用户名: 密码: 验证码:
华癸中生根瘤菌内源质粒间的相互作用及其对共生固氮的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从华中农业大学水稻田采集的紫云英根瘤中分离到62株华癸中生根瘤菌,经培养观察、显微观察和回接实验确认其中57株为典型的华癸中生根瘤菌。供试菌株的最早现瘤时间为8d,最迟超过30d,多数菌株为10-22d。对其中的44株质粒的检测结果表明:13株含3个质粒、21株含2个质粒、7株含1个质粒、3株不含质粒,大小范围为150-428kb。
     采用Tn5-mob-sacB转座子对含有的3个大质粒的HN3015菌株进行定向标记,获得各供试质粒的标记菌株。利用sacB基因对蔗糖的敏感性进行标记质粒消除实验,获得HN3015的质粒消除或缺失突变株,其中HN3015-1为第一大质粒pMhHN3015c消除突变株,HN3015-2为为第二大质粒pMhHN3015b消除突变株,HN3015-3为第三大质粒pMhHN3015a消除突变株,HN3015-6为pMhHN3015a部分缺失突变株。对HN3015与突变株的培养特征、生长速度和共生结瘤能力进行的研究结果表明:质粒消除或缺失突变株的培养特征均与出发菌株一致,第一大质粒pMhHN3015c与固氮有关,第二大质粒pMhHN3015b的消除则失去结瘤能力,第三大质粒pMhHN3015a的消除或缺失不但未影响结瘤与固氮能力,其消除反而可增强突变株HN3015-3的竞争结瘤能力和共生效率。抗酸性实验结果表明3个内源质粒均对HN3015的抗酸性有正控制作用,并对其抗碱性起负控制作用。生长实验结果表明:3个内源质粒亦对生长速率有负控制作用。
     将pMhHN3015c::Tn5-mob-sacB从供体菌HN3015T18导入受体菌HN308SR后,受体菌的第一大质粒pMhHN308c被消除,表明pMhHN3015c与pMhHN308c不相容,应归于同一不相容群。在对转移接合子HN308SRN18进行质粒消除时,发现其内源小质粒pMhHN308a与pMhHN3015c::Tn5-mob-sacB同时消除,获得了仅含pMhHN308b的质粒消除突变株HN308SRN18D。盆栽结瘤试验结果表明:转移接合子HN308SRN18只能在紫云英上形成无效根瘤,证明其内源大质粒pMhHN308c与固氮有关,且不能为导入大质粒pMhHN3015c取代。质粒消除突变株HN308SRN18D依然保持结瘤能力的结果表明pMhHN308b与结瘤有关。
     将HN3015的另一标记小质粒pMhHN3015a::Tn5-mob-sacB导入HN308SR时,发现受体菌的第二大质粒被消除,显然pMhHN3015a与pMhHN308b不相容,应属于同一不相容群,并与HN308SR的pMhHN308a和pMhHN308c属于不同的不相容群。但转移接合子HN308SRN29的质粒消除实验未获得质粒消除突变株。pMhHN3015a和pMhHN308a的大小相近,仅凭凝胶电泳位置难于区分。盆栽结瘤试验结果表明:pMhHN308a与HN308的结瘤有关,而含有质粒pMhHN3015a、pMhHN308a和pMhHN308c的转移接合子HN308SRN29却失去了结瘤能力。本结果表明:pMhHN308a可能因与pMhHN3015a发生了重组而丢失了结瘤基因,其Tn5亦可能因转座至染色体而不能获得质粒消除突变株。
     用三亲本杂交法将供体菌HN3015的2个标记质粒pMhHN3015a和pMhHN3015c分别导入受体菌7653R-1SR时,发现这2个质粒均可分别与7653R-1SR中的pMh7653Ra共存,它们应属于不同的不相容群。但转移接合子7653R-1SRN29的质粒消除突变株7653R-1SRN29D-B在消除外源质粒的同时却产生了一个新质粒p76H4。但在另一质粒消除突变株7653R-1SRN29D-A中却未发现这个新质粒。盆栽结瘤试验结果表明:7653R-1SRN18只能形成少数无效根瘤,其瘤数与7653R-1SR相近。前面已证实pMhHN3015c与固氮能力有关,但它的导入却未能恢复受体菌7653R-1SR的固氮能力。7653R-1SRN18的质粒消除突变株依然与7653R-1SR-样,只能形成少量无效根瘤。7653R-1SRN29在紫云英根上亦形成无效根瘤,但瘤数接近7653R。前面已证实pMhHN3015a能抑制HN3015的共生效应,但本研究将它导入7653R-1SR时却反而提高了转移接合子的结瘤能力。7653R-1SRN29的质粒消除突变株7653R-1SRN29D-A也只能形成少量无效根瘤,但另一质粒消除突变株7653R-1SRN29D-B却完全丧失了结瘤能力。
     将7653R的共生质粒pMh7653Rb导入受体菌HN308SR时,发现受体菌的两个稳定内源质粒pMhHN308b和pMhHN308c随着外源质粒pMh7653Rb的导入而同时被消除。盆栽结瘤试验结果表明:pMhHN308b与结瘤相关,由于pMh7653Rb的导入能维持HN308SRN14的结瘤能力,其瘤数也超过HN308SR,但不能替代pMhHN308b和pMhHN308c。质粒消除突变株HN308SRN14D只形成少量无效根瘤,确认pMhHN308a与HN308的结瘤能力有关。
     用三亲杂交法将7653R的共生质粒pMh7653Rb导入HN3015SR时发现所获转移接合子HN3015SRN14的第二大质粒为pMhHN7653Rb,受体菌HN3015SR的第二大质粒则由于外源质粒的不相容性而被消除。HN3015SRN14的质粒消除实验获得了消除第二大质粒的HN3015质粒消除突变株(仅含pMhHN3015a和pMhHN3015c)。盆栽结瘤试验结果表明:转移接合子HN3015SRN14只能形成无效根瘤,其标记质粒消除突变株HN3015SRN14D则完全失去结瘤能力。
     采用通用引物RC1和RC3对6个供试转移接合子及其质粒消除突变株进行repC基因的PCR扩增结果表明:除质粒消除突变株7653R-1SRN18D和7653R-1SRN29D未能扩出repC基因外,其它供试菌株均扩出了750bp左右的repC序列。对所有供试10个菌株的repC序列测定与同源性比较结果表明:供试华癸中生根瘤菌株的repC序列高度相似(99%),但与其它根瘤菌的repC基因有明显差异。
Sixty two strains of M huakuii were isolated from nodules of Astragalus sinicus collected from rice-growing field of Huazhong Agriculture University. 57 typical strains of M huakuii were identified by cultural characteristics, microscopic observation and plant nodulation tests. The nodule appearence times of strains tested were different from 8d to 30d and for most strains varied from 10d to 22d. 44 strains were chosen to detect indigenous plasmid profile and the results showed that 13 strains harbored 3 plasmids, 21 strains harbored 2 plasmids, 7 strains only harbored 1 plasmids, 3 strains harbored no plasmid. The size of indigenous plasmids tested was from 150kb to 428kb.
     M huakuii HN3015 containing three mega-plasmids were labeled by Tn5-mob-sacB insertion and plasmid labeled mutants were obtained. Plasmid curing experiment was carried out by using the sacB positive selection method and plasmid cured or deleted derivatives were obtained. Same cultural characteristics were identified among HN3015 and its derivatives. The mutant HN3015-1 cured with its largest plasmid pMhHN3015c formed only white small nodules and lost nitrogen fixation ability in plant nodulation tests. The mutant HN3015-2 cured with its second largest plasmid pMhHN3015b lost nodulation ability. Only the mutant HN3015-3 or HN3015-6 cured or deleted with its smallest plasmid pMhHN3015a, could form pink effective nodules. Furthermore, curing of pMhHN3015a could enhance competitive nodulation ability and symbiotic efficiency of HN3015-3. The results from acidity and alkali tolerance assays indicated that three indigenous plasmids of HN3015 played positive control effect on its acidity tolerance, but played negative control effect on alkali tolerance. Surprisingly, all indigenous plasmids showed also negative control effect on its growth rate of HN3015.
     When plasmid pMhHN3015c labeled by Tn5-mob-sacB was transferred from HN3015T18 into HN308SR by tri-parental mating, the first largest plasmid of HN308SR was cured. The results implied that plasmids of pMhHN3015c and pMhHN308c were incompatible and might be ascribed to the same incompatible group. However, a new co-elimination phenomenon of pMhHN3015c:: Tn5-mob-sacB and pMhHN308a was detected when the transconjugant HN308N18 (harboring pMhHN3015c::Tn5-mob-sacB, pMhHN308b and pMhHN308a) was used to do plasmid curing tests. The plasmid cured derivative of HN308 harboring only pMhHN308b was obtained. Results of pot plant nodulation tests showed that both of HN308SRN18 and HN308SRN18D could form only white small nodules. Our results indicated that the introduction of pMhHN3015c could not replace the effect of pMhHN308c and failed to restore the nitrogen fixation ability of HN308SRN18. The results also indicated that pMhHN308c was relevant to nitrogen fixation ability and pMhHN308b relevant to nodulation ability.
