用户名: 密码: 验证码:
猪、鸡脂肪代谢相关基因的分子特征及表观遗传调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
畜禽脂肪代谢受多种因素影响,包括遗传、营养、内分泌环境等因素,它们在脂肪代谢中形成复杂的调控网络。脂类是动物人体必需的营养成分,也是生物体重要的组成成分,但猪、鸡体内过多的脂肪沉积给人类带来一系列的问题。基于此,以猪、鸡为研究对象,本试验对影响脂肪代谢相关基因的分子特征表观遗传调控进行了研究。利用分子生物学生物信息学相结合的方法对猪BMAL1(pBMAL1)基因的分子特征进行分析,以便寻找影响猪脂肪代谢的主效基因,为猪的分子育种实践提供理论支持。分析不同剂量的甜菜碱对鸡部分生产性状屠宰性状的作用,进而探讨甜菜碱对脂肪代谢相关基因表达甲基化水平的影响,为进一步深入研究甜菜碱调控基因表达甲基化的分子机理奠定基础,对于提高优质高产鸡的选育具有重要意义。
     第一部分:以人小鼠BMAL1基因序列设计简并引物成功克隆了猪BMAL1 cDNA非编码区部分序列,分析了pBMAL1基因在不同部位脂肪组织其它组织中的表达,并对其进行了精细定位。结果表明,pBMAL1基因序列长为2073bp,开放阅读框为1878bp,编码626个氨基酸,该氨基酸包括bHLH、PAS-APAS-B结构域。编码区核酸序列与人、小鼠大鼠的同源性分别为94.36%, 89.85%89.79%;氨基酸序列与人、小鼠大鼠的同源性分别为99.20%, 98.24%97.92%。在长白猪莱芜猪背膘中发现了两个剪接变异体。pBMAL1 mRNA在长白猪5种脂肪组织均有表达,在肠系膜脂肪表达量最高,在花油表达量最低,但差异不显著(P>0.05);pBMAL1 mRNA在成年莱芜猪14种组织均有表达,在背膘中表达最高,在眼肌中表达最低。用辐射杂种板把pBMAL1基因定位在SSC 2p11-q21。
     第二部分:通过在肉鸡蛋鸡饲料中添加不同剂量的甜菜碱,研究甜菜碱对鸡部分生产性状屠宰性状的影响;采用半定量RT-PCR方法分析了甜菜碱对脂肪代谢相关基因LPL、PPARγ、A-FABP、FAS、Adiponectin、BMAL1CLOCK mRNA表达的影响,并通过亚硫酸盐测序的方法对LPLPPARγ基因的启动子区甲基化进行了分析。
     结果表明,在饲料中添加0.1%的甜菜碱对肉鸡平均日增重、腹脂率肝重率作用不显著(P>0.05)。在饲料中添加0.08%的甜菜碱使165日龄蛋鸡的肝重率比对照组降低15.66%(P<0.05),使180日龄的日均产蛋率提高26.18%(P<0.05)。不同剂量的甜菜碱对其余性状在两个试验阶段各组之间影响均不显著( P>0.05 )。
     饲料中添加0.1%的甜菜碱分别使56日龄肉鸡脂肪中A-FABP mRNA66日龄肉鸡脂肪中LPL mRNA表达丰度显著降低(P<0.05);使5666日龄肉鸡脂肪中FAS mRNA的表达丰度极显著降低(P<0.01)。但是,同样剂量的甜菜碱对56日龄肉鸡脂肪中LPL,66日龄肉鸡脂肪中A-FABP,5666日龄肉鸡脂肪中PPARγ、Adiponectin、BMAL1CLOCK mRNA的表达丰度影响不明显(P>0.05)。
     对于蛋鸡半定量RT-PCR分析表明,LPL mRNA的表达量在180日龄时甜菜碱Ⅱ组(添加0.06%的甜菜碱)极显著低于对照组甜菜碱Ⅲ组(添加0.08%的甜菜碱)(P<0.01);FAS mRNA的表达量在180日龄时甜菜碱Ⅲ组均极显著大于其余3组;Adiponectin mRNA的表达量在165日龄时甜菜碱Ⅲ组显著大于对照组(P<0.05);BMAL1 mRNA的表达量在180日龄时甜菜碱Ⅲ组显著大于对照组(P<0.05)。其余基因的表达量在不同试验组不同试验阶段差异均不显著(P>0.05)。
     亚硫酸盐测序结果显示,66日龄肉鸡脂肪中LPL基因启动子区处于低甲基化状态;对照组甜菜碱组总体甲基化比率分别为4.55%2.77%。56日龄肉鸡脂肪中PPARγ基因5′上游调控区处于高甲基化状态,对照组甜菜碱组总体甲基化比率分别为76.7%71.7%。甜菜碱对肉鸡脂肪LPL基因PPARγ基因甲基化调控作用不明显(P>0.05)。
     与肉鸡相似,180日龄蛋鸡脂肪中LPL基因启动子区处于低甲基化状态,对照组、甜菜碱Ⅰ组(添加0.04%的甜菜碱)、甜菜碱Ⅱ组甜菜碱Ⅲ组的总体甲基化比率分别为3.20%、4.31%、1.83%3.65%,各组之间差异不显著( P>0.05 )。PPARγ基因5′上游调控区处于高甲基化状态,对照组、甜菜碱Ⅰ组、甜菜碱Ⅱ组、甜菜碱Ⅲ组的总体甲基化比率分别为89.6%、85.7%、85.7%71.2%,对照组与甜菜碱Ⅲ组相比差异显著(P<0.05)。
Fat metabolism is affected by many factors in livestock, including heredity, nutrition, endocrine secretion, environment and so on, which can inform complicated regulation network. Lipid is essential for the development of human and animals, and is also the very important composition in organism. However, too much fat deposition brings about many problems in swine and chicken. On account of this, the molecular characterization and epigenetic regulation of genes, which are involved in fat metabolism, were studied in swine and chicken here. And pig BMAL1 (pBMAL1) was analyzed with both molecular biology and bioinformatics methods in order to search major genes affecting fat metabolism, which can contribute to the molecular breeding of swine. In addition , the effects of betaine supplementation to diet on partial growth performance and carcass traits were analyzed in chicken, and thus to approach the effects of dietary betaine supplementation on expression and methylation of fat metabolism genes, which laid the foundation for further studying gene expression regulated by betaine and the molecular mechanism of methylation. It is of important significance for the breeding of high quality and high yield chicken.
     PartⅠ:In present study, we cloned and sequenced the cDNA and partial non-coding regions of pBMAL1 with degenerate primers designed according to the sequences of human and mouse BMAL1 gene, analyzed its expression in adipose tissues and other tissues and further mapped its position on porcine chromosome. The results indicated that pBMAL cDNA had 2073 bp, including 1878 bp open reading frame (ORF), which coded 626 amino acids including bHLH, PAS-A and PAS-B domains. They shared 94.36%, 89.85%, 89.79% identity in coding region nucleotide and 99.20%, 98.24%, 97.92% in amino acid with the sequences of human, mouse and rat BMAL1, respectively. Two splice-variants were found in Landrace pig and Laiwu Black pig backfat. And the expression of pBMAL1 was detected in five adipose tissues of Landrace pig,with the highest expression level in mesentery fat tissue and the lowest in caul fat tissue, but the expression levels were not significantly different among them (P>0.05). And also the expression of pBMAL1 was detected in 14 tissues of adult Laiwu pigs, with the highest in backfat and the lowest in eye muscle. Furthermore, the pBMAL1 gene was mapped SSC 2p11-q21 with a whole genome porcine radiation hybrid (RH) panel (IMpRH).
