用户名: 密码: 验证码:
强热沉积下热力耦合问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高能量沉积大温度梯度下的非稳态温度场及其耦合应力场的研究具有十分重要的理论意义应用背景。它涉及与高能量沉积相关的一系列基本理论问题,如固体本构方程、多尺度问题、热力耦合波传播非Fourier效应等,因而成为近代科学技术发展的重要环节,受到许多科学家工程师的高度重视。本文从基础原理基础理论出发,力图在线性理论的框架内对强热沉积下热力耦合问题的几个基础性问题进行较为深入的分析。
     全文共7章:
     第1章绪论,简要述评热力耦合问题的研究现状。
     第2章针对各类物质模型在本构谱系中地位与联系的表述问题,叙述热力耦合本构理论,在现代本构理论的谱系中给常用的热传导方程的各类形式,如Gurtin热传导物质、Cattanco物质、Fourier热传导物质Jeffreys物质予相应的地位并归入相应的谱系。叙述中涉及了变形梯度、高阶变形梯度、温度、温度梯度温升率描写的应力、偶应力热流矢量。提出了热梯度物质模型及其特例,给出了本构方程的简化式与标架无差异性相协调的表示定理。
     第3章第3.1节针对单纯热传导,讨论双相有限延迟型热传导介质的温度传播模式及其传播的群速度。证明群速度的最大值不等于CV模型相应的传播速度,而是其0.6065倍;并在3.2节中将Biot对Fourier介质的变分方程推广有限松弛-延迟型非Fourier介质的热传导问题,得到含双有限松弛时间的变分方程;对比地讨论了与微分型非Fourier介质对应变分方程,及其势函数形式;第3章第3.3节探讨双相有限延迟型热传导定律相应的热力耦合传播模式,由此导出热力耦合传播的两个彼此联系的群速度,即第一声第二声,及其关联;第3.4节讨论有限松弛-延迟型非Fourier介质的热力耦合问题的变分方程,将第3.2节所述的热传导问题的变分方程推广到有限松弛-延迟型非Fourier介质热传导定律架构的热力耦合情况,得到包含了双有限松弛时间的变分方程;作为比较,还得到了微分型(CV型)非Fourier介质热传导定律构架的热力耦合情况的变分方程,并得到了它的势函数形式。作为应用,讨论了半空间在表面受恒温热冲击问题的近似解,得到含有松弛时间及相应的松弛尺寸参数的热影响区域与时间的指数函数增长关系。
     第4章针对热力耦合问题的解法问题,建议一个热力耦合问题的解耦迭代算法,即交替地计算两个解除了耦合的问题,逐步地得到足够精度的解;这两个问题分别是已知温度时空分布的热Hooke介质的应力分析问题已知位移、应变
The research on the distributions of non-steady temperature and the coupled stress caused by the deposition of highly concentrated energy and the induced enormous temperature gradient is receiving increasing attention due to its important significance and engineering background. It involves a series of fundamental theoretical problems, such as constitutive relations of solids, multi-scale analysis, coupled thermo-mechanical wave propagation, and non-Fourier effect of heat conduction, etc. In this dissertation, some of its fundamental problems are to be investigated based on the fundamental thermo-mechanical principles and theories and within the framework of linear systems. There are seven chapters in this dissertation.
     In Chapter 1, the state of the art in the coupled thermal-mechanical problems is briefly reviewed.
     In Chapter 2, the status of different material models in the constitutive pedigree and the correlation between different material models are discussed. The conventional heat conduction laws of different materials, such as Gurtin heat conducting material, Cattanco material, Fourier thermal conduct material and Jeffreys material, are classified into the corresponding constitutive pedigrees. The involved deformation and its gradient, strain gradient, temperature gradient, heating rate, and their contribution to stress, couple stress and heat flux are also emphasized. The concept of a heat gradient material as well as one of its special cases is introduced.
     In Section 3.1 of Chapter 3, the concept of thermal gradient material and an example are presented. The heat conduction modes and the corresponding velocity group in a kind of dual-phase finite lag non-Fourier media are discussed. It proves that the maximum value in the velocity group is not equal to but 0.6065 times the velocity of CV model. In Section 3.2, the variation equation for Fourier media proposed by Biot is extended to the heat conduction of dual-phase-finite lag non-Fourier media, which leads to the variation equation with dual finite relaxation time. In contrast, the variation equation and potential function of a differential Non-Fourier media are discussed. In Section 3.3, the coupled thermal-mechanical transportation mode of dual-phase-finite lag non-Fourier media is discussed. Two groups of velocities in the coupled thermal-mechanical transportation, i.e., the first and the second velocities of sound and their correlation, are derived. In Section 3.4, the variation equation for a finite relaxation-lag
引文
[1] J.B.J . Fourier, Theorie Analytique de la Chaleur, Paris, 1822
    [2] Fung Y C, Foundations of Solid Mechanics, PRENTICE HALL.INC.,1965
    [3] L. Landau, The Theory of Superfluidity of HeliumⅡ , J, PHYS., Vol.5, P.71,1941.