     The second largest plasmid pMhHN308b of HN308SR was eliminated when pMhHN3015a::Tn5-mob-sacB was introduced into HN308SR. Results demonstrated that both of pMhHN3015a and pMhHN308b should be belonged to the same incompatible group and pMhHN3015a, pMhHN308a and pMhHN308c ascribed to the different incompatible groups. But plasmid cured derivatives of transconjugant HN308SRN29 failed to be obtained on TY plate containing 7% sucrose. Since the sizes of pMhHN3015a and pMhHN308a were almost the same and their positions on agarose gel were difficult to distinguished, so that two plasmids might be recombined. Results of pot plant nodulation tests showed that pMhHN308a was relevant to nodulation ability and transconjugant HN308SRN29 harboring pMhHN3015a, pMhHN308a and pMhHN308c lost nodulation ability. These results also implied that pMhHN3015a and pMhHN308a might be recombined and transposon Tn5 transferred into the chromosome which resulted in the lose of nodulation ability.
     When the two labeled plasmid pMhHN3015a::Tn5-mob-sacB and pMhHN3015c:: Tn5-mob-sacB were respectively transferred into 7653R-1SR harboring pMh7653Ra by tri-parental mating, the result showed that the two plasmids could respectively coexist with pMh7653Ra. Certainly, they were belonged to different incompatible groups. Results from plasmid curing test of 7653R-1SRN29 showed that one plasmid cured derivative 7653R-1SRN29D-B lost its plasmid pMhHN3015a and a new plasmid p76H4 appeared. But p76H4 could not be observed in another plasmid cured derivative 7653R-1SRN29D-A. Results from plant pot nodulation tests showed that the introduction of pMhHN3015c::Tn5-mob-sacB in transconjugant 7653R-1SRN18 failed to restore nitrogen fixation ability. Similar to 7653R-1SR, it could only form a few small white. Although Transconjugant 7653R-1SRN29 harboring pMhHN3015a::Tn5-mob-sacB and pMh7653Ra could still form null nodules, but its nodule number was more than that of wild strain 7653RSR. It was demonstrated that pMhHN3015a could inhibit symbiotic efficiency of HN3015, but pMhHN3015a could enhance the nodulation ability of 7653R-1SRN29. Plasmid cured mutant 7653R-1SRN29D-A could only form null nodules. But mutant 7653R-1SRN29D-B with a novel plasmid p76H4 and cured of pMhHN3015a::Tn5-mob-sacB lost its nodulation ability.
     When symbiotic plasmid pMh7653Rb labeled by Tn5-mob-sacB was transferred from 7653RT14 into HN308SR by tri-parental mating method, two stable indigenous plasmids of pMhHN308c and pMhHN308b of HN308SR was co-eliminated. Results of plant pot nodulation tests showed that pMh7653Rb could only maintain the nodulation ability in transconjugant HN308SRN14 and its nodule number was more than that of wild strain HN308SR, but failed to replace nitrogen fixation effect of pMhHN308b and pMhHN308c. Plasmid cured mutant HN308SRN14D harboring only pMhHN308a could also form nodules that demonstrated pMhHN308a was relevant to nodulation ability.
     When symbiotic plasmid pMh7653Rb::Tn5-mob-sacB was also transferred into HN3015SR by tri-parental mating method, its second largest pMhHN3015b was eliminated. The mutant HN3015SRN14D harboring pMhHN3015a and pMhHN3015c was obtained by plasmid curing tests from transconjugant HN3015SRN14. Results of plant pot nodulation tests showed that HN3015SRN14 formed only null nodule and HN3015SRN14D lost the nodulation ability.
     Primers of RC1 and RC3 were used to amplify the repC-like sequences from the above six trans-conjugants and their plasmid cured mutants, repC-like sequences were obtained from strains tested except of 7653R-1SRN18D and 7653R-1SRN29D. The sizes of the PCR products were about 750 bp. The repC sequences of ten strains tested showed 99% sequence similarity, but were obviously different from that of other rhizobia strains.
引文
1.陈雯莉.洪湖灰潮土中快生型大豆根瘤菌多样性的研究.[博士学位论文].武汉:华中农业大学图书馆,1994
    2.陈雯莉,李阜棣,周俊初.快生型大豆根瘤菌(Rhizobium fredii)内源质粒在培养及共生过程中的稳定性,应用与环境生物学报,1997,3:55-62
    3.高丙利,杨国平,陈永萱,沈思师,游志鹏,金润之.氮源对紫云英根瘤菌nod基因表达的作用.植物生理学报,1997,23:375-379
    4.高丙利,娄无忌,陈永萱,樊庆笙,高成江,沈思师,金润之.诱导紫云英根瘤菌nod基因表达的的一些植物因子.植物生理学报,1998,23:220-224
    5.高成江,沈思师,金润之.华癸根瘤菌nifA基因的克隆和功能分析.微生物学报,2000,40:257-263
    6.高轶静,钟增涛,郑会明,王卉,朱军.华癸根瘤菌中自体诱导物的初步研究.微生物学报,2005,45:19-22
    7.葛诚,徐玲玟,樊慧.不同来源的快生型大豆根瘤菌质粒组成的多样性.微生物学报,1991,31:325-328
    8.宫锋,李强,周蓓芸,宋鸿遇.紫云英根瘤菌糖基转移酶基因exoL的定位突变及序列分析.植物生理学报,1998a,24:373-379
    9.宫锋,粟文英,周蓓芸.紫云英根瘤菌糖基转移酶基因exaA的克隆及序列分析.生物化学与生物物理学报,1998b,30:319-324
    10.宫澜,金润之.紫云英根瘤菌159中两个结构和功能不同的nodD基因.植物生理学报,1998,24:43-48
    11.郭先武.华癸根瘤菌染色体基因和质粒基因群体遗传学比较研究.[博士学位论文].武汉:华中农业大学图书馆,1998
    12.黄建斌,王汇海,华征,粟文英,宋鸿遇.紫云英根瘤菌菌株107 exo基因簇的连锁互补分析.植物生理学报,1996,22:184-190
    13.黄建斌,周蓓芸,宋鸿遇.影响紫云英根瘤菌入侵和根瘤发育的exo基因的克隆及分析.植物生理学报,1997a,23:267-273
    14.黄建斌,周蓓芸,宫锋,宋鸿遇.紫云英根瘤菌胞外多糖合成基因exol的序列分析.生物化学与生物物理学报,1997b,29:481-487
    15.金润之,朱劲松,江群益,沈思师,沈善炯.紫云英根瘤菌Ra159的巨大质粒上存在有nod和nif基因的证明.微生物学报,1993,33:170-176
    16.廖玫江,石玉瑚.紫云英根瘤菌结瘤因子过表达工程菌株的构建.新疆农业科学,1997,218-219
    17.李阜棣,喻子牛,何绍江.农业微生物学实验技术,北京:中国农业出版社,1996
    18.粟文英,宋鸿遇,王克夷.紫云英根瘤菌Exo~-变种的生理遗传及胞外多糖组分分析.生物化学与生物物理学报,1998,30.47-52
    19.龙北国,华征,郭一松,宋鸿遇.质粒exoR′恢复紫云英根瘤菌胞外多糖缺陷型变种有效结瘤能力.植物生理学报,1995,21:183-188
    20.农广,张忠明,胡福荣.紫云英根瘤菌结瘤基因调控片段克隆和分析.中山大学学报(自然科学版),1998,37:73-77
    21.沈辉,曹燕珍.湖北地区快生大豆根瘤菌的质粒与结瘤基因的初步定位.微生物学报,1991,18:2-4
    22.沈思师,金润之.紫云英根瘤菌nodD基因的的克隆及核苷酸序列.科学通报,1995,40:1409-1412
    23.沈思师,宫澜,金润之.紫云英根瘤菌共同结瘤基因nodA和nodBC的核苷酸序列.微生物学报,1999,37:355-361
    24.王常霖.豌豆根瘤菌共生质粒的行为研究.[博士学位论文],武汉:华中农业大学,1988
    25.王平,王勤,冯新梅.华癸根瘤菌在非豆科植物根圈定殖能力的研究.华中农业大学学报,1999,18.238-241
    26.王平,冯新梅,李阜棣.发光酶基因标记在华癸根瘤菌JS5A16L在紫云英根圈的定殖状态.土壤学报,2001,38:265-270
