用户名: 密码: 验证码:
靶向Bcl-w基因miR-195对BEL-7402/5-Fu细胞药物敏感性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨靶向Bcl-w基因miR-195对BEL-7402/5-FU细胞5-氟尿嘧啶敏感性的影响及其作用机制。
     方法:MicroRNA(miRNA)芯片分析BEL-7402和BEL-7402/5-FU细胞miRNA的表达差异。靶基因预测软件分析与Bcl-w基因相互作用的miRNA,通过以上两种方法结果的比对,筛选出miR-195为目的miRNA。将miR-195s质粒载体和Anti- miR-195(miR-195a)分别瞬时转染至BEL-7402和BEL-7402/5-FU细胞;荧光素酶报告基因实验验证miR-195调控的靶基因;倒置荧光显微镜和实时定量RT-PCR检测转染效率;MTT、流式细胞术检测细胞药物敏感性;实时定量RT-PCR检测mRNA水平,Western blot检测蛋白表达水平。
     结果:基因芯片检测结果表明BEL-7402/5-FU比BEL-7402上调两倍的miRNA有:miR-192和miR-194;下调两倍的miRNA有:miR-195,miR-18a, miR-429等44个;利用生物信息学筛选出miR-195作为研究对象;倒置荧光显微镜和实时定量RT-PCR检测,结果表明在miR-195s转染的BEL-7402/5-FU细胞中miR-195表达水平显著升高,miR-195a转染的BEL-7402细胞中miR-195表达水平显著降低;MTT检测,结果显示miR-195s转染组的细胞生长抑制率较miRNA阴性对照组和未转染对照组明显增高;流式细胞仪检测,miR-195s转染组凋亡率较miRNA阴性对照组和未转染组增加;实时定量RT-PCR检测表明,miR-195s转染组较miRNA阴性对照组和未转染组Bcl-w的mRNA表达水平降低;Western blot检测,Bax蛋白表达水平升高,Bcl-w、Bcl-XL、Bcl-2蛋白表达水平降低。
     结论:1、miR-195能够增加BEL-7402及BEL-7402/5-FU细胞对5-FU的药物敏感性,促进细胞凋亡。
     2、miR-195能够上调Bax蛋白的表达,下调Bcl-w、Bcl-XL、Bcl-2蛋白表达。
     3、miR-195可能通过靶向调控Bcl-w基因增加肝癌细胞对5-FU的药物敏感性。
Objective: This study is to investigate the effects of miR-195 and its mechanism on 5-fluracil sensitivity in BEL-7402/5-FU by Targeting BCL-w.
     Method: MicroRNA microarray analyzed a wide diversity in miRNA expression between BEL-7402 and BEL-7402/5-FU cells. miR-195s or Anti- miR-195(miR-195a), was transient transfected into BEL-7402 and BEL-7402/5-FU cells, respectively. Luciferase assays to identify putative miR-195 targets. Transfection efficiency was tested by fluorescence inverted microscope and Quantitative Real-Time Reverse-Transcription PCR. Cell viability of each group was measured by MTT assay. Cell apoptotic percentage was detected by flow cytometry. Western blot was used to detect the protein expression.
     Result: MicroRNA microarray showed that 2 miRNAs were significant (>2- fold) up-regulation (eg.miR-192 and miR-194) and many miRNAs were down-regulation (<0.5-fold) (eg. miR-195,miR-18a, miR-429, et al) in the BEL-7402/5-FU compared with BEL-7402 cells. MTT results showed that miR-195s transfectants had a higher cell inhibition rate than untreated cells or negative. MiR-195 promoted the sensitivity of BEL-7402/5-FU and BEL-7402 to 5-FU. Flow cytometry results demonstrated that miR-195s transfected cells had a higher apoptosis rate than untreated cells or negative. Moreover, miR-195s transfected cells had significant move value than untreated cells or negative by 5-FU (1 and 10μmol/ml) for 24 hours. Western bolt results showed that the expression level of Bax in miR-195s transfected cells were obviously increased, while the expression level of Bcl-w、Bcl-XL、Bcl-2 were obviously decreased compared with untreated cells or negative.