     PartⅡ:This experiment was conducted to determine the effect of dietary betaine supplementation on partial growth performance and carcass traits in broiler and laying hen; the expressions of LPL, PPARγ, A-FABP, FAS, Adiponectin, BMAL1 and CLOCK were analyzed by semi-quantitative RT-PCR method. And the methylation status of LPL and PPARγpromoters were examined by bisulfite sequencing.
     Our results showed that the 0.1% of betaine addition to the diet showed no significant effect on average daily gain, percentage of abdominal fat and the ratio of liver to body weight in broiler (P>0.05). However, the addition 0.08% betaine to the diet decreased the ratio of liver to body weight by 15.66% compared with the control diet (P<0.05) in 165 d laying hen. Similarly, the daily average laying rates were increased by 26.18% (P<0.05) in 180 d laying hen by 0.08% betaine supplementation. Moreover, there were no significant differences on other traits by the addition different dosage of betaine to the diet during two test stages (P>0.05).
     For broiler, the addition of 0.1% betaine to the diet decreased significantly A-FABP mRNA expression level in 56 d and LPL mRNA expression level in 66 d of subcutaneous adipose tissue (P<0.05), respectively. Also, the FAS mRNA expression level of 0.1% betaine treatment groups were extremely significantly decreased compared with that of control groups in 56 d and in 66 d (P<0.01), respectively. Nevertheless, no significant differences were found in LPL mRNA expression in 56 d and A-FABP mRNA expression in 66 d by the same betaine supplementation (P>0.05), and neither 56 d broiler nor 66 d broiler of PPARγ, Adiponectin, BMAL1 and CLOCK mRNA expression levels were significant differences by the same betaine supplementation (P>0.05).
     For laying hen, semi-quantitative RT-PCR results indicated that LPL mRNA expression level in 180 d for betaineⅡgroup (0.06% betaine addition) was extremely significantly lower than those of the control group and betaineⅢgroup (0.08% betaine addition) (P<0.01); and FAS mRNA expression level in 180 d for betaineⅢgroup was extremely significantly higher than those of the other groups (P<0.01); and also both Adiponectin mRNA in 165 d and BMAL1 mRNA in 180 d for betaineⅢgroups were significantly higher than those for controls (P<0.05). The expression levels of other genes did not reach significance among groups in different test stages (P>0.05).
     Bisulfite sequencing analysis results revealed that LPL promoter region was hypomethylated in subcutaneous adipose tissue of 66 d broiler; percentages of global DNA methylation in control and betaine groups were 4.55% and 2.77%, respectively. However, PPARγ5′upstream regulatory region was in hypermethylation status in subcutaneous adipose tissue of 56 d broiler. And the global DNA methylation levels of PPARγdisplayed 76.7% and 71.7% in control and betaine groups, respectively. The DNA methylation level of LPL and PPARγwere not affected by betaine supplement in broiler subcutaneous adipose tissue (P>0.05).
     Similar observations were made for 180 d laying hen, in which the LPL promoters was hypomethylated. The global DNA methylation levels were 3.20%, 4.31%, 1.83% and 3.65% among control and betaineⅠ(0.04% betaine addition),ⅡandⅢgroups, respectively, and no significant differences were found among groups (P>0.05). And, PPARγ5′upstream regulatory region was also hypermethylated in subcutaneous adipose tissue of 180 d laying hen. The global DNA methylation status indicated 89.6%, 85.7%, 85.7% and 71.2%, respectively. And the difference of methylation levels was significant between control and betaineⅢgroup (P<0.05).
引文
安立龙,效梅,黄志毅,郑枢,张艳,谢月华.不同剂量甜菜碱对热应激肉鸡组织器官发育的影响.家畜生态学报,2005,26(3): 40-46.
    白琳,赵文恩.β-胡萝卜素辣椒红素对K562细胞中PPARγ蛋白表达的影响.中国医药工业杂志,2007,38(8):570-572.
    包忠宪,张龙江,邓惠玲,林汉华,王宏伟.重组人生长激素对SW872脂肪细胞脂联素及其受体基因表达蛋白分泌的影响.实用儿科临床杂志,2006,21(8):465-466.
    陈正冬.甜菜碱促进肉鸭生长的作用机理.中国农学通报,2005,21(7):21-23.
    仇雪梅,李宁,吴常信,王秀利.用放射杂交板定位鸡的MC4R基因以及其在鸡人染色体上同源区的比较分析.遗传学报, 2004,31(12):1356-1360.
    崔俊.组蛋白乙酰化、DNA甲基化在肿瘤发生中的作用.国外医学分子生物学分册2001,23(2):80-82.
    戴茹娟,李宁,吴常信.猪肥胖基因(Ob)部分序列的克隆与多态性分析.遗传,1997,19(增刊):29-31.
    冯杰,许梓荣.甜菜碱对肥育猪肌肉肝脏及血清氨基酸组成的影响.浙江大学学报(农业与生命科学版), 2001, 27 (1) : 107- 110.
    冯敏山,张建文,闫国红.甜菜碱替代蛋氨酸对产蛋鸡生产性能及蛋品质的影响.中国饲料,2003,21:6-7.
    郝俊虎,王俊东,庞全海,李俊平,张建峰,张建海,姚华.甜菜碱与酵母铬对4-7周龄肉仔鸡胴体品质及脂质代谢的影响.中国农业科学, 2005,38(4):803-812.
    胡红梅,陈金中,季朝能,顾少华,谢毅,毛裕民.罗格列酮对NOD小鼠PPARγFABPs基因表达的影响.复旦学报(自然科学版),2003,42(4):597-601.
    怀明燕,许梓荣.甜菜碱对猪生长性能的影响.中国饲料,1999,20:13-14.
    黄其春,许梓荣.甜菜碱对生长肥育猪胴体组成的影响及其机理研究进展.中国畜牧杂志,2006,42(15):47-49.
    李长龙,潘玉春,孟,王子林,黄雪根. H-FABP、MC4R、ADD1基因多态性在3个猪群中分布及其与肌内脂肪背膘的相关研究.遗传, 2006, 28(2):159-164.
    李春霖,肖或君,龚燕平,田慧,陆菊明,母义明,李明,潘长玉. NF-κB抑制剂对胰岛素抵抗大鼠抵抗素、脂联素脂联素受体表达的影响.中华内分泌代谢杂志,2006,22(3):277-278.
    李加琪,张豪,刘小红,高萍,王翀,吴秋豪,张细权,陈瑶生.长白-蓝塘猪资源群第6号染色体的QTL检测.中国农业科学, 2004 ,37(1): 130-135.
    李仕璋,刘安芳,赵智华,肖文川,李凤翔,王定超.光照制度对肉鸭生产性能脂肪沉积的影响.四川畜牧兽医,2000,27(115):27-29.
    李晓南,陈荣华,潘亚,Tommy Olsson,Olle Hernell.人类皮下网膜脂肪组织中脂联素基因的表达调控的研究.南京医科大学学报(自然科学版),2006,26(1):6-9.
    李志刚,马康华.肿瘤坏死因子-Α对脂肪细胞中脂联素表达的影响.临床心血管病杂志,2007,23(5):361-364.