    27.魏辉,李阜棣.紫云英根瘤菌质粒携带共生基因的物理证据.华中农业大学学报,1989,8:12-14
    28.吴昊,周蓓芸,宋鸿遇.紫云英根瘤菌107菌株酸性胞外多糖的分离纯化及结构分析.植物生理学报,1997,23:227-232
    29.杨国平,朱军,徐苏云,娄无忌.紫云英根瘤菌结瘤因子的初步研究.微生物学报,1994,34:406-408
    30.杨国平,朱军,娄无忌.根瘤菌结瘤因子的微量生物检测法.微生物通报,1996,23:56-57
    31.叶政.增强快生型大豆根瘤菌共生固氮活性..武汉大学学报(生物工程专刊),1990,34-36
    32.曾维清,宋鸿遇.紫云英根瘤菌107菌株exo基因簇非连锁突变位点的克隆.植物生理学报,1997,23:331-336
    33.张学贤,周俊初,张忠明,李阜棣,陈华癸.紫云英根瘤菌与豌豆根瘤菌共生质粒间的相互作用.华中农业大学学报,1992,11:175-181
    34.张学贤,周俊初,李阜棣.外源共生质粒pJB5JI导入紫云英根瘤菌(Rhizobiwn huakuii)中的稳定性.华中农业大学学报,1994a,13:1-8
    35.张学贤,周俊初,莫才清,李阜棣.R-prime质粒pMN53在不同根瘤菌中的稳定性.华中农业大学学报,1994b,13:425-430
    36.张学贤,周俊初,李阜棣,陈华癸.外源共生基闪对紫云英根瘤菌共生效率的影响.中国农业科学,1995,28:14-19
    37.张学贤,张忠明,周俊初,李阜棣.紫云英根瘤菌结瘤因子的生物学功能.华中农业大学学报,1996,15:41-45
    38.张学贤,李阜棣,曹燕珍,陈华癸.紫云英根瘤菌分子遗传学研究进展.华中农业大学学报,2003,22:77-83
    39.张忠明,周俊初,许耀才,陈华癸,李阜棣.紫云英根瘤菌质粒的研究:Ⅰ.五个菌株大质粒分离纯化和菌7653R质粒的内切酶酶切图谱.华中农业大学学报,1986,5:326-331
    40.张忠明,陈华癸,范云六.紫云英根瘤菌基因文库的构建及含完整结瘤基因的重组质粒pRaZ15的分离.生物工程学报,1991,7:213-219
    41.朱劲松,金润之,沈善炯.紫云英根瘤菌基因组中存在有类似lS因子的DNA重复序列.微生物学报,1997,37:171-178
    42.周俊初,张忠明,黄诚金,李阜棣,陈华癸.紫云英根瘤菌质粒的研究:Ⅱ.紫云英根瘤菌经高温和吖啶橙处理后结瘤和固氮突变株的产生和质粒的消除.华中农业大学学报,1987,6:156-164
    43.周俊初,史巧娟,谢波.绿色荧光蛋白(gfp)在华癸中生根瘤菌与紫云英共生固氮研究中的作用.中国科学基金,2001,302-305
    44.周岿,夏薇,于晨红,周俊初.费氏中华根瘤菌(Sinorhizobiumfridii)质粒复制基因rcpC系列多样性的研究.华中农业大学学报,2005,24(6):537-543
    45.周蓓芸,黄建斌,粟文英.宋鸿遇利用Tn5定位诱变筛选紫云英根瘤菌Exo-变种.生物工程学报,1998,14:51-57
    46.周宗汉,江群益,金润之,沈善炯.紫云英根瘤菌基因文库的构建和结瘤基因片段的分离.科学通报,1989,4:305-08
    47.邹向宏,曹燕珍,李阜棣.紫云英根瘤菌天然抗药性和质粒研究.华中农业大学学报,1994,13:325-331
    48.邹向宏.紫云英根瘤菌质粒及共生效应研究.[博士学位论文].武汉:华中农业大学图书馆,1995
    49. Abe M, Kawamura R, Higashi S, Mori S, Shibata M, Uchiumi T. Transfer of the symbiotic plasmid from Rhizobium leguminosarum biovar trifolii to Agrobacteriurn tumefaciens. J Gen Appl Microbiol, 1998, 44: 65-74
    50. Balachandar D, Kannaivan S, Ono H, Murooka Y. Curing of symbiotic plasmid of Mesorhizobium huakuii subsp, rengei isolated from Astragalus sinicus. Indian J Exp Biol, 2003, 41: 912-914
    51. Balachandar D, Kannaivan S, Ono H, Murooka Y. Mini transposon vector mediated foreign gene expression in Mesorhizobium huakuii subsp, rengei. Indian J Exp Biol, 2004, 42: 1028-1031
    52. Baldani J I, Weaver R W, Hynes M F, Eardly B D. Utilization of carbon substrates, electrophoretic enzyme patterns, and symbiotic performance of plasmid-cured clover rhizobia. Appl Environ Microbiol, 1992a, 58: 2308-2314
    53. Baldani J I, Weaver R W. Survival of clover rhizobia and their plasmid-cured derivatives in soil under heat and drought stress. Soil Biol Biochem, 1992b, 24: 737-742
    54. Bally R, Givaudan A. Mobilization and transfer of Azospirillum lipoferum plasmid by the Tn5-Mob transposon into a plasmid-free Agrobacterium tumefaciens strain. Can J Microbiol, 1988, 34: 1354-1357
    55. Banfalvi Z, Sakanyan V, Konez C, Kiss A, Dusha l, Kondorosi A. Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of Rhizobium meliloti. Mol Gen Genet, 1981, 184: 318-325.
    56. Banfalvi Z, Kondorosi E, Kondorosi A. Rhizobium meliloti carries two megaplasmids. Plasmid, 1985, 13: 129-138
    57. Barbour, W M, Mathis J N, Elkan, G H. Evidence for plasmid- and chromosome -borne multiple nifgenes in Rhizobium fredii. Appl Environ Microbiol, 1985, 50: 41-44
    58. Barbour W M, Elkan G H. Physiological characteristics and competitive ability of plasmid-cured derivatives of Rhizobium fredii USDA 206. Arch Microbiol, 1990, 154: 1-4
    59. Barran L R, Bromfield E S P. Symbiotic gene probes hybridize to cryptic plasmids of indigenous Rhizobium meliloti. Can. J Microbiol, 1988, 34: 703-707
    60. Barran L R, Ritchot N, BromWeld E S P. The Sinorhizobium meliloti plasmid pRm1132f replicates by a rolling-circle mechanism. J Bacteriol, 2001, 183: 2704-2708
    61. Bartosik D, Baj J, Wlodarczyk M. Molecular and functional analysis of pTAV320, a repABC-type replicon of the Paracoccus versutus composite plasmid pTAV1. Microbiology, 1998, 144: 3149-3157
    62. Bernard T, Pocard J A, Perroud B, Le Rudulier D. Variations in the response of salt-stressed Rhizobium strains to betaines. Arch Microbiol, 1986, 143: 359-364
    63. Brewin N J, Wood E A, Johnston A W B, Dibb N J, Hombrecher G. Recombinant nodulation plasmids in Rhizobium legwninosarum. J Gen Microbiol, 1982, 128, 1817-1827
    64. Boivin C, Malpica C, Rosenberg C, Goldman A, Flevry V, Maille M, Message B, Pamboukdjian N, Tepfer D. Catabolism of the plant secondary metabolites calystegins and trigonelline by Rhizobium meliloti. Symbiosis, 1990, 9: 147-154
    65. Boncompagni E, Osteras M, Poggi M C, le Rudulier D. Occurrence of choline and glycine betaine uptake and metabolism in the family rhizobiaceae and their roles in osmoprotection. Appl Environ Microbiol, 1999, 65: 2072-2077
    66. Borthakur D, Johnston A W B. Sequence of psi, a gene on the symbiotic plasmid of Rhizobium phaseoli which inhibits exopolysaccharide synthesis and nodulation and demonstration that transcription is inhibited bypsr, an other gene symbiotic plasmid. M Gen Genet, 1987, 207: 149
    67. Borthakur D, Lamb J W, Johnston A W B. Identification of two classes of Rhizobium phaseoli genes required for melanin synthesis, one of which is required for nitrogen fixation and activates the transcription of the other. Mol Gen Genet, 1987, 207:155-160
    68. Bramhill D, Kornberg A. Duplex opening by DnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome. Cell, 1988, 52:743-755
    69. Brewin N J, DeJong T M, Phillips D A. Co-transfer of determinants for hydrogenase activity and nodulation ability in Rhizobium leguminosarum. Nature, 1980a, 288: 77-79.