     Conclusion: 1 miR-195s increased cell spontaneous apoptosis and sensitized BEL-7402/5-FU cells to 5-FU; 2 miR-195s down-regulate Bcl-w、Bcl-XL、Bcl-2 expressions and up-regulate Bax expressions in BEL-7402/5-FU cells; 3 miR-195s could play a role in the development of acquiring resistance in hepatocellular carcinoma cells by modulating apoptosis via targeting Bcl-w.
引文
[1] Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science, 2001,294(5543):853–858.
    [2] Zhu AX. Systemic therapy of advanced hepatocelluar carcinoma:how hopeful should we do[J]. oncologist, 2006,11(7):790-800.
    [3] Lauren Seiple, Pawel Jaruga, Miral Dizdaroglu, et al. Linking uracil base excision repair and 5-fluorouracil toxicity in yeast[J]. Nucleic Acids Research, 2006,34:140-151.
    [4] Stein W D, Bates S E, Fojo T. Intractable Cancers: The Many Faces of Multidrug Resistance and the Many Targets it Presents for Therapeutic Attack[J]. Current Drug Targets, 2004,5(4):333-346(14).
    [5] Stavrovskaya AA. Cellular mechanisms of multidrug resistance of tumorcells[J]. Biochemistry Mosc, 2000,65(1):95-106.
    [6] Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival[J]. Science, 1998,281(5381):1322-1326.
    [7] Vander Heiden MG, Chandel NS, Williamson EK, et al. Bcl-XL regulates the membrane potential and volume homeostasis of mitochondria[J]. Cell, 1997,91(5):627-637.
    [8] Yu L, Wang Z. Difference in expression of Bcl-2 and Bcl-xl genes in cisplatin-sensitive and cisplatin-resistant human in ovarian cancer cell lines[J]. J Huazhong Univ Sci Technolog Med Sci, 2004,24(2):151-153.
    [9] Yang X, Zheng F, Xing H, et al. Resistance to chemotherapy-induced apoptosis via decreased caspase-3 activity and overexpression of antiapoptotic proteins in ovarian cancer[J]. J Cancer Res Clin Oncol, 2004,130(7):423-428.
    [10] Minn AJ, Rudin CM, Boise LH, et al. Expression of bcl-XL can confer a multidrug resistance phenotype[J]. Blood, 1995,86(5):1903-1910.
    [11] Zhongmin Tian, Andrew S. Greene, Jennifer L. Pietrusz, et al. MicroRNA–target pairs in the rat kidney identified by microRNA microarray, proteomic,and bioinformatic analysis[J]. Genome Res, 2008,18:404-411.
    [12] Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located atfragile sites and genomic regions involved in cancers[J]. Proc Natl Acad Sci USA, 2004,101(9):2999-3004.
    [13] Calin GA, Croce CM. MicroRNA signatures in human cancers[J]. Nat Rev Cancer, 2006,6(11):857-866.
    [14] Castoldi M, Schmidt S, Benes V, et al. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids[J]. RNA, 2006,12(5):913-920.
    [15]Shimoda R, Nagashima M. Increase formation of oxidative DNA damage, 8-hydroxydeoxyguanosine, in human livers with chronic hepatitis[J]. Cancer Res, 1994,54(12):3171-3172.
    [16].Galli A.Oxidative stress stimulates proliferation and invasiveness of hepatic stellate cells via a MMP2-mediated mechanism[J]. Hepatology, 2005,41(3):1074-1084.
    [17] Meng F, Henson R, Wehbe OJanek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer[J]. Gastroenterology, 2007,133(2):647-658.
    [18]Amelia Cimmino, George Adrian Calin, Muller Fabbri, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2[J]. PNAS, 2005,102(39):13944–13949.
    [19]Tyler E. Miller, Kalpana Ghoshal, Bhuvaneswari Ramaswamy, et al. MicroRNA-221/222 Confers Tamoxifen Resistance in Breast Cancer by Targeting p27 kip1[J]. Journal of Biological Chemistry, 2008,283(44):29897–29903.
    [20] Meng F, Henson R, Lang M, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma celllines[J]. Gastroenterology, 2006,130(7):2113-2129.
    [21] Rossi L, Bonmassar E, Faraoni I. Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro[J]. Pharmacol Res, 2007,56(3):248-253.