    李志辉,王启贵,赵建国,王宇祥,李辉.类胰岛素生长因子Ⅱ(IGF2)基因多态性与鸡体脂性状的相关研究.中国农业科学,2004,37(4): 600-604.
    廉红霞,卢德勋,高民.饲粮水平对猪IMF含量、脂肪酸合成酶mRNA表达量及血液激素含量的影响.华中农业大学学报,2007b,26(5):651-656.
    廉红霞,卢德勋,高民.猪生长肥育期背最长肌LPL基因表达与肌内脂肪含量相关研究. 畜牧与兽医2007a,39(12): 17-20.
    刘桂兰,蒋思文,熊远著,郑嵘,屈彦纯. IGF2基因PCR-RFLP多态性与脂肪沉积相关性状的关联分析.遗传学报, 2003,30(12): 1107-1112.
    刘桂兰,蒋思文,熊远著,郑嵘,屈彦纯.猪资源家系MC4R基因扫描及其与脂肪性状的相关分析遗传学报,2002,29(6):497-501.
    刘平.苜蓿素对肉仔鸡脂肪代谢的影响及其作用机制研究[D].中国农业科学院硕士学位论文,2005.
    刘皙洁,张桂春,张维生.半胱胺、大豆黄酮对肉仔鸡脂肪代谢的影响.东北农业大学学报,2003,34(2):171-175.
    卢建军,邹晓庭.甜菜碱对蛋鸡血清前体物水平的影响.浙江大学学报(农业与生命科学版),2006,32(3):287-291.
    陆清儿,李忠全,李行先.甜菜碱对淡水白鲳的转甲基功效及蛋白质合成的影响.中国水产科学,2003,10(3):216-221.
    马玉龙,李天珍,陈立峰.甜菜碱对蛋鸡蛋品质的影响.中国家禽,1999,21(6):19.
    马玉龙,许梓荣.甜菜碱对蛋鸡产蛋期血清激素及环腺苷酸影响的研究.宁夏大学学报(自然科学版),2000,21(2):183-185.
    庞卫军,孙世铎,李影,陈国柱,杨公社.西部地区主要猪种野猪H-FABP基因分子标记与IMF含量关系.遗传, 2005,27(3):351-356.
    屈彦纯,邓昌彦,熊远著,苏玉虹,郑嵘,刘桂兰.猪6号染色体部分遗传连锁图谱的构建与QTL定位.华中农业大学学报,2002,21(5):409-413.
    宋凯,单安山.不同小麦日粮对肉仔鸡肉质、脂肪酸合成酶mRNA与脂蛋白脂肪酶mRNA表达的影响.动物营养学报,2008,20(1):69-74.
    苏玉虹,熊远著,张勤,蒋思文,明刚,余雳,郑嵘,邓昌彦.猪胴体脂肪沉积性状的QTL定位.遗传学报,2002,29(8):681-684.
    苏玉虹.熊远著,蒋思文,蒋思文,余雳,雷明刚,郑嵘,邓昌彦.大白×梅山杂交组合性状的数量性状位点定位分析.遗传学报,2004, 31(2): 132-136.
    孙龙生,叶玉山,赵国琦,王宵燕,王巧珍,王志跃.甜菜碱对蛋鸡产蛋性能及蛋品质的影响.江苏农业研究,2001,22(4):47-49.
    唐春祥,陈代文,余冰.吡啶羧酸铬、L-肉碱甜菜碱对天府肉鸭生产性能胴体品质的影响.中国饲料,2005,11:18-20.
    汪以真,占秀安.甜菜碱对肉雏鸡作用效果的研究.动物营养学报,1998,10(2):45-51.
    王刚,曾勇庆,武英,魏述东,包新见,刘婵娟,孙延晓。猪肌肉组织LPL基因表达的发育性变化及其与肌内脂肪沉积关系的研究.畜牧兽医学报,2007,3:253-257.
    王俊东,李俊平,张建峰,郝俊虎,梁占学,郭玉红.不同时期添加甜菜碱对肉鸡生产性能脂肪代谢的影响.中国兽医学报,2004,24(1):87-91.
    吴良洪,程南生,杨帆,熊先泽,魏大鹏,夏庆杰.罗格列酮对裸小鼠移植瘤PPAR-γ表达的影响.基础医学与临床,2008,28(2):128-132.
    熊文中,杨凤,周安国.猪重生长激素对不同杂交肥育猪脂肪代谢调控的研究.畜牧兽医学报,2001, 32(1):1~4.
    许梓荣,卢建军,邹晓庭.甜菜碱对蛋鸡蛋品质影响及机理研究.畜牧兽医学报,2001,32(5):397-402.
    许梓荣、王敏奇、怀明燕.甜菜碱促进猪生长的机理.中国兽医学报1999,19(4):399-403.
    颜新春.甜菜碱对肥育猪生长激素释放激素因子的影响及机理颜[D].杭州:浙江大学,2001.
    杨丽杰.不同水平甜菜碱蛋氨酸对肉鸡生产性能的影响.河北农业大学学报,2004,27(4):89-92.
    叶耀辉,许培文.限饲对猪皮下各脂肪层脂肪沉积及胴体组成的影响.福建农业学报,1998,13(14):42-45.
    占秀安,许梓荣.甜菜碱在肉鸡体内供甲基代谢及其节约蛋氨酸效应机制.中国粮油学报,2004,19(3):78-81.
    张桂春,徐逸男,李绍龙.半胱胺对肉仔鸡生产性能及体脂含量的影响.饲料工业,2005,26(12):29-30.
    张振波,雷明刚,邓昌彦,熊远著.猪LPL基因内含子3的克隆、测序及多态性研究.畜牧兽医学报,2005,36(6),627-630.
    郑必锦. L-肉碱及其在家禽营养中的研究进展.饲料工业,2005,26(14):12-14.
    郑长峰,陈璎.甜菜碱对蛋鸡产蛋性能的影响及抗脂肪肝作用.饲料博览, 1998, 10(4): 1-3.
    邹晓庭,卢建军.甜菜碱调控蛋鸡脂肪代谢的机理研究.中国农业科学,2002,35(3): 325-330.
    邹晓庭,马玉龙,许梓荣.甜菜碱、碘化酪蛋白对产蛋鸡的促产蛋作用及其机理探讨.浙江农业学报,1998,10 (3) : 144~149.
    邹晓庭.甜菜碱促蛋鸡产蛋的内分泌作用机制.中国兽医学报,2001,21(3):300-303.
    Alonso A, MartíA, Corbalán MS, Martínez-González MA, Forga L, Martínez JA.. Association of UCP3 Gene–55C>T polymorphism and obesity in a spanish population. Ann Nutr Metab, 2005, 49: 183-188.
    Ando H, Yanagihara H, Hayashi Y, Obi Y, Tsuruoka S, Takamura T, Kaneko S, Fujimura A.. Rhythmic messenger ribonucleic acid Expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology, 2005 146: 5631–5636.
    Aoyagi T, Shimba S, Tezuka. Characteristics of Circadian Gene Expressions in Mice White Adipose Tissueand 3T3-L1 Adipocytes. J Health Sci, 2005, 51: 21-32.
    Arnyasi M, Grindflek E, Jávor A, Lien S.. Investigation of two candidate genes for meat quality traits in a quantitative trait locus region on SSC6: the porcine short heterodimer partner and heart fatty acid binding protein genes. J Anim Breed Genet, 2006, 123(3): 198-203.