    70. Brewin N J, Beringer J E, Buchanen-Wollaston A V. Transfer of symbiotic genes with bacteriocinogenic plasmids in Rhizobiwn leguminosarum. J Gen Microbiol, 1980b, 116:261-270
    71. Brewin N J, Wood E A, Johnston A W B. Recombinant nodulation plasmid in Rhizobium leguminosarum. J Gen Microbiol, 1982, 128:18117-1827
    72. Brom S, Santos A, Girard M L, Dávila G, Palacios R, Romero D. High-frequency rearrangements in Rhizobium leguminosarum by. phaseoli plasmids. J Bacterial, 1991, 173:1344-1346
    73. Brom S, García de los Santos A, Stepkowsky T. Flores M, Dávilla G, Romero D, Palacios R. Different plasmids of Rhizobium leguminosarum by. phaseoli are required for optimal symbiotic performance.J Bacteriol, 1992, 174:5183-5189
    74. Brom S, García-de los Santos A, Cervantes L, Palacios R, Rpmero D. In Rhizobiurn etli symbiotic plasmid transfer, nodulation competitivity and cellular growth require interaction among different replicons. Plasmid, 2000, 44:34-43
    75. Bromfield E S P, Thurman N P, Whitwill S T. Plasmids and symbiotic effectiveness of representative phage tyres from two indigenous of Rhizobium meliloti. J Gen Microbiol, 1987, 133:3475-3486
    76. Buendic-Claveria A M, Romero F, Cubo T, Perez-Sllva J, Ruiz-Sainz J E. Inter and Intraspecific transfer of a Rhizobium fredii symbiotic plasmid: expression and incompatibility of symbiotic plasmids. Systematic and Applied Microbiology, 1989, 12:210-215
    77. Burgos P A, Veláquez E, Toro N. Identification and distribution of plasmid-type A replicator region in rhizobia. MPMI, 1996, 9:843-849
    78. Burkhardt B, Schillik D, Pühler A. Physical characterization of Rhizobium meliloti megaplasmids. Plasmid, 1987, 17:13-25
    79. Casse F, Bouncher C, Julliot J S, Michiel M, Denarie J. Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. J Gen Microbiol, 1979, 113:229-242
    80. Cava J R, Elias P M, Turowski D A, Noel K D. Rhizobium leguminosarum CFN42 genetic region encoding lipopolysaccharide structures essential for complete nodule development on bean plants J. Bacteriol, 1989, 171:8-15
    81. Cevallos M A, Porta H, Izquierdo J, Tun-Garrido C, Garciade-los-Santos A, Dávila G., Brom S. Rhizobium etli CFN42 contains at least three plasmids of the repABC family: a structural and evolutionary analysis. Plasmid, 2002, 48: 04-116.
    82. Chan C L, Lumpkin T A, Root C S. Characterization of of Bradyrhizobium sp. (Astragalus sinicus L.) using serological agglutination, intrinsic antibiotic resistance, plasmid visualization and field performance. Plant and Soil, 1988, 109:85-91
    83. Chan Y K, Roger W. Detection of a nitros oxide reductase structural gene in Rhizobium meliloti strains and its location on the nod megaplasmid of JJ1C1 and su47. J Bacteriol, 1993, 175:19-26
    84. Charles T C, Finan T M. Analysis of a 1600-kilobase Rhizobium meliloti megaplasmid using defined deletions generated in vivo. Genetics, 1991, 127:5-20
    85. Cheng G J, Li Y G, Zhou J C. Cloning and identification of opa22, a newgene involved in nodule formation by Mesorhizobiumhuakuii. FEMS Microbiol Lett, 2006, 257:152-157
    86. Chen H A E, Richardson E G, et al. Construction of an acidtolerant Rhizobium leguminosarum by. trifolii strain with enhanced capacity for nitrogen fixation. Appl Environ Microbiol, 1991, 57: 2005-2011
    87. Chert H, Gartner E, Rolfe B G. Involvement of genes on a megaplasmid in the acid-tolerant phenotype of Rhizobium leguminosarum by. trifolii. Appl Environ Microbiol, 1993a, 59: 1058-1064
    88. Chen H, Richardson A E, Rolfe B G. Studies of physiological and genetic basis of acid tolerance in Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol, 1993b, 59:1798-1804
    89. Chen H C, Long B G, Song H Y. Exopolysaccharide-deficientmutants of Astragali rhizobia are symbiotically effective on Astragalus sinicus,, an indeterminate nodulating host. Plant and Soil, 1996, 179:217-221
    90. Chen H K, Shu M K. Notes on the root nodule bacteria Astragalus sinicus L. Soil Sci, 1944, 58: 291-293
    91. Chen W X, Li G S, Qi Y L, Wang E T, Yuan H L, Li J L. Rhizobium huakuii sp. nov. isolatedfrom the root nodules ofAstragalus sinicus, Int J Syst Bacteriol, 1991, 41:275-280
    92. Choma A, Sowinski P, Mayer H. Structure of the O-specific polysaccharide of Mesorhizobium huakuii IFO15243T. Carbohydr Res, 2000, 329:459-464
    93. Choma A. Lipopolysaccharides from Mesorhizobium huakuii and Mesorhizobium ciceri: chemical and immunological comparative data. Acta Biochim Pol, 2002, 49:1043-1052
    94. Choma A, Komaniecka I. Characterisation of Mesorhizobium huakuii cyclic beta-glucan. Acta Bchim Pol, 2003, 50:1273-1281
    95. Choma A, Sowinski P. Characterization of Mesorhizobium huakuii lipid A containing both D-galacturonic acid and phosphate residues. Eur J Biochem, 2004, 271:1310-1322
    96. Cubo M T, Buendia-Claveria A M, Beringer J E, Ruiz-Sainz J E. Melanin production by Rhizobium strains. Appl Environ Microbiol, 1988, 54:1812-1817
    97. DeJong T M, Brewin N J, Phillips D A. Effects of plasmid content in Rhizobium leguminosarum on pea nodule activity and plant growth. J Gen Microbiol, 1981, 124:1-7
    98. Djordjevic M A, Zurkowski W, Rolfe B G. Plasmids and stability of symbiotic properties of Rhizobium trifolii. J Bacteriol, 1982, 151:560-568
    99. Djordjevic M A, Zurkowski W, Shine J, Rolfe B G. Sym plasmid transfer to various symbiotic mutants of Rhizobium trifolii, R. leguminosarum, and R. meliloti. J Bacteriol. 1983, 156 : 1035-1045
    100. Dusha I, Kovalenko S, Banfalvi Z, Kondorosi A. Rhizobium meliloti insertion element ISRm2 and its use for the identification of the fixX gene. J Bacteriol, 1987, 169:1403-1409
    101. Eckhardt T. A rapid method for the identification of plasmids deoxyribonucleic acid in bacteria. Plasmid, 1978, 1:584-588
    102. Engwall K S, Atherly A G. The formation of R-prime deletion mutants and the identification of the symbiotic gene in Rhizobium fredii strain USDA191. Plant Mol Biology, 1986, 6:41-51
    103. Fenton M, Jarvis B D W. Expression of the symbium plasmid from Rhizobium leguminosarum biovar trifolii in Sphingobacteriura raultivorum. Can J Microbiol, 1994, 40:873-879
    104. Finan T M, Kunkel B, de Vos G. F, Signer E R. Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol, 1986, 167:66-72
    105. Finan T M, Oresnik I, Bottacin A. Mutants of Rhizobium meliloti defective in succinate metabolism. J Bacteriol, 1988, 170:3396-3403
    106. Flores M, González V, Brom S, Martínez E, Pinero D, Romero D, Dávila G, Palacios R. Reiterated DNA saequences in Rhizobium and Agrobacterium spp. J Bacteriol, 1987, 169: 5782-5788
    107. Froissard D, Bromfield E S P, Whitwill S, Barran L B. Construction and properties of cloning vectors based on a 7.2-kb Rhizobium meliloti cryptic plasmid. Plasmid, 1995, 33:226-231
    108. Gajendiran N, and Mahadevan A. Plasmid-borne catechol dissimilation in Rhizobium sp. FEMS Microbiol Ecol, 1990, 73:125-130
    109. Gao C, Jin R, Yu G.. 1SMh2, a novel insertion sequence-like element associated with nifA from Mesorhizobium huakuii. Plasmid, 2001, 46:10-15
    110. García-de los Santos A, And Brom S. Characterization of two plasmid-borne lpsB loci of Rhizobium etli required for lipopolysaccharide synthesis and for optimal interaction with plants. Mol. Plant-Microbe Interact. 1997, 10:891-902
    111. Geniaux E and Amarger N. Diversity of plasmid transfer in isolates from a single field population ofRhizobium leguminosarum by. viciae. FEMS Microbiol Ecol, 1993, 102, 251-260
