rossier, B. C., andFirsov, D. Transcriptome of a mouse kidney cortical collecting duct cell line: effects ofaldosterone and vasopressin. Proc. Natl. Acad. Sci,U. S. A. 2001,98:2712–2716
    [70]Clark, A. R. Anti-inflammatory functions of glucocorticoid-induced genes. Mol. Cell.Endocrinol,2007,275:79–97
    [71]Rook, G. A. Glucocorticoids and immune function.Baillieres Best Pract. Res. Clin.Endocrinol. Metab,1999,13:567–581
    [72]Ashwell, J. D., Lu, F. W., and Vacchio, M. S. Glucocorticoids in T cell development andfunction. Annu. Rev. Immunol,2000,18:309–345
    [73]Hu, X., Li, W. P., Meng, C., and Ivashkiv, L. B. Inhibition of IFN-γsignaling byglucocorticoids. J. Immunol,2003,170:4833–4839
    [74]Van den Heuvel, M. M., van Beek, N. M., Broug-Holub, E.,Postmus, P. E.,Hoefsmit, E. C., Beelen, R. H., and Kraal, G. Glucocorticoids modulate the development ofdendritic cells from blood precursors. Clin. Exp. Immunol,1999,115:577–583
    [75]Hamdi,H.,Bigorgne,A.,Naveau,S.,Balian,A.,Bouchet-Delbos,L.,Cassard-Doulcier,A.M.,Maillot, M.C., Durand-Gasselin, I., Prevot, S., Delaveaucoupet, J., Emilie, D.,and Perlemuter,G.Glucocorticoid-induced leucine zipper: A key protein in the sensitization of monocytes tolipopolysaccharide in alcoholic hepatitis. Hepatology,2007,46:1986–1992
    [76]Bai, X. J., Li, B., Wang, H. P., Yang, Z. H., and Li, S. Q. Primary investigation of therelationship between glucocorticoid induced leucine zipper and in flammatory reaction. ZhongguoWei Zhong Bing Ji Jiu Yi Xue,2007,19:7–10
    [77]Berki, T., Palinkas, L., Boldizsar, F., and Nemeth, P.]Glucocorticoid (GC) sensitivity andGC receptor expression differ in thymocyte subpopulations. Int. Immunol,2002,14:463–469
    [78]Lepine, S., Sulpice, J. C., and Giraud, F. Signaling pathways involved inglucocorticoid-induced apoptosis of thymocytes. Crit. Rev. Immunol,2005,25:263–288
    [79]Ma, A., Pena, J. C., Chang, B., Margosian, E., Davidson, L., Alt,F. W., and Thompson, C. B.Bclx regulates the survival of double-positive thymocytes. Proc. Natl. Acad. Sci, U. S. A.1995,92:4763–4767
    [80]Delfino, D. V., Agostini, M., Spinicelli, S., Vacca, C., and Riccardi, C.Inhibited cell death, NF-КB activity and increased IL-10 in TCR-triggered thymocytes oftransgenic mice overexpressing the glucocorticoid-induced protein GILZ.Int.Immunopharmacol,2006,6:1126–1134
    [81]Elenkov, I. J. Glucocorticoids and the Th1/Th2 balance.Ann. N. Y. Acad.Sci,2004,1024:138–146
    [82]Beresford, J. N., Bennett, J. H., Devlin, C., Leboy, P. S., and Owen, M. E. Evidence for aninverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrowstromal cell cultures. J. Cell Sci,1992,102:341–351
    [83]Wiper-Bergeron, N., Salem, H. A., Tomlinson, J. J., Wu, D., and Hache, R. J.Glucocorticoid-stimulated preadipocyte differentiation is mediated through acetylation ofC/EBPβby GCN5. Proc. Natl. Acad. Sci, U. S. A. 2007,104:2703–2708
    [84]Shi, X., Hamrick, M., and Isales, C. M. Energy balance,myostatin, and GILZ: factorsregulating adipocyte differentiation in belly and bone. PPAR Res, 2007,2007:92501
    [85]Von Lindern, M., Zauner, W., Mellitzer, G., Steinlein, P., Fritsch,G., Huber, K.,Lowenberg, B., and Beug, H. The glucocorticoid receptor cooperates with theerythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors invitro. Blood,1999,94:550–559
    [86]Yang, N., Zhang, W., and Shi, X. M. Glucocorticoid-induced leucine zipper[GILZ] mediates glucocorticoid action and inhibits in flammatory cytokine-induced COX-2expression.J. Cell. Biochem,2008,103:1760–1771

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700