    Avivi A, Albrecht U, Oster H, Joel A, Beiles A, Nevo E. Biological clock in total darkness: the Clock/MOP3 circadian system of the blind subterranean mole rat. Proc Natl Acad Sci U S A, 2001, 98(24): 13751-13756.
    Bell A C, West A G, and Felsenfeld G. The proein CTCF is required for the enhancer blocking activity of vertebeate insulators. Cell, 1999, 98: 387-396.
    Bell AC and Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature, 405: 482-485.
    Borton RJ, Loerch SC, McClure KE, Wulf DM. Comparison of characteristics of lambs fed concentrate or grazed on ryegrass to traditional or heavy slaughter weights. I. Production, carcass, and organoleptic characteristics. J Anim Sci, 2005b, 83(3): 679-685.
    Borton RJ, Loerch SC, McClure KE, Wulf DM.. Characteristics of lambs fed concentrates or grazed on ryegrass to traditional or heavy slaughter weights. II. Wholesale cuts and tissue accretion. J Anim Sci, 2005a, 83(6): 1345-1352.
    Broad TE, Lewis PE, Burkin DJ, Gleeson AJ, Carpenter MA, Jones C, Pearce PD, Maher DW, Ansari HA. Thirteen loci physically assigned to sheep chromosome 2 by cell hybrid analysis and in situ hybridization. Mamm Genome, 1995, 6(12):862-866.
    Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA.. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell, 2000, 103:1009-1017.
    Cadogan, DJ, Campbell RG, Harrison D, Edwards AC. The effect of betaine on the growth performance and carcass characteristics of female pigs. Aust Anim Sci, Meetings, 1993: 219 (Abstr.).
    Calvo JH, Marcos S, Jurado JJ, Serrano M. Association of the heart fatty acid-binding protein(FABP3) gene with milk traits in Manchega breed sheep. Anim Genet. 2004, 35(4): 347-349.
    Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan XM, Yu H, Rosenblum CI, Vongs A, Feng Y, Cao L, Metzger JM, Strack AM, Camacho RE, Mellin TN, Nunes CN, Min W, Fisher J, Gopal-Truter S, MacIntyre DE, Chen HY, Van der Ploeg LH.. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet, 2000, 26(1): 97-102.
    Chiang CT, Way TD, Tsai SJ, Lin JK. Diosgenin, a naturally occurring steroid, suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt, mTOR and JNK phosphorylation. FEBS Lett, 2007, 581(30): 5735-5742.
    Chin SF, Storkson JM, Albright KJ, Cook ME, Pariza MW. Conjugated linoleic acid is a growth factor for rats as shown by enhanced weight gain and improved feed efficiency. J Nutr, 1994, 124(12): 2344-2349.
    Chong NW, Chaurasia SS, Haque R, Klein DC, Iuvone PM. Temporal-spatial characterization of chicken clock genes: circadian expression in retina, pineal gland, and peripheral tissues. J Neuro Chem., 2003, 85(4), 851–860.
    Ciccioli NH, Wettemann RP, Spicer LJ, Lents CA, White FJ, Keisler DH. Influence of body condition at calving and postpartum nutrition on endocrine function and reproductive performance of primiparous beef cows. J Anim Sci. 2003, 81(12): 3107-3120.
    Cooper DA, Lu SC, Viswanath R, Freiman RN, Bensadoun A. The structure and complete nucleotide sequence of the avian lipoprotein lipase gene. Biochim Biophys Acta, 1992, 1129(2):166-171.
    Craig SA. Betaine in human nutrition. Am J Clin Nutr, 2004, 80(3): 539-549.
    Csernus V, Faluhelyi N, Nagy AD. Features of the circadian clock in the avian pineal gland. Ann N Y Acad Sci, 2005, 1040: 281–287.
    Dalen KT, Schoonjans K, Ulven SM, Weedon-Fekjaer MS, Bentzen TG, Koutnikova H, Auwerx J, Nebb HI. Adipose tissue expression of the lipid droplet-associating proteins S3-12 and perilipin is controlled by peroxisome proliferator-activated receptor-gamma. Diabetes, 2004, 53(5): 1243-1252.
    Darling DC, Brickell PM. Nucleotide sequence and genomic structure of the chicken insulin-like growth factor-II (IGF-II) coding region. Gen Comp Endocrinol., 1996, 102(3):283-287.
    de Koning DJ, Janss LL, Rattink AP, van Oers PA, de Vries BJ, Groenen MA, van der Poel JJ, de Groot PN, Brascamp EW, van Arendonk JA. Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). Genetics, 1999,152(4): 1679-1690.
    DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell, 1991, 64(4): 849-859.
    Demars J, Riquet J, Feve K, Gautier M, Morisson M, Demeure O, Renard C, Chardon P, Milan D. High resolution physical map of porcine chromosome 7 QTL region and comparative mapping of this region among vertebrate genomes. BMC Genomics, 2006, 7(13): 186-202.
    Dilger RN, Garrow TA, Baker DH. Betaine can partially spare choline in chicks but only when added to diets containing a minimal level of choline. J Nutr, 2007, 137(10): 2224-2228.
    Ding ST, Liu BH, Ko YH. Cloning and expression of porcine adiponectin and adiponectin receptor 1 and 2 genes in pigs. J Anim Sci. 2004, 82(11) 3162-3174.
    Edwards WD, Daniels SE, Page RA, Volpe CP, Kille P, Sweeney GE, Cryer A. Cloning and sequencing of a full length cDNA encoding ovine lipoprotein lipase. Biochim Biophys Acta, 1993, 1172(1-2): 167-170.
    Eklund M, Bauer E, Wamatu J, Mosenthin R. Potential Nutritional and Physiological Functions of Betaine in Livestock. Nutr Res Rev, 2005, 18: 31–48.
    Esteve-Garcia E, Mack S. The Effect of DL-methionine and betaine on growth performance and carcass characteristics in broilers. Anim Feed Sci Tech, 2000, 87: 85–93.
    Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, Najib, Laville M, Fruchart JC, Deebi S, Vidal-Puig A, Flie J, Briggs MR, Staels B, Vidal H, Auwerx J. The organization, promoter analysis, and expression of the human PPAR gamma gene. J Biol Chem, 1997, 272: 18779-18789.
    Farmer C, Petitclerc D, Sorensen MT, Vignola M, Dourmad JY. Impacts of dietary protein level and feed restriction during prepuberty on mammogenesis in gilts. J Anim Sci, 2004,82(8): 2343-2351.
    Fernández-Fígares I, Wray-Cahen D, Steele NC, Campbell RG, Hall DD, Virtanen E, Caperna TJ. Effect of dietary betaine on nutrient utilization and partitioning in the young growing feed-restricted pig. J. Anim. Sci. 2002. 80: 421–428.
    Finkelstein JD, Martin JJ, Harris BJ, Kyle WE. Regulation of hepatic betaine-homocysteine methyltransferase by dietary betaine. J Nutr, 1983, 113(3): 519 -521
    Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A, 1992, 89(5): 1827 - 1831.
    Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H, Watanabe E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S, Hiramatsu R, Matsuzawa Y, Shimomura I. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science, 2005, 307(5708): 4262-430.
    Fukuya H, Emoto N, Nonaka H, Yagita K, Okamura H, Yokoyama M. Circadian expression of clock genes in human peripheral leukocytes. Biochem Biophys Res Commun, 2007, 354(4): 924–928.