    112. Gerlitz M, Hrabak O, Schwab H. Partitioning of broad-host-range plasmid RP4 is a complete system involving site-specific recombination. J Bacteriol, 1990, 172:6190-6203
    113. Glazebrook J and Walker G C. A novel exopolysaccharide can function in place of the calcofluor-binding exopolysacchadde in nodulation of alfalfa by Rhizobium meliloti. Cell, 1989, 56:661-672
    114. Glenn A R, Reeve W G, Tiwari R P, Dilworth, M. J. Acid tolerance in root nodule bacteria. Novartis Found Symp, 1999, 221:112-130
    115. Goldman A, Lecoeur L, Message B, Delarue M, Schoonejans E, Tepfer D. Symbiotic plasmid genes essential to the catabolism of praline betaine, or stachydrine, are also required for efficient nodulation by Rhizobium meliloti. FEMS Microbiol Lett, 1994, 115:305-312
    116. Gray K M, Pearson J P, Downie J A, Boboye B E A, Greenberg E P. Cell-to-cell signaling in the symbiotic nitrogenfixing bacterium: Autoinduction of a stationary phase and rizosphere expressed genes. J Bacteriol, 1996, 178:372-376
    117. Gyorgypal Z, Kondorosi E, Kondorosi A. Diverse signal sensitivity of NodD protein homologs from narrow and broad host range rhizobia. Mol Plant-Microbe Interact, 1991, 4:356-364
    118. Hahn M, Hennecke H. Mapping of a Bradyrhizobium japonicum DNA region carrying genes for symbiosis and an asymmetric accumulation of reiterated sequences. Appl Environ Microbiol, 1987, 53:2247-2252
    119. Hanahan D. Studies on the transformation of Escherichia coli with plasmids. J Mol Biol, 1983, 166:557-580
    120. Hartmann A, Amarrger N. Genotypic diversity of an indigenous Rhizobium meliloti field population assessed by plasmid profiles, DNA fingerprinting, and insertion sequencse typing. Can J Microbiol, 1991, 37:600-608
    121. Harrison S P, Jones D G. Schünman P H D, Forstcr J W, Young J P. Variation in Rhizobium leguminosarum biovar trifolii sym plasmids and the association with effectiveness of nitrogen fixation. J Gen Microbiol, 1988, 134:2721-2730
    122. Hashem F M, Kuyendall L D. Plasmid DNA content of several agronomically important Rhizobium species that nodule alfalfa, berseem clover, or leucanena. In: Graham P H, et al., eds, Symbiotic nitrogen fixation. Netherland: Kluwer Academic Publishers, 1994, 181-188
    123. Haugland R, Verma D P S. Interspecific plasmid and genomic DNA sequence homologies and localization of nif genes in effective and ineffective strains of Rhizobium japonicum. J Mol Appl Genet, 1981, 1:205-217
    124. Haugland R A, Cantrell M. A, Beaty J S, Hanus F J, Rusell S A, Evans H J. Characterization of Rhizobium japonicum hydrogen uptake genes. J Bacteriol 1984, 159:1006-1012
    125. Havashi M, Maeda Y, Hashimoto Y, Murook Y. Efficient transformation of Mesorhizobium huakuii subsp, rengei and Rhizobium species. J Biosci Bioeng, 2000, 89:550-553
    126. Hawkins F K L, Johnston A W B. Transcription of a Rhizobium leguminosarum biovar phaseoli gene needed for melanin synthesis is activated by nifA of Rhizobium and Klebsiella pneumoniae. Mol Microbiol, 1988, 2:331-337
    127. Herrera-Cervera J A, Olivares J, Sanjuan J. Ammonia inhibition of plasmid pRmeGR4a conjugal transfer between Rhizobium meliloti strains. Appl Environ Microbiol, 1996, 62:1145-1150
    128. Herrera-Cervera J A, Sanjuan-Pinilla J M, Olivares J, Sanjuan J. Cloning and identification of conjugative transfer origins in the Rhizobium meliloti Genome. J Bacteriol, 1998, 180:4583-4590
    129. Holloway P, McCormick W, Watson R J, Chan Y-K. Identification and analysis of the dissimilatory nitrous oxide reduction genes, nosRZDFY, of Rhizobium meliloti. J Bacteriol, 1996, 178:1505-1514
    130. Hooykaas P J J, Van Brussel A A N. Den Dulk-Ras H, Van Slogteren G M S, Schilperoort R A. Sym plasmid of Rhizobium trifolii expressed in different rhizobial species and Agrobacterium fumefaciers. Nature, 1981, 291:351-353
    131. Hooykaas P J, Sniidewint F G, Schilperoort R A. Identification of the Sym plasmid of Rhizobium leguminosarum strain 1001 and its transfer to an expression in other rhizobia and Agrobacterium tumefaciens. Plasmid, 1982, 8:73-82
    132. Hynes F, Simon R, Pühler A. The development of plsmid-free strains of Agrobacterium tumefaciers by using incompatibility with a Rhizobium meliloti plasmid to eliminate pAtc58. Plasmid, 1985, 13:99-105
    133. Hynes M F, Simon R, Müller P, Niehans M, Pühler A. The two megaplasmid of Rhizobium meliloti are involved in the effective nodulation of alfalfa. Mol Gen Genet 1986, 202:356-362
    134. Hynes M F, Brucksch k, Priefer U. Melanin production encoded by a cryptic plasmid in a Rhizobium leguminosarum strain. Arch Microbiol, 1988, 150:326-332
    135. Hynes M F, Jurgen Q, O'Connell M P, Pühler alfred, Direct selection for curing and deletion of Rhizobium plasmids using transposom carrying the Bacillus subtilis sacB gene. Gene, 1989, 78: 111-120
    136. Hynes M F, Mcgregor N E Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen-fixing nodules by Rhizobiwn leguminosarum. Mol Microbiol, 1990, 4: 567-574
    137. Itoh Y. Watson J M, Haas D. Leisinger T. Genetic and molecular characterization of the Pseudomonas plasmid pVS1. Plasmid, 1984, 11: 206-220.
    138. Jarvis B D W, Van Berkum P, Chen W X, Nour S M, Fernandez M P, Cleyet-Marel J C, Gillis M. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshannense to Mesorhizobium gen. nov. Int J Syst Bacteriol, 1997, 47:895-898
    139. Jiang G, Krishnan H B. Sinorhizobium fredii USDA257, a cultivar-specific soybean symbiont, carries two copies of y4yA and y4yB, two open reading frames that are located in a region that encodes the type Ⅲ protein secretion system. Mol Plant Microbe Interact, 2000, 13:1010-1014
    140. Johnston A W B, Benyon J L, Buchnnan-Wollaston A V, Setchell S M, Hirch P R, Beringer J E. High frequency transfer of nodulating ability between strains and species of Rhizobium. Nature, 1978, 6:635-636
    141. Johnston A W B, Hombrecher G., Brewin N J, Cooper M C. Two transmissible plasmids in Rhizobium leguminosarum strain 300. J Gen Microbiol, 1982, 128:85-93
    142. Jumas-Bilak E, Michaux-Charachon S, Bourge G, Ramuz M, Allardet-Servent A. Uncoverentional genomic organization in the alpha subgroup of the protebacteda. J Bacteriol, 1998, 180:2749-2755
    143. Kaluza K, Hahn M, Hennecke H. Repeated sequences similar to inserction elements clustered around the nifregjon of the Rhizobium japonicum genome. J Bacteriol, 1985, 162:535-542
    144. Kinkle B K, Schmidt E L. Transfer of the pea symbiotic plasmid pJB5Jl in nonsterile soil. Appl Environ Microbiol, 1991, 57:3264-3269
    145. Klein S, Lohman K, Clover R, Walker G C, Signer E R. A directional, high-frequency chromosomal mobilization system for genetic mapping of Rhizobium meliloti. J Bacteriol, 1992, 74:324-326
    146. Kobayashi H, Sunako H, Hayashi M, Murooka Y. DNA synthesis and fragmentation in bacteroids duringAstragalus sinicus root nodule development. Biosci Biotechnol Biochem, 2001, 65:510-515
    147. Kondorosi A, Kondorosi E, Pankhurst C E, Broughton W J,Banfalvi Z. Mobilization of a Rhizobium meliloti megaplasmid earring nodulation and nitrogen fixation genes into other rhizobia and Agrobacterium. Mol Gen Genet, 1982, 188:433-439
    148. Kurchak O N, Provorov N A, Simarov B V. Plasmid pSyml-32 of Rhizobium leguminosarum bv.viceae controlling nitrogen fixation activity, effectiveness of symbiosis, competitiveness, and acid tolerance. Russian Journal of Genetics, 2001, 37: 1025-1031.