    [4] V. Peshkov, Second Sound in Heliun Ⅱ , J.phys., Vol.5,p.71,1941.
    [5] C. C. Ackerman, B,Bertman, H.A.Fairbank, and R.A, Guyer, Second Sound in Solid Helium, Phys,Rev.Leu.,Vol.16,P.789,1966
    [6] J.B.Brown, D.Y.Chung, and P.W.Matthews, Heat Pulses at Low Temperature, Phys. Rev., Vol.21,P.241,1966.
    [7] C.C.Ackerman and R.A.Guyer, Temperature Pulses in Dielectric Solid,Ann. Phys.Rev., Vol.50,P.128,1968.
    [8] T.F.MeNeLLY, S.J.Rogers, D.J.Channin, R.J.Rollefson, W.M.Goubau, G.E. Schmidt, J.A. Krumhansl, and R.O.POHL, heat Pulses in NaF: Onset of Second Sound, Phys. Rev. lETT, Vol.24,P.100,1970
    [9] H.E.Jackson, C.T.Walker, and T.F.MeNelly, Second Sound in NaF, Phys.Rev., Vol.25, P.26,1970
    [10] H.E.Jackson,C.T.Walker,Thermal Conductivity, Second Sound and Phonon-Phonon interactions in NaF, Phys.Rev.B,Vol.3,P.1428,1971
    [11] S.J Rogers,Tansport of Heat and Approach to Second Sound in Some Isotropically Pure Alkalishalide Lrystals,Phys.Rev.B,Vol.3,P.1440,1971
    [12] S.D.Brorson, J.G.Fujimoto,and E.P.Ippen,femtosecond Electronic Heat Tansfer Dynamics in Thin Gold Film, Phys.Rev.Lett,Vol.59,P.1962,1987
    [13] S.D.Brorson, A. Kazeroonian, J.S.Moodera, D.W.Face, T. k. Cheng, E. P. Ippen, M.S. Dresslhaus, and G. Dresslhaus, Fentosecond Room temperature Measurement of the Electron-Phonon Coupling Constant in Metallic Supereconductors, Phys, Rev. Lett, Vol.64, P. 2172,1990
    [14] H.E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, Time-Resolved Observation of Electron-Phonon Relaxation in Copper, Phys. Rev. Lett, Vol. 58, P. 1212, 1987
    [15] A.V. Luikov, Application of Irreversible Process to Investigation of Heat and Mass Tansfer, J. Eng. Phys. Vol. 9, P. 387, 1965
    [16] A.V. Luikov, Application of Irreversible Thermodynamics Methods to Investigation of Heat and Mass Transfer, Internat, J, Heat Mass Trans, Vol. 9, P. 139,1966
    [17] A.V. Luikov, Some Problems of Heat and Mass Transfer Theory, Inzh. Fiz. Zh,Vol. 26, no.5, P. 781,1974
    [18] W.Kaminski, Hyperbolic Heat Conduction Equation for Materials with a Non-homogeneous Inner Structure, J. Heat Trans, Vol. 112, P. 555,1990
    [19] K. Mitra,S.Kumar, A.Vedavarz, and M. K. Moallemi, Experimental Evidence of Hyperbolic Heat Conduction in Processing Meat, J. Heat Mass Trans, Vol. 117, P. 568.1995
    [20] W.Kaminski , Heat conduction with finite wave propagation velocity for material of non-homgeneous inner structure,Inz.Chem.Proc,.Vol.9,81,1988.
    [21] R.E.Nettletion,Relaxation theory of thermal conduction in liquid,Phys.Fluids,Vol.3, 216, 1960.
    [22] B. M. Raspopov, Control of Some Transfer Processes, Inzh, Fiz, Zh, Vol,12, P.444.1967
    [23] O .M. Todos, N. V. Antonishyn, L. E. Sumchenko, and V. V. Lushchikov, Possibility of Description of the Process of Unsteady-state Heat Conduction of DenseDisperse Systems by Differential Equations Allowing the Peculiarities of Phase Interaction, Inzh. Fiz. Zh, Vol. 5, P. 815. 1970
    [24] N. V. Antonishyn, M. A. Geller, and A. L. Parnas, Hyperbolics Heat Conduction Equation for a Disperse System, Inzh. Fiz. Zh, Vol. 26, P. 503, 1974
    [25] A. M. Brazhnikov, V. A. Karpychev, and A. V. Luikov, One Engineering Method of Calculating Heat Conduction Processes, Inzh. Fiz. Zh., Vol.28, no.4, P.677, 1975.