    Furuhashi M, Tuncman G, G?rgün CZ, Makowski L, Atsumi G, Vaillancourt E, Kono K, Babaev VR, Fazio S, Linton MF, Sulsky R, Robl JA, Parker RA, Hotamisligil GS. Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature, 2007, 447(7147): 959-965.
    Garcia-Macedo R, Sanchez-Mu?oz F, Almanza-Perez JC, Duran-Reyes G, Alarcon-Aguilar F, Cruz M. Glycine increases mRNA adiponectin and diminishes pro-inflammatory adipokines expression in 3T3-L1 cells. Eur J Pharmacol, 2008, xx, xxx-xxxx.
    Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ. Role of the CLOCK protein in the mammalian circadian mechanism. Science, 1998, 280(5369): 1564-1569.
    George W. The uncoupling proteins UCP2 and UCP3 in skeletal muscle. Nutr Rev, Washington: 2001, 59(2): 56-57.
    Gerbens F, de Koning DJ, Harders FL, Meuwissen TH, Janss LL, Groenen MA, Veerkamp JH, Van Arendonk JA, te Pas MF. The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs. J Anim Sci, 2000, 78(3): 552-559.
    Gerbens F, Jansen A, van Erp AJ, Harders F, Meuwissen TH, Rettenberger G, Veerkamp JH, te Pas MF. The adipocyte fatty acid-binding protein locus: characterization and association with intramuscular fat content in pigs. Mammalian Genome, 1998, 9(12): 1022-1026.
    Gerbens F, van Erp AJ, Harders FL, Verburg FJ, Meuwissen TH, Veerkamp JH, te Pas MF. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. J Anim Sci, 1999, 77(4): 846-852.
    Gerbens F, Verburg FJ, Van Moerkerk HT, Engel B, Buist W, Veerkamp JH, te Pas MF. Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs. J Anim Sci, 2001, 79 (2): 347-354.
    Goldspink G. Yang S P. Muscle Structure, Development and Growth [M]. CAB International, 1999, Poultry Meat Science, 11.
    Gómez-Abellán P, Hernández-Morante JJ, Luján JA, Madrid JA, Garaulet M. Clock genes are implicated in the human metabolic syndrome. Int J Obes (Lond), 2008, 32(1): 121–128.
    Goureau A, Garrigues A, Tosser-Klopp G, Lahbib-Mansais Y, Chardon P, Yerle M. Conserved synteny and gene order difference between human chromosome 12 and pig chromosome 5. Cytogenet Cell Genet., 2001, 94(1-2): 49-54.
    Grindflek E, Szyda J, Liu Z, Lien S. Detection of quantitative trait loci for meat quality in a commercial slaughter pig cross. Mamm Genome, 2001, 12(4): 299-304.
    Gu F, Harbitz I, Chowdhary BP, Bosnes M, Gustavsson I. Chromosomal localization of the hormone sensitive lipase (LIPE) and insulin receptor (INSR) genes in pigs. Hereditas, 1992b, 117(3): 231-236.
    Gu F, Harbitz I. Mapping of the porcine lipoprotein lipase (LPL) gene to chromosome 14q1.2-q1.4 by insitu hybridization. Cytogenet Cell Genet, 1992a, 59(1):63-64.
    Hannon G J. RNA Interference. Nature, 2002, 418 (11): 244-251.
    Harbitz I, Langset M, Ege AG, H?yheim B, Davies W. The porcine hormone-sensitive lipase gene: sequence, structure, polymorphisms and linkage mapping. Anim Genet., 1999, 30(1): 10-16.
    Harlizius B, Rattink AP, de Koning DJ, Faivre M, Joosten RG, van Arendonk JA, Groenen MA. The X chromosome harbors quantitative trait loci for backfat thickness and intramuscular fat content in pigs. Mamm Genome, 2000, 11(9): 800-802.
    Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev, 2001, 15(6): 710-723.
    Ho G, MacKenzie RG. Functional characterization of mutations in melanocortin-4 receptor associated with human obesity. J Biol Chem, 1999, 274(50): 35816-31822.
    Hogenesch JB, Gu YZ, Jain S, Bradfield CA. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci U S A, 1998, 95(10): 5474-9.
    Hu YB,Wang Z, Xu SY. Corn bran dietary fibre modified by xylanase improves the mRNA expression of genes involved in lipids metabolism in rats. Food Chem, 2008, 109: 499–505.
    Hu ZL, Dracheva S, Jang W, Maglott D, Bastiaansen J, Rothschild MF, Reecy JM. A QTL resource and comparison tool for pigs: PigQTLDB. Mamm Genome, 2005, 16(10): 792-800.
    Hu ZL, Fritz ER, Reecy JM. AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Res, 2007, 35(Database Issue): D604-609.
    Huang J, Yang DD, Gao SD, Wang T. Effects of soy-lecithin on lipid metabolism and hepatic expression of lipogenic genes in broiler chickens. Livest Sci, 2008a, xx xxx–xxx Huang QC, Xu ZR, Han XY, Li F. Changes in hormones, growth factor and lipid metabolism in finishing pigs fed betaine. Livest Sci, 2006, 105: 78–85.
    Huang QC, Xu ZR, Han XY, Li WF. Effect of dietary betaine supplementation on lipogenic enzyme activities and fatty acid synthase mRNA expression in finishing Pigs. Anim Feed Sci Tech, 2008b, 140: 365–375.
    Ibá?ez AJ, Peinado-Onsurbe J, Sánchez E, Cerdá-Reerter MJ, Prat F. Lipoprotein lipase (LPL) is highly expressed and active in the ovary of European sea bass (Dicentrarchus labrax L.), during gonadal development. Comp Biochem Phys, 2008, xx xxx–xxx
    Inoue I, Shinoda Y, Ikeda M, Hayashi K, Kanazawa K, Nomura M, Matsunaga M, Xu H, Kawai S, Awata T, Komoda T, Katayama S. CLOCK/BMAL1 is in lipid metabolism via transactivation of the peroxisome proliferators-activated receptor (PPAR) response element. J Atheroscler Thromb, 2005, 12(3): 169-174.
    Irani BG, Xiang Z, Moore MC, Mandel RJ, Haskell-Luevano C. Voluntary exercise delays monogenetic obesity and overcomes reproductive dysfunction of the melanocortin-4 receptor knockout mouse. Biochem Biophys Res Commun, 2005, 326(3): 638-644.
    Janss LL, van Arendonk JA, Brascamp EW. Bayesian statistical analyses for presence of single genes affecting meat quality traits in a crossed pig population. Genetics, 1997, 145(2): 395-406.
    Jeon JT, Carlborg O, T?rnsten A, Giuffra E, Amarger V, Chardon P, Andersson-Eklund L, Andersson K, Hansson I, Lundstr?m K, Andersson L. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat Genet, 1999, 21(2):157-158.
    Jiang, ZH, Gibson JP. Genetic polymorphisms in the leptin gene and their association with fatness in four pig breeds. Mamm Genome, 1999, 10(2): 191-193.
    Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet, 2007, 8(4): 253-262.
    Jokubka R, Maak S, Kerziene S, Swalve HH. Association of a melanocortin 4 receptor (MC4R) polymorphism with performance traits in Lithuanian White pigs. J Anim Breed Genet. 2006, 123(1): 17-22.
    Kameda K., Goodridge A. G. Isolation and Partial Charaterization of the Gene for Goose Fatty Acid Synthase. J Biol Chem.1991, 266:419~426.