    149. Laguerre G, Mazurier S L, Amarger N. Plasmid profiles and restriction fragment length polymorphism of Rhizobium leguminosarum bv. viciae in fide population. FEMS Microbiol Ecol, 1992, 101:17-26
    150. Laguerre G, Geniaux E, Amarger N. Conformity and diversity among field isolates of Rhizobium leguminosarum bv. viciae, bv. trifolii and by. phaseoli revealed by DNA hybridization using chromosome and plasmid probes. Can J Microbiol, 1993, 39:412-419
    151. Laguerre G, Mavingui P, Allard M R, Chamay M P, Louvrier P, Mazurier S L, Rigottier-Gois L, Amarger N. Typing of rhizobiua by PCR DNA fingerprinting and PCR-RFLP analysis of chromosomeal and symbiotic gene regions: application to R. leguminosarum and its different biovars. Appl Environ Microbiol, 1996, 62:2029-2036
    152. Lamb J W, Hombrecher G., Johnston A W B. Plasmid determined nodulation and nitrogen fixation abilities in Rhizobium phaseoli. Mol Gen Genet, 1982, 186:449-452
    153. Le Rudulier and Bernard Salt tolerance in Rhizobium: A possible role for betaines. FEMS Microbiol Rev, 1986, 39:67-72
    154. Leyva A, Palacios J M, Ruiz-Argiieso T. Conserved plasmid hydrogen-uptake (hup)-specific sequences within Hup~+ Rhizobium leguminosarum strains. Appl Environ Microbiol, 1987, 53: 2539-2543
    155. Margolin W, Long S. Isolation and characterization of a DNA replication origin from the 1,700-kilobase-pair symbiotic megaplasmid pSym-b of Rhizobium meliloti. J Bacteriol, 1993, 175: 6553-6561
    156. Martine C, et al. Identification and classification of bacterial plasmid. Microbiol Rev, 1988, 52: 375-395
    157. Martínez E, Palacios R, Sánchez E Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harbouring Rhizobium phaseoli plasmids. J Bacteriol, 1987, 169:2828-2834
    158. Martinez-Romero E, and Rosenblueth M. Increaed bean (Phaseolus vularis L.) noulation competitiveness of genetically modified Rhizobium strains. Appl Envion Microbiol, 1990, 56: 2384-2388
    159. Maas R, Saadi S, Maas W K. Properties and incompatibility behavior of miniplasmids derived from the bireplicon plasmid pCG86. Mol Gen Genet, 1989, 218:190-198
    160. MacLellan S R, Zaheer R, Sartor A L, MacLean A M, Finan T M. Identification of a megaplasmid centromere reveals genetic structural diversity within the repABC family of basic replicons. Mol Microbiol, 2006, 59:1559-1575
    161. Mavingui P, Flores M, Guo X, Dávila G, Perret X, Broughton WJ, Palacios R. Dynamics of genome architecture in Rhizobium sp. strain NGR234. J Bacteriol, 2002, 184: 171-176.
    162. Mercado-Blanco J, García F, Fernández-López M, Olivares J. Melanin production by Rhizobium meliloti GR4 is linked to nonsymbiotic plasmid pRmeGR4b: Cloning, sequencing, and expression of thr tyrosinase gene mepA. J Bacteriol, 1993, 175:5403-5410
    163. Mercado-Blanco J, Olivares J. Stability and transmissibility of the cryptic plasmid of Rhizobium meliloti GR4: Their possible use in the construction of cloning vectors for rhizobia. Arch Microbiol, 1993, 160:477-485
    164. Mercado-Blanco J, Olivares J. The large nonsymbiotic plasmid pRmeGR4a of Rhizobium meliloti GR4 Encodes a protein involved in replication that has homology with the RepC protein of Agrobacterium plasmid. Plasmid, 1994a, 32:75-79
    165. Mercado-Blanco J, Olivares J. A protein involved in stabilization of a large non-symbiotic plasmid of Rhizobium meliloti shows homology to eukaryotic cytoskeletal proteins and DNA-binging proteins. Gene, 1994b, 139:133-134
    166. Mercado-Blanco J and Toro N. Plasmid in Rhizobia:the role of nonsymbiotic plasmids. Mol Plant-Microbe Interact, 1996, 9:535-545
    167. Meyer R, Laux R, Boch G, Hinds M, Bayly R, Shapiro J A. Broad-host-rang IncP4 plasmid Rl162: Effects of deletions and insertion on plasmid maintenance and host range. J Bacteriol, 1982, 152:140-150
    168. Miao L H, Zhou K, Zhou J C, Chen D S, Xie F L. Apparent incompatibility of plasmid pSfrYC4bof Sinorhizobium fredii with two differentplasmids in another strain. Arch Microbiology, 2005, 83:359-367
    169. Moenne-Loccoz Y, Weaver R W. Plasmids influence growth of rhizobium in the rhizosphere of clover. Soil Biol Biochem, 1995, 27:1001-1004
    170. Motallebi-Veshareh M, Rouch D A, Thomas C M. A family of ATPases involved in active partitioning of diverse bacterial plasmids. Mol Microbiol, 1990, 4:1445-1463
    171. Mozo M T, Cabrera E, Ruíz-Argüeso T. Isolation of the replication DNA region from a Rhizobium plasmid and examination of its potential as a replico.n for Rhizobiaceae cloning vectors. Plasmid, 1990, 23:201-215
    172. Mozo M T, Cabrera E, Ruíz-Argiieso T. Diversity of plasmid profiles and conservation of symbiotic nitrogen fixation genes in newly isolated Rhizobium strains nodulating Zulla (Hedysarum coronarium L). Appl Environ Microbiol, 1988, 54:1262-1267
    173. Murphy P J, Saint C P. Rhizopines in the legume-Rhizobium symbiosis, in: Verma D P S. ed. Molecular Signals in Plant-Microbe Communications. CRC Press, Boca Raton, FL. 1992. 377-390
    174. Naito Y, Fujie M, Usami S, Murooka Y, Yamada T. The involvement of a cysteine proteinase in the nodule development in Chinese milk vetch infected with Mesorhizobium huakuii subsp. rengei. Plant Physiol, 2000, 124:1087-1096
    175. Neilan J,Heery D, Dunican L K. Isolation of replication loci of plasmid origin from Rhizobium trifolii. Biochem Soc T, 1986, 14:478
    176. Nishiguchi R, Takaanami M, Oka A, Characterization and sequence determination if the replicator region in the hairy-root-inducing plasmid pRiA4b. Mol Gen Genet, 1987, 206:1-8
    177. Novick R P. Plasmid Incompatibility. Microbiol Reviews 51, 1987, 381-395
    178. Nuswantara S, Fujie M, Yamada T, Malek W, Inaba M, Kaneko Y, Murooka Y. Phylogenetic position of Mesorhizobium huakuii subsp, rengei, a symbiont of Astragalus sinicus cv. Japan. J Bioeng, 1999, 87:49-55
    179. O'Connell M, Hynes M F, Puehler A. Incompatibility between a Rhizobium Sym plasmid and a Ri plasmid ofAgrobacterium. Plasmid, 1987. 18:156-163
    180. Oresnik I J, Liu S L Yost C K, Hynes M E Megaplasmid pRme2011a ofSinorhizobium meliloti is not required for viability. J Bacteriol, 2000, 182:3582-3586
    181. Otten L, Conaday J, Gérard J C, Fournier P, Crouzet P, Paulus F. Evolution of Agrobacteria and their Ti plasmid.A review. Mol Plant-Microbe Interact, 1992, 5:279-287
    182. Otten L, De Ruffray P. Agrobacteriutn vitis nopaline Ti plasmid pTiAB4: relationship to other Ti plasmids and T-DNA structure. Mol Gen Genet, 1994, 245:493-505
    183. Pankhurst C, Macdonald P, Reeves J. Enhanced nitrogen fixation and competitiveness for nodulation of Lotus pedunculatus by a plasmid-cured derivative of Rhizobium loti. J Gen Microbiol, 1986, 132:2321-2328
    184. Plazinski J, Cen Y H, Rolfe B G General method for the identification of plasmid species in fast-growing soil microorganisms. App Environ Microbiol, 1985, 48:1001-1003
    185. Palmer K M, Turner S L. Young J P W. Sequence diversity of the plasmid replication gene repC in the Rhizobiaceae. Plasmid, 2000, 44:209-219
    186. Pansegrau W, Lanka E, Barth P T, Figurski D H, Guiney D G, Haas D, Helinski D R, Schwab H, Stanisich V A, Thomas C M. Complete nucleotide sequence of Birmingham IncP α plasmid. J Mol Biol, 1994, 239:623-663
    187. Pardo M A, Lagúnez J, Miranda J, Martínez E. Nodulating ability of Rhizobium tropici is conditioned by a plasmid encoded citrate synthase. Mol Microbiol, 1994, 11:315-321