    [22]Lin Xia, Dexin Zhang, Rui Du, et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells[J]. Int. J. Cancer, 2008,123:372–379.
    [23] Blower PE, Verducci JS, Lin S, et al. MicroRNA expression profiles for the NCI-60 cancer cell panel[J]. Mol Cancer Ther, 2007,6(5):1483-1491.
    [24] Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, et al. MicroRNA-101,down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity[J]. Cancer Res,2009,69:1135-1142.
    [25] Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, et al. MicroRNA signatures in human ovarian cancer[J]. Cancer Res, 2007,67:8699-8707.
    [26] Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C, et al. Aberrantexpression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth[J]. PLoS ONE, 2008,3:e2557.
    [27] Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues[J]. Oncogene, 2006,25:2537-2545.
    [28] Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target prediction[J]. Nat Genet, 2005,37(5):495-500.
    [29] Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets[J]. Cell, 2003,115(5):787-798.
    [30] Yu-xiu LI, Zhi-bin LIN, Huan-ran TAN. Wild type p53 increased hemosensitivity of drug - resistant human hepatocellular carcinoma Be17402/5 - FU cells[J]. Acta Pharmacol Sin, 2004,25 (1):76-82.
    [31] Wu W, Sun M, Zou GM, et al. MicroRNA and cancer: current status and prospective[J]. Int Jcancer, 2007,120(5):953-960.
    [32] Vasudevan S, Tong Y, Steitz JA. Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation[J]. Since, 2007,318(5858):1931-1934.
    [33] Xu T, Zhu Y, Xiong Y, et al. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells[J]. Hepatology, 2009,50(1):113-121.
    [34] Melissa Crawford, Kara Batte, Lianbo Yu, et al. MicroRNA 133B targets pro-survival molecules MCL-1 and BCL2L2 in lung cancer[J]. Biochemical and Biophysical Research Communications, 2009,07:143.
    [35] Wang Y, Lee AT, et al. Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target[J]. Biol Chem, 2008,283:13205-13215.
    [36] L. Gibson, S.P. Holmgreen, D.C. Huang, O. Bernard, N.G. Copeland, N.A. Jenkins, G.R. Sutherland, E. Baker, J.M. Adams, S. Cory, bcl-w, a novel member of the bcl-2 family, promotes cell survival[J]. Oncogene, 1996,13:665–675.
    [37] L.A. O’Reilly, C. Print, G. Hausmann, et al. Tissue expression and subcellular localization of the pro-survival molecule Bcl-w[J]. Cell Death Differ, 2001,8:486–494.
    [38] N.A. Shackel, P.H. McGuinness, C.A. Abbott, et al. Insights into the pathobiology of hepatitis C virus-associated cirrhosis: analysis of intrahepatic differential gene expression[J]. Am. J. Pathol, 2002,160:641–654.
    [39] Gil, J., Yamamoto, H., Zapata, J.M., Reed, J.C. & Perucho, M. Impairment of the proapoptotic activity of Bax by missense mutations found in gastrointestinal cancers[J]. Cancer Res, 1999,59:2034-2037.
    [40] Zhang, L., Yu, J., Park, B.H., Kinzler, K.W. & Vogelstein, B. Role of BAX in the apoptotic response to anticancer agents[J]. Science, 2000,290:989-992.
    [41] Guo, B., Cao, S., Toth, K., Azrak, R.G & Rustum, Y.M. Overexpression of Bax enhances antitumor activity of chemotherapeutic agents in human head and neck squamous cell carcinoma[J]. Clin Cancer Res, 2000,6:718-724.
    [42] Krajewski, S., et al. Reduced expression of proapoptotic gene BAX is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma[J]. Cancer Res, 1995,55:4471-4478.
    [43] Wang, C.Y., Mayo, M.W., Komeluk, R.G., Goeddel, D.V. & Baldwin, A.S., Jr. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation[J]. Science, 1998,281:1680-1683.
    [44] Lee, H.H., Dadgostar, H., Cheng, Q., Shu, J. & Cheng, G.. NF-kappaB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes[J]. Proc Natl Acad Sci USA, 1999,96:9136-9141.
    [45] Zong, W.X., Edelstein, L.C., Chen, C., Bash, J. & Gelinas, C. The prosurvival Bcl-2 hoolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNF alpha-induced apoptosis[J].Genes Dev, 1999,13:382-387.