    Kamphuis W, Cailotto C, Dijk F, Bergen A, Buijs R. Circadian expression of clock genes and clock-controlled genes in the rat retina. Biochem Bioph Res Co, 2005,330 : 18–26.
    Kanda Y, Matsuda M, Tawaramoto K, Kawasaki F, Hashiramoto M, Matsuki M, Kaku K.Effects of sulfonylurea drugs on adiponectin production from 3T3-L1 adipocytes:
    implication of differentmechanism from pioglitazone. Diab Res Clin Pr, 2008, xxx–xxx. Kettunen H, Peuranen S, Tiihonen K. Betaine aids in the osmoregulation of duodenal epithelium of broiler chicks, and affects the movement of water across the small intestinal epithelium in vitro. Comp Biochem Physiol A Mol Integr Physiol, 2001b, 129(2-3): 595-603.
    Kettunen H, Tiihonen K, Peuranen S, Saarinen MT, Remus JC. Dietary betaine accumulates in the liver and intestinal tissue and stabilizes the intestinal epithelial structure in healthy and coccidia-infected broiler chicks. Comp Biochem Physiol A Mol Integr Physiol, 2001a, 130: 759-769.
    Kim JJ, Rothschild MF, Beever J, Rodriguez-Zas S, Dekkers JCM. Joint analysis of two breeds cross populations in pigs to improve detection and characterization of quantitative trait loci. J Anim Sci, 2005a, 83:1229-1240.
    Kim KS, Larsen N, Rothschild MF. Rapid communication: linkage and physical mapping of the porcine melanocortin 4 receptor (MC4R) gene. J Anim Sci, 2000a, 78:791-792.
    Kim KS, Larsen N, Short T, Plastow G, Rothschild MF. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mamm Genome, 2000b, 11(2): 131-135.
    Kim TH, Choi BH, Chang GW, Lee KT, Lee HY, Lee JH, Kim KS, Park CK, Moran C. Molecular characterization and chromosomal mapping of porcine adipose differentiation-related protein (ADRP). J Anim Breed Genet. 2005b, 122(4): 240-6.
    Klasing KC, Adler KL, Remus JC, Calvert CC. Dietary betaine increases intraepithelial lymphocytes in the duodenum of coccidia-infected chicks and increases functional properties of phagocytes. J Nutr, 2002, 132(8): 2274–2282.
    Kokta TA, Dodson MV, Gertler A, Hill RA. Intercellular signaling between adipose tissue and muscle tissue. Domest Anim Endocrinol, 2004, 27: 303-331.
    Kondratov R V. A role of the circadian system and circadian proteins in aging. Ageing Res Rev, 2007, 6: 12-27.
    Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP. Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Gene Dev, 2006a, 20: 1868–1873.
    Kondratov RV, Shamanna RK, Kondratova AA, Gorbacheva VY, Antoch MP. Dual role of the CLOCK/BMAL1 circadian complex in transcriptional regulation. Faseb J, 2006b, 20: 530–532.
    Lamberson WR, Sterle JA, Matteri RL. Relationship of serum insulin-like growth factor-Ⅱconcentrations to growth, compositional and reproductive traits of swine. J Amin Sci,1996, 74:1753-1756.
    Le Fur N, el Khadir-Mounier C, Powell RS, Diot C, Mallard J, Douaire M. Characterization of the chicken fatty acid synthase gene 5′part and promoter region. Eur J Biochem, 1996, 240(2): 323-330.
    Leray V, Gayet C, Martin L, Dumon H, Siliart B, Nguyen P. Modulation of uncoupling protein 1 and peroxisome proliferator-activated receptor gamma expression in adipose tissue in obese insulin-resistant dogs. J Nutr., 2004, 134(8 Suppl): 2154S-2157S.
    Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet, 2002, 3: 662-673.
    Li XY, Wang XF, He K, Ma YQ, Su N, He H, Stolc V, Tongprasit W, Jin W, Jiang J, Terzaghi W, Li S, Deng XW. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell, 2008, 20: 259–276.
    Lord E, Ledoux S, Murphy BD, Beaudry D, Palin MF. Expression of adiponectin and its receptors in swine. J Anim Sci, 2005, 83(3):565-578.
    Lu SC, Bensadoun A. Identification of the 5′regulatory elements of avian lipoprotein lipase gene: synergistic effect of multiple factors. Biochim Biophys Acta. 1993, 1216(3): 375-84.
    Malek M, Dekkers JC, Lee HK, Baas TJ, Prusa K, Huff-Lonergan E, Rothschild MF. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mamm Genome, 2001b, 12(8): 637-645.
    Malek M, Dekkers JC, Lee HK, Baas TJ, Rothschild MF. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. I. Growth and body composition. Mamm Genome, 2001a, 12: 630-636.
    Matthews JO, Southern LL, Bidner TD, Persica MA. Effects of betaine, pen space, and slaughter handling method on growth performance, carcass traits, and pork quality of finishing barrows. J Anim Sci, 2001a, 79(4), 967–974.
    Matthews JO, Southern LL, Higbie AD, Persica MA, Bidner TD. Effects of betaine on growth, carcass characteristics, pork quality, and plasma metabolites of finishing pigs. J Anim Sci, 2001b, 79(3): 722–728.
    Meidtner K, Wermter AK, Hinney A, Remschmidt H, Hebebrand J, Fries R. A Association of the melanocortin 4 receptor with feed intake and daily gain in F2 Mangalitsa x Piétrain pigs. Anim Genet. 2006, 37(3): 245-247.
    MercadéA, EstelléJ, Noguera JL, Folch JM, Varona L, SilióL, Sánchez A, Pérez-Enciso M. On growth, fatness, and form: a further look at porcine chromosome 4 in an Iberian xLandrace cross. Mamm Genome.2005, 16(5): 374-382.
    Milan D, Bidanel JP, Iannuccelli N, Riquet J, Amigues Y, Gruand J, Le Roy P, Renard C, Chevalet C. Detection of quantitative trait loci for carcass composition traits in pigs. Genet Sel Evol, 2002, 34(6): 705-728.
    Mir PS, Mir Z, Kubert PS, Gaskins CT, Martin EL, Dodson MV, Calles JA, Johnson KA, Busboom JR, Wood AJ, Pittenger GJ, Reeves JJ. Growth, carcass characteristics, muscle conjugated linoleic acid (CLA) content, and response to intravenous glucose challenge in high percentage Wagyu, Wagyu x Limousin, and Limousin steers fed sunflower oil-containing diet. J Anim Sci, 2002, 80(11): 2996-3004.
    Mulligan JD, Stewart AM, Saupe KW. Downregulation of plasma insulin levels and hepatic PPARγexpression during the first week of caloric restriction in mice. Expert Ger, 2008, 43: 146–153.
    Namihira M, Honma S, Abe H, Tanahashi Y, Ikeda M, Honma K. Circadian rhythms and light responsiveness of mammalian clock gene, Clock and BMAL1, transcripts in the rat retina. Neurosci Lett, 1999, 271(1): 1–4.
    Namihira M, Honma S, Abe H, Tanahashi Y, Ikeda M, Honma K. Daily variation and light responsiveness of mammalian clock gene, Clock and BMAL1, transcripts in the pineal body and different areas of brain in rats. Neurosci Lett, 1999, 267: 69–72.
    Napolitano A, Lowell BB, Damm D, Leibel RL, Ravussin E, Jimerson DC, Lesem MD, Van Dyke DC, Daly PA, Chatis P, et al. Concentrations of adipsin in blood and rates of adipsin secretion by adipose tissue in humans with normal, elevated and diminished adipose tissue mass. Int J Obes Relat Metab Disord, 1994, 18(4): 213-218.