    [26] S. Michalowski, E. Mitura, and W. Kaminski, The Application of Mathematical Method to Describe the Kinetics of Drying, Hungarian J. Industrial Chem., Vol.10, P.387, 1982.
    [27] J. Ignaczak, Linear Dynamic Thermoelasticity: a Survey, Shock Vib. Digest, Vol.13, P. 3, 1981.
    [28] J. Ignaczak, Gneralized Thermoelasticity and Its Applications, Number 3, P.279, Elsevier Sci. Publ., Amsterdam, 1989.
    [29] H. W. Lord and Y. Shulman, Generalized Dynamic Theory of Thermoelasticity, J. Mech. Phys. Solids, Vol.15, P.299, 1967.
    [30] A. E. Green and K. E. Lindsay, Thermoelasticity, J. Elasticity, Vol.2, P.1, 1972.
    [31] R. B. Hetnarski, Solution of the Coupled Problem of the Thermoelasticity, in the Form of Series of Functions, Arch, Mech. Stos., Vol.4, no. 16,P.919, 1964.
    [32] S. Kaliski, Wave Equation of Heat Conduction, Bull. Acad. Poln. Sci., Vol.13, P.211, 1965.
    [33] R. B. Hetnarski, Coupled Thermoelastic Problem for the Elastic Half Space, Bull. Acad. Polon. Sci., Vol.12, P.49, 1967.
    [34] S. Kaliski and W. Nowacki, Integral Theorems for the Wave Type Heat Conductivity Equation, Bull. Acad. Polon. Scl., Vol.17, P.305, 1969.
    [35] A. Nayfeh and S. Nemat-Nasser, Thermoelastic Waves in Solids with Thermal Relaxation, Acta. Mech., Vol.12, P.53, 1971.
    [36] P. Puri, Plane Waves in Generalized Thermoelasticity, Internal. J. Eng. Sci.,Vol.11, P.735, 1973.
    [37] A. Nayfeh, Propagation of Thermoelastic Distribution in Non-Fourier Solids, AIAA J., Vol.15, P.957, 1977.
    [38] V. K. Agarwal. Plane Waves in Generalized Thermoelasticity, Acla. Mech., Vol.31, P.185, 1979.
    [39] J. H. Prevost and D. Tao, Finite Element Analysis of Dynamic Coupled Thermoelasticity Problems with Relaxation Times, J. Appl. Mech., Vol.50, P.817, 1983.
    [40] K. K. Tamma, Numerical Simulations for Hyperbolic Heat Conduction-Dynamic Problems Influenced by Non-Fourier/Fourier Effects, in Symposium of Heat Waves,University of Minnesota, Minneapolis, April 1989, Institute of Mathematics and Applications, 1989.
    [41] K. K. Tamma and S. B. Railkar, Evaluation of Thermally Induced Non-FourierStress Wave Disturbances via Specially Tailored Hybrid Transfinite Formulations, Comput. & Structure, Vol.34, P.5, 1990.
    [42] K. K. Tamma and R. R. Namburu, Effective Finite Element Modeling AnalysisApproach for Dynamical Thermoelasticity Due to Second Sound Effects, J. Comput. Mech., Vol.9, P.73,1992.
    [43] R. B. Hetnarski and J. Ignaczak, Generalized Thermoelasticity: Clozed-Form Solutions, J. Thermal Stresses,Vol.16, P.473, 1993.
    [44] R. B. Hetnarski and J. Ignaczak, Generalized Thermoelasticity: Response of Semi-Space to a Short Laser, J. Thermal Stresses, Vol.17, P.377, 1994.
    [45] K.K.Tamman, Xiangmin Zhou, Macroscale and Microscale Thermal Transport and Thermo-Mechanical Interactions: Some Noteworthy Perspectives, Journal of Thermal Stresses,Vol.21, P405-449,1998
    [46] M.Carlo Cattanco, Sulla Conduzione de Calor, Atti Sem, Mat.Fis.Univ.Modena, Vol.3, P3,1948
    [47] J.Tavernier, Sur Equation de la chaleur, C,R,Acad.Sci.Paris Ser. I Math., Vol. 254, P.69,1962
    [48] D.D.Joseph and Luigi Preziosi, Heat Waves, Rev., Vol.37,P.405,1931
    [49] D.D.Joseph and Luigi Preziosi, Addendum to the Paper” Heat Waves”, Rev., Vol.47, P.397,1994
    [50] C.L.Tien and G..Chen, Challenges in Microscale Conductive and Radiative Heat Transfer, J.Heat Trans.,Vol.116, P.779,1994
    [51] M. E. Gurtin and A. C. Pipkin, A General Theory of Heat Conduction with Finite Wave Speed,Arch. Rational Mech. Anal., Vol.31, P.113, 1968.