    188. Prakash R K Atherly A G. Reiteration of genes involved in symbiotic nitrogen fixation by fast-growing Rhizobiumjaponicum. J Bacteriol, 1984, 160:785-787
    189. Pretorius-Güth I M, Pühler A, Simen R. Conjugal transfer of megaplasmid 2 between Rhizobium raeliloti strains in alfalfa nodules. Appl Environ Microbiol, 1990, 56:2354-2359
    190. Quandt J, Clark R G, Venter A P, Clark S R, Twelker S, Hynes M E Modified RP4 and Tn5-Mob derivatives for facilitated manipulation of large plasmids in Gram-negative bacteria. Plasmid, 2004, 52: 1-12
    191. Quintero V, Miguel A, Cevallos M A, Davila G. A site-specific recombinase (RinQ) is required to exert incompatibility towards the symbiotic plasmid of Rhizobium etli. Mol Microbiol, 2002, 46:1023-1032
    192. Radeva G, Selenska-Pobell S. Alteration of the symbiotic properties of Rhizobium meliloti by plasmid manipulations. Microbios, 1997, 89:187-96
    193. Ramírez-Romero M A, Soberon N, Perez-Oseguera A, Tellez-Sosa J, Cevallos M A. Structural elements required for replication and incompatibility of the Rhizobium etili symbiotic plasmid. J Bacteriol, 2000, 182:3117-3124
    194. Ramirez-Romero M A, Juan T S, Barrios H, Angels P O. RepA negatively autoregulates the transcription of the repABC operon of the Rhizobium etli symbiotic plasmid basic replicon. Mol Microbial, 2001, 42:195-204
    195. Rao J R, Fenton M, Jarvis B D W. Symbiotic plasmid transfer in Rhizobium leguminosarum biovar trifolii and competition between the inoculant strain Icmp2163 and transconjugant soil bacteria. Soil Biol Biochem, 1994, 26:339-351
    196. Rastogi V K, Bromfield E S P, Whitwill S T, Barran L R. A cryptic plasmid of indigenos Rhizobium meliloti possesses reiterated nodC and nifE genes and undergoes DNA rearrangement. Can J Microbiol, 1991, 38:563-568
    197. Reeve W G, Dilworth M J, Tiwari R P, Glenn A R. Regulation of exopolysaccharide production in Rhizobium leguminosarum biovar viceae WSM710 Involves exoR. Microbiology, 1997, 143: 1951-1958
    198. Rickert A A, Sofia M A, Correa O S. The adaptive acid response in Mesorhizobium sp. World J Microbi & Biot, 2000, 16:475-480
    199. Rigottier-Gois L, Turner S L, Yong J P, Amarger N. Distribution of repC plasmid- replication sequence among plasmids and isolates of Rhizobium leguminosarum by. viciae from field populations. Microbiology, 1998, 144:771-780
    200. Robert R C, Burioni R, Helinski D R. Genetic characterization of the stabilizing functions of a region of broad-host-range plasmid RK2. J Bacteriol, 1990, 172:6204-6216
    201. Romero D S, Brom J, Martinez-Salazar J, Girard M L, palacios R, Dávila G Amplification and deletion of nod-nif region in symbiotic plasmid of Rhizobium phaseoli. J Bacteriol, 1991, 173: 2435-2441
    202. Romero D, Martínez-Salazar J, Girard L, Brom S, Dávila G, Palacios R, Flores M, Rodríguez C. Discrete amplifiable regions (Amplicons) in the symbiotic plasmid of Rhizobium etli CFN42. J Bacteriol, 1995, 177:973-980
    203. Rosenberg C, Boistard P, Dénarié J, Casse-Delbart E Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Mol Gen Genet, 1981, 184: 326-333
    204. Ruvkun G B, Long S R, Meade H M, van den Bos R C, Ausubel F M. ISRm1: a Rhizobium meliloti insertion sequence that transposes preferentially into nitrogen fixation genes. J Mol Appl Genet, 1982, 1:405-418
    205. Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual. 2nd edn. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1989
    206. Sanjuán J, Olivares J. Implicanon of nifA in regulation of genes located on a Rhizobium meliloti cryptic plasmid that affect nodulation efficiency. J Bacteriol, 1989, 171:4154-4161
    207. Sanjuán J, Olivares J, NifA-NtrA regulatory system activates transcription of nfe a gene locus involved in nodulation competitiveness of Rhizobium meliloti. Arch. Microbiol, 1991, 155: 543-548
    208. Saurugger P N, Hrabak O, Schwab H, Lafferty R M. Mapping and cloning of the par-region of broad host range plasmid RP4. J Bactedol, 1986, 4:333-343
    209. Scott D B, Ronson C W. Identification and mobilization by cointegrate formation of a nodulation plasmid in Rhizobium trifolii. J Bacteriol, 1982, 151:36-43
    210. Selbitschka W, Lotz W. Instability of cryptic plasmids affects the symbiotic effectivity of Rhizobium leguminosarum by. viciae strains. Mol Plant-Microbe Interact, 1991, 4:608-616
    211. (Selenska-Trajkowa S, Radewa G, Markov K. Comparison between Rhizobium galegal and Rhizobium meliloti plasmid content. Lett Appl Microbiol, 1990, 10:123-126
    212. Sen D, Baldani J I, Weaver R W. Expression of heat induced proteins in wild type and plasmid-cured derivatives of Rhizobium leguminosarum by. Trifolii. in: Gresshoff P M, Roth L E, Stacey G, Newton W E, ed. Nitrogen Fixation:Achievements and Objectives. London: Chapman Hall, 1990, 583
    213. Sharma P K, and Laxminarayama K. Effect of high temperature on plasmid curing of Rhizobium spp. in relation to nodulafion of pigeonea [Cajanus cajan (L.) Millsp.]. Biol. Fert. Solis, 1989, 8: 75-79
    214. Simon R. High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed TnS-Mob transposon. Mol Gen Genet, 1984, 196:413-420
    215. Simon R, Quandt J, Klipp W. New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in gram-negative bacteria. Gene, 1989, 80:161-169
    216. Simon R, Pdefer U B. Vector technology of relevance tonitrogen fixation research. In: Gresshoff P M.ed. Molecular biology of symbiotic nitrogen fixation. Boca Ratón, FL: CRC Press Inc, 1990, 13-49
    217. Simon R, H6tti B, Klanke B, Kosier B. Isolation and characterization of insertion sequence elements from gram-negative bacteria by using new broad-host-range, positive selection vectors. J Bacteriol, 1991, 173:1502-1508
    218. Sivakumaran S, lockhart P L, Jarvis B D W. Identification of soil bacteria expressing a symbiotic plasmid from Rhizobium leguminosarum by. trifolii. Can J Microbial, 1997, 43: 164-177
    219. Skorupska A, Derylo M, Golinowski W. The region for exopolysaccharide synthesis in Rhizobium leguminosarum biovar trifolii is located on the non-symbiotic plasmid. Acta Biochim Pol, 1991, 38:423-435
    220. Soberon-Chavez G, Najera R, Espin G, Moreno S. Formation of Rhizobium phaseoli symbiotic plasmids by genetic recombination. Mol Microbiol, 1991, 5:909-916
    221. Soberón N, Venkova-Canova T, Ramfrez-Romero M.A, Téllez-Sos J, Cevallos M A. Incompatibility and the partioning site of the repABC basic replicon of the symbiotic from Rhizobium etli. Plasmid, 2004, 51:203-216
    222. Sobem-Chavez G., Najera R, Olivora H, Segovia L. Genetic rearrangements of a Rhizobium phaseoli symbiotic plasmid. J. Bacteriol, 1986, 167:487-491
    223. Soto M. J, Zorzano A, Olivares J, Toro N. Nucleotide sequence of Rhizobium meliloti GR4 insertion sequence ISRm3 linked to the nodulation competitiveness locus nfe. Plant Mol Biol 1992a, 20:307-309
    224. Soto M. J, Zorzano A, Olivares J, Toro N. Sequence of ISRm4 from Rhizobium meliloti strain GR4. Gene, 1992b, 120:125-126
    225. Soto M J, Zorzano A, Mercado-Blanco J, Lepek V, Olivares J, Toro N. Nuclcotide sequence and characterization of Rhizobium meliloti nodulation competitiveness genes nfe. J Mol Biol, 1993, 229:570-576