    Nechtelberger D, Pires V, S?olknet J, Stur , Brem G, Mueller M, Mueller S. Intramuscular fat content and genetic variants at fatty acid-binding protein loci in Austrian pigs. J Anim Sci, 2001, 79(11): 2798-804.
    Neto GM, Pesti GM, Bakalli RI. Influence of dietary protein level on the broiler chicken’s response to methionine and betaine supplements. Poultry Sci, 2000, 79: 1478–1484.
    Neuengchwander S, Rettenberger G, Meijerink E. Partial characterization of porcine obesity gene (obs) and its localization to chromosome 18 by somatic cell hybrids. Anim Gene, 1996, 27: 275-278.
    Nii M, Hayashi T, Mikawa S, Tani F, Niki A, Mori N, Uchida Y, Fujishima-Kanaya N, Komatsu M, Awata T. Quantitative trait loci mapping for meat quality and muscle fiber traits in a Japanese wild boar x Large White intercross. J Anim Sci, 2005. 8392): 308–315.
    Noer A, S?rensen AL, Boquest AC, Collas P. Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured, and differentiated mesenchymal stem cells from adipose tissue. Mol Biol Cell, 2006, 17(8): 3543–3556.
    Oishi K, Sakamoto K, Okada T, Nagase T, Ishida N. Antiphase circadian expression between BMAL1 and period homologue mRNA in the suprachiasmatic nucleus and peripheral tissues of rats. Biochem Biophys Res Commun, 1998, 253: 199–203.
    Ovilo C, Perez-Enciso M, Barragan C, Clop A, Rogriguez C, Oliver MA, Toro MA, Noguera JL. A QTL for intramuscular fat and backfat thickness is located on porcine chromosome 6. Mamm Genome, 2000, 11: 344-346.
    Owens PC, Gatford KL, Walton PE, Morley W, Campbell RG. The relationship between endogenous insulin-like growth factors and growth in pigs. J anim Sci, 1999, 77(8): 2098-2103.
    Peirson SN, Butler JN, Duffield GE, Takher S, Sharma P, Foster RG. Comparison of clock gene expression in SCN, retina, heart, and liver of mice. Biochem Biophys Res Commun, 2006, 351(4): 800–807.
    Pillai PB, Fanatico AC, Beers KW, Blair ME, Emmert JL. Homocysteine remethylation in young broilers fed varying levels of methionine, choline, and betaine. Poult Sci, 2006, 85(1): 90-95.
    Ponnampalam EN, Sinclair AJ, Egan AR, Blakeley SJ, Li D, Leury BJ. Effect of dietary modification of muscle long-chain n-3 fatty acid on plasma insulin and lipid metabolites, carcass traits, and fat deposition in lambs. J Anim Sci, 2001, 79(4): 895-903.
    Qiao Y, Huang ZG, Li QF, Liu ZS, Dai R, Pan ZX, Xie Z, Liu HL. Developmental changes of the LPL mRNA expression and its effect on IMF content in sheep muscle. Agric Sci in China, 2008, 7(1): 104-111.
    Raimbault S, Dridi S, Denjean F, Lachuer J, Couplan E, Bouillaud F, Bordas A, Duchamp C, Taouis M, Ricquier D. An uncoupling protein homologue putatively involved in facultative muscle thermogenesis in birds. Biocheim J, 2001, 353: 441-444.
    Ramsay T G, Yan X, Morrison C. The obesity gene in swine: sequence and expression of porcine leptin. J Anim Sci, 1998, 76:484-490.
    Rattink AP, De Koning DJ, Faivre M, Harlizius B, van Arendonk JA, Groenen MA. Fine mapping and imprinting analysis for fatness trait QTLs in pigs. Mamm. Genome, 2000, 11(8): 656-661.
    Rostagno HS, Pack M. Can betaine replace supplemental DL-methionine in broiler diets? J Appl Poultry Res, 1996, 5: 150-154.
    Ruan GX, Zhang DQ, Zhou TR, Yamazaki S, McMahon DG. Circadian organization of the mammalian retina. Proc Natl Acad Sci U S A, 2006, 103 (25): 9703-9708.
    Santoso U. Effects of early feed restriction on growth, fat accumulation and meat composition in unsexed broiler chickens. Asian Austral J Anim, 2001, 14(11):1585-1591.
    Saunderson CL, Mackinlay J. Changes in body-weight, composition and hepatic enzyme activities in response to dietary methionine, betaine and choline levels in growing chicks. Br J Nutr, 1990, 63:339–349.
    Sch?ffler A, Neumeier M, Herfarth H, Fürst A, Sch?lmerich J, Büchler C. Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochim Biophys Acta, 2005, 1732: 96-102.
    Schones DE, Zhao KJ. Genome-wide approaches to studying chromatin modifications. Nat Rev Genet, 2008, (9): 179-191
    Schook L B, Beever J E, Rogers J, Humphray S, Archibald A, Chardon P, Milan D, Rohrer G, Eversole K. Swine Genome Sequencing Consortium (SGSC): A Strategic Roadmap For Sequencing The Pig Genome. Comp Funct Genom, 2005, 6: 251-255.
    Schoonmaker JP, Cecava MJ, Fluharty FL, Zerby HN, Loerch SC. Effect of source and amount of energy and rate of growth in the growing phase on performance and carcass characteristics of early- and normal-weaned steers. J Anim Sci, 2004, 82(1): 273-282.
    Shelton JL, Southern LL, Bidner TD, Persica MA, Braun J, Cousins B, McKnight F. Effect of microbial phytase on energy availability, and lipid and protein deposition in growing swine. J Anim Sci. 2003, 81(8): 2053.
    Shimba S, Ishii N, Ohta, Ohno T, Watabe Y, Hayashi M, Wada,T, Aoyagi T, Tezuka M. Brain and muscle arnt-Like protein-1(BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci U S A, 2005, 102(34): 12071-12076.
    Shimba S. Regulation of adipose functions by molecular clocks. Nippon Rinsho, 2006, 64(10): 1955-62.
    Shimizu M, Takeshita A, Tsukamoto T, Gonzalez FJ, Osumi T. Tissue-selective, bidirectional regulation of PEX11 alpha and perilipin genes through a common peroxisome proliferator response element. Mol Cell Biol., 2004, 24(3): 1313–1323.
    Spencer GS, Decuypere E, Buyse J, Zeman M. Effect of recombinant human insulin-like growth factor-II on weight gain and body composition of broiler chickens.Poult Sci, 1996, 75(3): 388-392.
    Stachowiak M, Szydlowski M, Obarzanek-Fojt M, Switonski M. An effect of a missense mutation in the porcine melanocortin-4 receptor (MC4R) gene on production traits in Polish pig breeds is doubtful. Anim Genet., 2006, 37(1): 55-57.
    Stearns TM, Beever JE, Southey BR, Ellis M, McKeith FK, Rodriguez-Zas SL. Evaluation of approaches to detect quantitative trait loci for growth, carcass, and meat quality on swine chromosomes 2, 6, 13, and 18. I. Univariate outbred F2 and sib-pair analyses. J Anim Sci,2005, 83(7): 1481-1493.
    Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA. The Hormone Resistin Links Obesity to Diabetes. Nature, 2001, 409: 307-312.