    [52] J. W. Nunziato, On Heat Conduction in Materials with Memory, Quart, Appl .Math ., Vol.XXIX, P.187, 1971.
    [53] S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, Femtosecond Eleetronie Heat-Transfer Dynamics in Thin Gold Film, Sov. Phys. JETP, Vol.39, P.375, 1974.
    [54] T. Q. Qui and C. L. Tien, Short-Pulse Laser Heating on Metals, Internat., J. Heat Mass Trans., Vol.35, P.719, 1992.
    [55] T. Q. Qui and C. L. Tien, Heat Transfer Mechanism during Short-Pulse Laser Heating of Metals, J. Heat Trans., Vol. 115, P.835, 1993.
    [56] Boit M A,New Method in Heat Flow Analysis with Application to Flight Structure, J.Aero.Sci.,24(1957)857-873
    [57] Biot M.A., Variational and Lagrangeian thermodynamics of thermal convection-fundamental shortcomings of the heat-transfer coefficient, J. Aero. Sci.,Vol.29, P105~106,1962.
    [58] 严宗达,王洪礼,热应力,高等教育科出版社,1993
    [59] Trusedell C, Noll W, The Nonlinear Field Theory of Mechanics, Encyclopedia of Physics III /3,ed by Flugge S, Springer-Verlag Berlin ,1965
    [60] Eringen A C, Mechanics of Continua, Wiley, New-York,1967
    [61] Coleman B D, Noll W, The thermodynamicas of elastic material with heat conduction and viscosity , Arch. Rational Mech. Anal.,13:167-178,1963
    [62] 张晓敏,彭向,热力耦合问题的本构方程,重庆大学学报,(2)2006
    [63] Tzou D.Y.,A unified field approach for heat conduction from mirco-to macro-scales, J.Heat Trns.,Vol.117, 8,1995.
    [64] 刘静,微米/纳米尺度传热学,科学出版业,160-218,2003
    [65] 张培源,张晓敏,汪天庚,岩石弹性模量与波速的关系,岩石力学与工程学报,20(6)785-788,2001
    [66] 张晓敏,张培源,彭向,三相有限延迟型非 F 介质热力耦合传播模式群速度[J],应用力学学报,22(4):511-516,2005
    [67] 张浙,刘登瀛.非傅里叶热传导研究进展[J].力学进展,2000,30(3):446-456.
    [68] Mitra K, Kumar S, Vedavarz A, and Moallemi M K. Experimental Evidence of Hyperbolic Heat Conduction in Processing Meat[J]. J. Heat Trans., 117: 568,1995
    [69] Fleck N A, Hutchinison J W, A phenomenological theory for strain gradient effects in plasticity, J Mech Phys Solids,41:1825-1857,1993
    [70] Fleck N A , MulleiG M ,Ashby M F, Strain gradient plasticity theory and experiment, Acta Metall Mater.,42:475-487,1994
    [71] Fleck N A, Hutchinison J W, Strain gradient plasticity ,Advanced Applied Mechanics, Academic Press,33:295~361,1997
    [72] Toupin R A, Elastic material with couple stresses, Archive Rational Mechanics Analysis, 11:385-411,1962
    [73] 黄克智,黄永刚,固体本构关系,清华大学出版社,1999,383-41
    [74] 陈少华,王自强,应变梯度理论进展,力学进展,33(2):207-216,2003
    [75] 陈裕泽. 中国工程物理研究院多学科综合研究中结构力学发展的 40 年. 现代力学与科技进步: 329-335,1997.
    [76] 陈裕泽、李恩忠、张光军. 连续波 CO2 激光作用下受拉铝板的瞬态破坏效应研究. 强激光与粒子束, 7(2): 245-251, 1995.
    [77] 杨运民、彭向等. 温升率对 LY12 铝合金拉伸响应特性的影响,金属学报, 36(9): 926-930, 2000.
    [78] 陈斌、彭向等. 不同温升率下预载 H62 黄铜破坏的实验研究,金属学报,37(12): 1256-1260, 2001.
    [79] X Peng, X Zhang, B Chen, Degration of mechanical properties of aluminum Alloy LY12 Under fast heating, ICHMM, Chongqing, Jun.2004,153-157
    [80] 彭向,杨运民,陈裕泽,尹益辉,高温升率下 LY12 铝合金拉伸破坏及其机理的研究[J]. 固体力学学报,2005,Vol.26 :72-76.
    [81] X Peng, Y Qin, X Zhang, A Constitutive model for the metals subjected to thermomechanical loading with fast heating during heating-assisted forming, Journal of Material Processing Technology 167(2005)244-250

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700