    [46] Oda, E., et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis[J]. Science, 2000,288:1053-1058.
    [47] Adams JM, Cory S. The Bcl-2 protein family: Arbiters of cell survival[J]. Science, 1998,281(5381):1322-1326.
    [48] Tahir SK, Yang X, Anderson MG, et al. Influence of Bcl-2 family members on the cellular response of small-cell lung cancer cell lines to ABT-737[J]. Cancer Res, 2007,67(3):1176-1183.
    [49] Yu L, Wang Z. Difference in expression of Bcl-2 and Bcl-XL genes in cisplatin-sensitive and cisplatin-resistant human in ovarian cancer cell lines[J]. J Huazhong Univ Sci Technolog Med Sci, 2004,24(2):151-153.
    [50] Adams JM, Cory S. The Bcl-2 protein family: Arbiters of cell survival[J]. Science, 1998,281(5381):1322-1326.
    [51] Ikuta K, Takemura K, Kihara M, et al. Defects in apoptotic signal transduction in cisplatin-resistant non-small cell lung cancer cells[J]. Oncol Rep, 2005,13(6):1229-1234.
    [52] Cheng EH, Levine B, Boise LH, et al. Bax-independent inhibition of apoptosis by Bcl-xL[J]. Nature, 1996,379(6565):554-556.
    [1] Hirotaka Osada, Takashi Takahashi. MicroRNAs in biological processes and carcinogenesis[J]. Carcinogenesis, 2007,28(1):2-12.
    [2] Zhongmin Tian, Andrew S. Greene, Jennifer L. Pietrusz, et al. MicroRNA–target pairs in the rat kidney identified by microRNA microarray, proteomic,and bioinformatic analysis[J]. Genome Res, 2008,18:404-411.
    [3] Guo-Qing Tang, E. Stuart Maxwell. Xenopus microRNA genes are predominantly located within introns and are differentially expressed in adult frog tissues via post-transcriptional regulation[J]. Genome Res, 2008,18:104-112.
    [4] R.C. Lee, R.L.Feinbaum, V. Ambros. The C1elegans heterochronic gene lin - 4 encodes small RNA s with antisense comp lementarity to lin -4[J]. Cell, 1993,75:843 -854.
    [5] Reinhart B J, Slack F J, Basson M, et al. The 21 nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000,403 (6772):901-906.
    [6] Aaron J. Schetter, Suet Yi Leung, Jane J. Sohn, et al. MicroRNA Expression Profiles Associated with Prognosis and Therapeutic Outcome in Colon Adenocarcinoma JAMA[J]. 2008,299(4):425-439.
    [7] Berezikov E, Curyev V, van de Belt J, et al. Phylogenetic shadowing and computational identification of human microRNA genes[J]. Cell, 2005,120(1):21-24.
    [8] Pasi A Ja¨nne, Cheng Li, Xiaojun Zhao, et al. High-resolution single-nucleotide polymorphism array and clustering analysis of loss of heterozygosity in human lung cancer cell lines[J]. Oncogene, 2004,23:2716-2726.
    [9] Lee Y, Ahn C, Han JJ, et al. The nuclear RNase III Drosha initiates microRNA processing[J]. Nature, 2003,425(6956):415-9.
    [10] Yi R, Qin Y, Macara IG, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs[J]. Genes Dev, 2003,17(24):3011-6.
    [11] Hutvagner G, McLachlan J, Pasquinelli AE, et al. A cellular function for the RNA-interference enzyme Dicer in the matu- ration of the let-7 small temporal RNA[J]. Science, 2001,293(5531):834-8.
    [12] Hutvagner G, Zamore PD. A microRNA in a multiple-turn- over RNAi enzyme complex[J]. Science, 2002,297(5589):2056-60.
    [13] Hornstein E, Mansfield JH, Yekta S, et al. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development[J]. Nature, 2005,438(7068):671-4.
    [14] Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2- like target genes[J]. Plant Cell, 2003,15(11):2730-41.
    [15] Sen GL, Blau HM. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies[J]. Nat Cell Biol, 2005,7(6):633-6.
    [16] Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation[J]. Science, 2004,303(5654):83-6.