    Stone RT, Rexroad CE, Smith TR. UCP2 and UCP3 map to BTA15. Anim. Genet, 1999, 30(5):378-381.
    Sun HF, Ernst CW, Yerle M, Pinton P, Rothschild MF, Chardon P, Rogel-Gaillard C, Tuggle CK. Human chromosome 3 and pig chromosome 13 show complete synteny conservation but extensive gene-order differences. Cytogenet Cell Genet, 1999, 85(3-4): 273-278.
    Sundvold H, Lien S. Identification of a novel peroxisome proliferator activated receptor (PPAR) gamma promoter in man and transactivation by the nuclear receptor roralpha1. Biochem Biophys Res Comm, 2001, 287, 390–393.
    Suzuki STN, Zhao B, Yang JZ. Enhanced muscle by myostatin propeptide increases adipose tissue adiponectin, PPARα, and PPARγexpressions. Biochem Bioph Res Co, 2008, 369: 767–773.
    Takahata S, Ozaki T, Mimura J, Kikuchi Y, Sogawa K, Fujii-Kuriyama Y. Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3. Genes Cells, 2000, 5(9): 739-747.
    Thiel R L, Sparks J C, Weigand B R, Parrish FC, Jr, Ewan R.C. Conjugated Linoleic Acid Improves Performance and Body Composition in Swine. J Anim Sci, 1998, 76 (Suppl. 2): 61.
    Tosini G, Kasamatsu M, Sakamoto K. Clock gene expression in the rat retina: effects of lighting conditions and photoreceptor degeneration. Brain Res, 2007, 1159: 134 -140.
    Tuggle CK, Genêt C, Shi XW, Chardon P, Sanchez-Serrano I, Cravens G, Milan D, Yerle M. Cytogenetic and radiation hybrid mapping reveals conserved synteny and gene order between human chromosome 21 and pig chromosome 13. Mamm Genome, 2001, 12(5): 397-399.
    Tuggle, CK, Zhang Y, Rothschild MF, Moller M, Berg F, Anderson L, Riquet J, Milan D, Pomp D, Archibald A, Anderson S. A detailed gene map of pig chromosome 4, where the first quantitative trait locus in livestock was mapped. Bulletin AS 650, Animal Industry Report 2004, Iowa State University, Ames, IA ASL-R195.
    Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J. Obesity and metabolic syndrome in circadian Clock mutant mice. Science, 2005, 308: 1043–1045.
    Veerkamp JH, and Maatman RGHJ. Cytoplasmic Fatty acid binding proteins: their structureand genes. Prog Lipid Res, 1995, 34:17-52.
    Vidal O, Noguera JL, Amills M, Varona L, Gil M, Jiménez N, Dávalos G, Folch JM, Sánchez A. Identification of carcass and meat quality quantitative trait loci in a Landrace pig population selected for growth and leanness. J Anim Sci, 2005, 83(2): 293–300.
    Virtanen E & Rosi L. Effects of betaine on methionine requirement of broilers under various environmental conditions. In Proceedings of the Australian Poultry Science Symposium, Sydney, NSW, Australia: University of Sydney,1995: 88–92.
    Wakai J, Takagi A, Nakayama M, Miya T, Miyahara T, Iwanaga T, Takenaka S, Ikeda Y, Amano M, Urata T. A novel method of identifying genetic mutations using an electrochemical DNA array. Nucleic Acids Res, 2004, 32(18): 141-150.
    Wang SM, Hwang RD, Greenberg AS, Yeo HL. Temporal and spatial assembly of lipid droplet-associated proteins in 3T3-L1 preadipocytes. Histochem Cell Biol, 2003, 120(4): 285-292.
    Wang YZ, Xu ZR, Feng J. The effect of betaine and DL-Methionine on growth performance and carcass characteristics in meat ducks. Anim Feed Sci Tech, 2004, 116: 151–159.
    Waterland RA, Lin JR, Smith CA, Jirtle RL. Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum Mol Genet, 2006, 15 (5): 705-716.
    Watt MJ, Dzamko N, Thomas WG, Rose-John S, Ernst M, Carling D, Kemp BE, Febbraio MA, Steinberg GR. CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nat Med, 2006, 12(5): 541-548.
    Wemer P, Neuenschwander S, Stranzinger G. Characterization of the porcine uncoupling proteins 2 and 3(UCP2&UCP3) and their localization to chromosome 9p by somatic cell hybrids. Anim Genet, 1999, 30(3): 221-224.
    Weng MS, Ho CT, Ho YS, Lin JK. Theanaphthoquinone inhibits fatty acid synthase expression in EGF-stimulated human breast cancer cells via the regulation of EGFR/ErbB-2 signaling. Toxicol Appl Pharm, 2007, 218: 107–118.
    Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochimica Biophysica Acta, 2007, 1775: 138–162.
    Wu X, Yu G, Parks H, Hebert T, Goh BC, Dietrich MA, Pelled G, Izadpanah R, Gazit D, Bunnell BA, Gimble JM. Circadian mechanisms in murine and human bone marrow mesenchymal stem cells following dexamethasone exposure. Bone, 2008, 42(5): 861–870.
    Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T,Nagai R, Kadowaki T. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects.Nature, 2003,423: 762-769.
    Yanagihara H, Ando H, Hayashi Y, Obi Y, Fujimura A. High-fat feeding exerts minimal effects on rhythmic mRNA expression of clock genes in mouse peripheral tissues. Chronobiol Int, 2006; 23 (5): 905-14.
    Young ME, Razeghi P, Taegtmeyer H. Clock genes in the heart: characterization and attenuation with hypertrophy. Circ Res, 2001, 88: 1142–1150.
    Yu W, Ikeda M, Abe H, Honma S, Ebisawa T, Yamauchi T, Honma K, Nomura M. Characterization of three splice variants and genomic organization of the mouse BMAL1 gene. Biochem Biophys Res Commun, 1999, 260 (3): 760-767.
    Zhan XA, Li JX, Xu ZR, Zhao RQ. Effects of methionine and betaine supplementation on growth performance, carcase composition and metabolism of lipids in male broilers. Br Poult Sci, 2006, 47(5): 5762-5801
    Zhang J, Fu M, Cui T, Xiong C, Xu K, Zhong W, Xiao Y, Floyd D, Liang J, Li E, Song Q, Chen YE. Selective disruption of PPARgamma 2 impairs the development of adipose tissue and insulin sensitivity. Proc Natl Acad Sci U S A, 2004, 101 (29): 10703-10708.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature, 1994, 372: 425-432.
    Zhao SP, Yang J, Li J, Dong SZ, Wu Z. Effect of niacin on LXRΑand PPARγexpression and HDL-induced cholesterol efflux in adipocytes of hypercholesterolemic rabbits. Int J Cardiol, 2008, 124: 172–178.
    Zhou XR, Sun CH, Liu JR, Zhao D. Dietary conjugated linoleic acid increases PPARγgene expression in adipose tissue of obese rat, and improves insulin resistance. Growth Horm Igf Res, 2008, xx xxx–xxx
    Zhu Y, Qi C, Korenberg JR, Chen XN, Noya D, Rao MS, Reddy JK. Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci U S A, 1995, 92(17): 7921–7925.
    Zou CH, Shao JH. Role of adipocytokines in obesity-associated insulin resistance. J Nutr Biochem, 2008, 19: 277–286.
    Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC, Mynatt RL, Gimble JM. Characterization of peripheral circadian clocks in adipose tissues. Diabetes, 2006, 55(4): 362-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700