    226. Soto M J, Zorzano A, García-Rodríguez F M, Mercada-Blanco, J, López-Lara I M, Olivares J, Toro N.. Identification of a novel Rhizobium meliloti nodulation efficiency nfe gene homolog of Agrobacterium ornithine cyclodeaminase. Mol Plant-Microbe Interact, 1994, 7:703-707
    227. Sriprang R, Havashi M, Yamashita M, Ono H, Saeki k, Murooka Y. A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J Biotechnol, 2002 99:279-293
    228. Sriprang R, Havashi M, Ono H, Takagi M, Hirata K, Murooka Y. Enhanced accumulation of Cd~(2+) by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbicol, 2003, 69:1791-1796
    229. Stephen P. Harrison D, et al. Variation in Rhizobium leguminosarum by. trifolii sym plasmid and the association with affectiveness of nitrogen fixation. J Gen Microbiol, 1987, 134:2721-2730
    230. Tabata S, Hooykaas P J J, Oka A. Sequence determination and characterization of the replictor region in the tumor-indycing plasmid pTiB6S3. J Bacteriol,1989, 171:1665-1672
    231. Tepfer D, Goldman A, Pamboukdjian N, Maille M, Lepingle A, Chevalier D, Dénarié J, Rosenberg C. A plasmid of Rhizobiwn meliloti 41 encodes catabolism of two compounds from root exudates of Calystegiwn sepium. J Bacteriol, 1988, 170:1153-1161
    232. Thurman N P, Lewwis D M, Gareth-Jones D. The relationship of plasmid number to growth, acid tolerance and symbiotic efficiency in isolates of Rhizobium trifolii. J App Bacteriol, 1985, 58:1-6
    233. Tighe S W, de Lajudie P, Dipietro K, Lindstrom K, Nick G, Jaryis B D. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int Syst Evol Microbiol, 2000, 50:787-801
    234. Tiwari R P, Reeve W G., Dilworth M J, Glenn A R. Acid tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensor-regulator system. Microbiology, 1996, 14: 1693-1704
    235. Toro N, Olivares J. Characterization of a large plssmid of Rhizobium meliloti involved in enhacing nodulation. Mol G EN Genet, 1986, 202:331-335
    236. Truchet G, Rosenberg C, Vasse J, Julliot J S, Canut S, Dénarié J. Transfer of Rhizobium meloti pSym genes into Agrobacterium tumefaciens: host-specific nodulation by atypical infection. J Bacteriol, 1984, 157:134-142
    237. Tun-Garrido C, Bustos P, González V, Brom S. Conjugative transfer of p42a from Rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid,is regulated by quorum sensing. J Baceriol, 2003, 185:1681-1692
    238. Turner S L, Young P W. The replicator region of the Rhizobium leguminosarum cryptic plasmid pRL8JI. FEMS Microbiol Lett, 1995, 133:53-58
    239. Turner S L, Rigottier-Gois L, Power R S, Amarger N, Young J R W. Diversity of repC plasmidreplication sequences in Rhizobium leguminosarum. Microbiology, 1996, 142:1705-1713
    240. Turner S L, Young J P. The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. Mol Biol Evol, 2000, 17:309-319
    241. Turner S L, Zhang X X, Li F D, Peter J, Young W. What does a bacterial genome sequence represent? Mis-ssignment of MAFF303099 to the genospecies Mesorhizobium loti. Microbiology, 2002, 148:3330-3331
    242. Ulrich A, Pühler A. The new class-Ⅱ transposon Tn163 is plasmid-borne in 2 unrelated Rhizobium leguminosarum biovar viciae strains. Mol Gen Genet, 1994, 242:505-516
    243. Uraji M, Suzuki K, Yoshida K. A novel plasmid curing method using incompatibility of plant pathogenic Ti plasmids in Agrobacterium turnefaciens. Genes Genet Syst, 2002, 77:1-9
    244. Valencia-Morales E, Romero D. Recombination enhancement by replication (RER) in Rhizonbium etli. Genetics, 2000, 154:971-983
    245. Velázquez E, Mateos P F, Pedrero P, Dazzo F B, Martínez-Molina E. Attenuation of symbiotic effectiveness by Rhicobium meliloti SAF22 related to the presence of a cryptic plasmid. Appl Environ Microbiol, 1995, 61:2033-2036
    246. Villadas P J, Vázquez E, Martfnez-Molina E, Toro N. Identification of nodule dominant Rhizobium meliloti strains carrying pRmeGR4b type plasmid within indigenous soil populations by PCR using derived from specific DNA sequence. FEMS Microbiol Ecol, 1995, 17:161-168
    247. Vinuesa P, Reuhs B L, Breton C, Werner D. Identification of a plasmid-borne locus in Rhizobium etli KIMSs involved in lipopolysaccharide O-chain biosynthesis and nodulation of phaseolus vulgaris. J Bacteriol, 1999, 181:5606-5614
    248. Wang H, Zhong Z, Cai T, Li S, Zhu J. Heterologous overexpression of quorum-sensing regulators to study cell-density-dependent phenotypes in a symbiotic plant bacterium Mesorhizobium huakuii. Arch Microbiol, 2004, 182:520-525
    249. Watson R J, Chan Y K, Wheatcroft R, Yang A F, Han S. Rhizobium meliloti genes required for C,,-dicarboxylate transport and symbiotic nitrogen fixation are located on a megaplasmid. J Bacteriol, 1988, 170:927-934
    250. Watson R J, Heys R. Repliction regions of Sinorhizobium meliloti plasmid. Plasmid, 2006, 55: 87-98
    251. Weaver R, W. Stability of plasmid in Rhizobium phaseoli during culture. Soil Biol Biochem, 1990, 22:165-169
    252. Weinstein M, Roberts R C, Helinsid D R. A region of the broad-host-range plasmid RK2 causes stable in planta inheritance of plasmids in Rhizobium meliloti cells isolated from alfalfa root nodules. J Bacteriol, 1992, 174:7486-7489
    253. Wheatcroft R, Laberge S. Identification and nucleotide sequence ofRhizobium meliloti sequence ISRm3: Similarity between the putative transposase encoded by ISRm3 and those encoded by Staphylococcus aureus IS256 and Thiobacillus ferrooxidans IST2. J Bacteriol, 1991, 173: 2530-2538.
    254. Williams D R, Thomas C M. Active partitioning of bacterial plasmid. J Gen Microbiol, 1992, 138:1-16
    255. Yang G P, Debellé F, Savagnac A, Ferro M, Schiltz O, Maillet F, Promé D, Treilhou M, Vialas C, Lindstron K, Dénarié J, Promé J C. Structure of the Mesorhizobium huakuii and Rhizobium galegae Nod factors: a cluster of phylogenetically related legumes are nodulated by rhizobia producing Nod factors with α, β-unsaturated N-acyl substitutions. Mol Microbiol, 1999, 34: 227-237
    256. Yang S, Wu Z, Gao W, Li J. TnS-Mob transposon mediated transfer of salt tolerance and symbiotic characteristics between Rhizobia genera. Chin J Biotechnol, 1993, 9:137-41
    257. Young J P W, Wexler M. Sym plasmid and chromosomal genotypes are correlated in field populations of Rhizobium leguminosarum. J Gen Microbiol, 1988, 134:2731-2739
    258. Zhang X X, Zhou J C, Zhang Z M, Chen H K, Li F D. Behavior of plasmid pJB5JI in Rhizobium huakuii under free-living and symbiotic conditions. Curt Microbiol, 1995, 31:97-101
    259. Zhang X X, Guo X W, Terefework Z, Pauin L, Cao Y Z, Hu F R, Lindsstrom K, Li F D. Genetic diversity among rhizobial isolates from field-grown Astragalus sinicus of southern China. Syst Appl Microbiol, 1999, 22:312-320
    260. Zhang X X, Turner S I, Guo X W, Yang H J, Debellε F, Yang G P, Dεnariε J, Peter J, Young W, Li F D. The Common nodulation genes of Astragalus sinicus rhizobia are conserved despite chromosomal diversity. Appl Environ Microbiol, 2000, 66: 2988-2995
    261. Zhang X X, Kosier B, Pricfer U B. Symbiotic plasmid rearrangement in Rhizobium leguminosarum bv. viciae VF39SM. J Bacteriol, 2001,183: 2141-2144
    262. Zhang Z, Chen H, Li F, Fan Y. Construction of gene library and isolation of pRaZ15 containing complete nodulation genes in Rhizobium astragali. Chin J Biotechnol, 1991,7: 213-219
    263. Zhu J, Chai Y, Zhong Z, Li S, Winans S C. Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol, 2003, 69: 6949-6953

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700