    [17] Fazi F, Rosa A, Fatica A, et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPa regulates human granulopoiesis[J]. Cell, 2005,123(5):819-31.
    [18] Hayashita Y, Osada H, Tatematsu Y, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation[J]. Cancer Res, 2005,65(21):9628-32.
    [19] Cimm ino A, Calin GA, Fabbri M, et al. miR215 and miR216 in2 duce apoptosis by targeting BCL2[J]. Proc Natl Acad Sci USA, 2005,102 (37):139442-13949.
    [20] Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005,120(1):15-20
    [21] Li W, Sadler LA. Low nucleotide diversity in man[J]. Genetics, 1991,129:513 - 523.
    [22] Duan R, Pak C, Jin P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA[J]. Hum Mol Genet, 2007,16(9):1124-1131.
    [23] Iwai N, Naraba H. Polymorphisms in human pre-miRNAs[J]. BiochemmBiophys Res Commun, 2005,331 (4):1439-1444.
    [24] Saunders M A, Liang H, Li W H. Human polymorphism atmmicroRNAs and microRNA target sites[J]. Proc Natl Acad Sci USA, 2007,104 (9):3300-3305.
    [25] Prasun J Mishra. MicroRNA polymorphisms:a giant leap towards personalized medicine[J]. Personalized Medicine, 2009,6(2):119-125.
    [26] Mishra PJ, Mishra PJ, Banerjee D, Bertino JR. MiRSNPs or miR-polymorphisma, new players in microRNA mediated regulation of the cell: microRNA pharmacogenomics[J]. Cell Cycle7, 2008,853-858.
    [27] Clop A, Marcq F, Takeda H, et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep[J]. Nat Genet, 2006, 8(7):813-818.
    [28] Sethupathy P, Borel C, Gagnebin M, et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3’untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes [J]. Am J Hum Genet, 2007,81(2):405-413.
    [29] Yu Z, Li Z, Jolicoeur N, et al. Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers[J]. Nucleic Acids Res, 2007,35(13):4535-4541.
    [30] Adams B D, Furneaux H, White B A. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines[J]. Mol Endocrinol, 2007,21(5):1132-1147.
    [31] Raveche ES, Salerno E, Scaglione BJ, et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice[J]. Blood, 2007,109:5079-5086.
    [32] Hu Z, Chen J, Tian T, et al. Genetic variants of miRNA sequences and non-small celllung cancer survival[J]. Clin Invest, 2008,118:2600-2608.
    [33] Hu Z, Liang J, Wang Z, et al. Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women[J]. Hum.Mutat, 2008,30(1):79-84.
    [34] He H, Jazdzewski, Li W, et al. The role of microRNA genes in papillary thyroid carcinoma[J]. Proc.Natl Acad.Sci.USA, 2005,102:19075-19080.
    [35] Yang H, Dinney CP, Ye Y, Zhu Y, Grossman HB, Wu X. Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer[J]. Cancer Res, 2008,68:2530-2537.
    [36] Jazdzewski K, Murray EL, Franssila K, et al. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma[J]. Natl Acad. Sci, USA, 2008,105:7269-7274.
    [37] Debora Landi, Federica Gemignani, Alessio Naccarati, et al. Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer[J]. Carcinogenesis, 2008,29(3):579-584.
    [38] Lena J. Chin, Elena Ratner, Shuguang Leng, et al. A SNP in a let-7 microRNA Complementary Site in the KRAS 3’Untranslated Region Increases Non–Small Cell Lung Cancer Risk[J]. Cancer Res, 2008,68(20):8535-40.
    [39] Guo H, Wang K, Xiong G,et al. A functional varient in microRNA-146a is associated with risk of esophageal squamous cell carcinoma in Chinese Han[J]. Familial Cancer, 2010,10(1007):10689-010-9370-5.
    [40] Sun Q, Gu H, Zeng Y, et al. Hsa-mir-27a genetic variant contributes to gastric cancer susceptibility through affecting miR-27a and target gene expression[J]. Cancer science,2010,10(1111):1349-7006
    [41] Prasun JM, R ita H, Pravin JM, et al. A miR224 m icroRNA binding site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance [J]. Proc Natl Acad Sci USA, 2007,104 (33):13513-13518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700