用户名: 密码: 验证码:
人工小RNA沉默拟南芥植物型PEPC基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷酸烯醇式丙酮酸羧化酶(PEPCase)是一种具有多种生理功能的细胞质酶,广泛分布于高等植物、藻类和多数细菌中。在C4和CAM植物中,PEPC负责光合作用中无机碳的初始同化;C3植物的PEPC在促进TCA循环中间代谢物的回补、协调碳和氮的代谢等方面有重要作用,被认为是控制C3植物蛋白质与油脂含量比的一个关键酶。同时,PEPC可能与植物对逆境胁迫的响应有密切关系。
     拟南芥(Arabidopsis thaliana)与油菜(Brassica napus L.)同属十字花科芸薹属,亲缘关系非常近,在编码区,基因平均相似性达85%左右,因此,拟南芥相关的功能基因研究对油菜育种具有重要参考价值。
     为探索植物型PEPC基因对模式植物拟南芥脂肪酸含量和组分,以及抗逆性等方面的影响,本试验构建了同时沉默拟南芥植物型PEPC基因家族(Atppcl、Atppc2和Atppc3)的人工小RNA植物表达载体,用花序浸染法转化拟南芥,成功获得转化植株,并对转化植株进行了相关的分子鉴定和功能分析。
     主要研究结果如下:
     1.登录人工小RNA设计网站WMD3,提交Atppcl、Atppc2和Atppc3的cDNA序列,设计相应扩增引物,以pRS300质粒为模板(含拟南芥内源miR319a前体骨架),采用重叠PCR的方法克隆了人工小RNA的前体片段,连入双元表达载体pFGC5941,构建了沉默Atppc1、Atppc2和Atppc3的人工小RNA表达载体pFGC-amiAtppc123,利用花序浸染法转化野生型拟南芥。
     2.经过除草剂初步筛选,T1代拟南芥幼苗大部分黄化枯死,少数植株正常生长,具有除草剂抗性。提取除草剂抗性苗的叶片DNA进行PCR检测,获得18株T1代转化植株。人工小RNA的半定量RT-PCR的分析表明,在转化植株中,人工小RNA进行了超量表达。对Atppc1、Atppc2和Atppc3的半定量RT-PCR分析显示:与对照相比较,转化植株Atppc1的表达量显著下调,Atppc2和Atppc3的表达量无明显变化。
     3.在NaCl胁迫下,对照和转化植株中,Atppcl和Atppc3表现的更为敏感,在盐处理期间,它们的表达水平呈现不同变化趋势,而Atppc2的表达则相对稳定。T2代转化株系种子含油量与对照相比没有明显差异,而脂肪酸组分的测定结果显示,转化株系种子低碳饱和脂肪酸的比例稍高。
As one of cytoplasmic enzymes, Phosphoenolpyruvate carboxylase(PEPCase) carries out a variety of physiological functions in vivo. It is widely distributed in higher plants, algae and most bacteria. In C4 and CAM plants, phosphoenolpyruvate carboxylase plays an important role in the initial CO2 fixation in photosynthesis. In C3 plants, PEPCase is proposed to be a key enzyme to control the ratio of protein/lipid due to its key contribution in compensating intermediate metabolites in tricarboxylic acid cycle, and balancing carbon/nitrogen metabolism. Meanwhile, PEPC may be closely related to the environmental stress on the plants.
     Arabidopsis thaliana and oilseed rape (Brassica napus L.) belong to Cruciferae, Brassica. They have close genetic relationship, existing on average about 85% similarity in the coding region of the genomes. Therefore, studies on A. thaliana provide important reference for rapeseed breeding.
     To investigate the effects of plant-type PEPCs on modifying lipid content, fatty acid composition and the response to environmental stress in A. thaliana, the plant-type PEPCs genes of A. thaliana were designed to be silenced by the artificial miRNA (amiRNA).We constructed the plant expression vector and transformed it into wild type A. thaliana (col-0) by the floral dip method. In this way, we successfully accquired transgenic plants. The related work of molecular identification and genetic analysis was carried out.
     Main results of this study are followed:
     1. We input the cDNA sequence of Atppc1, Atppc2 and Atppc3 into the website of WMD3 to design the artifical miRNAs online. Then, we synthesized the related primers to clone the precursor fragment of amiRNA by overlapping PCR, with the pRS300 plasmid as incipient template, which contains the precursor backbone of miR319a, one of the endogenous miRNAs in A. thaliana. Subsequently, we cloned the precursor fragment of amiRNA into the binary expression vector of pFGC5941 to obtain the plant transformation vector, named pFGC-amiAtppc123, and then transformed it into A. thaliana by the floral dip method.
     2. With the herbicide basta spraying, most To generation seedlings withered, but still some of them grew normally. We chose 18 normally growing plants for molecular assessment. All of them were successful transformants, which were confirmed by PCR, with the leaves genomic DNA as templates. The amiRNA transcription levels were assessed by semi-quantitative RT-PCR. The results showed that amiRNA transcription level was drastically increased in transgenic plants compared with non-transgenic plants. The results of semi-quantitative RT-PCR showed that the intact mRNA level of Atppcl was drastically suppressed in transgenic plants, compared with non-transgenic plants. However, the expression of Atppc2 and Atppc3 were not significantly changed.
     3. Under the stress of NaCl, Atppcl and Atppc3 showed different transcription profile between negative control and transgenic plants. Nevertheless, transcription of Atppc2 was relatively stable. Assessment on the T2 generation transgenic seeds showed oil content of transgenic plants had no significant improvement, compared with non-transgenic plants, but fatty acids composition was slightly adjusted with higher low-carbon saturated fatty acids content.
引文
[1]Chollet R, Vidal J, O'leary M. H. Phosphoenolpyruvate carboxylase:A ubiquitous, highly regulated enzyme in plants [J]. Annu Rev Plant Physiol Plant Mol Biol,1996,47:273-298.
    [2]Toh H, Kawamura T, Izui K. Molecular evolution of phosphoeno/pyruvate carboxylase [J]. Plant Cell Environ,1994,17(1):31-43.
    [3]Lepiniec L, Vidal J, Chollet R, et al. Phosphoenolpyruvate carboxylase:structure, regulation and evolution [J]. Plant Science,1994,99(2):111-124.
    [4]Fujita N, Miwa T, Ishijima S, et al. The primary structure of phosphoenolpyruvate carboxylase of Escherichia coli. Nucleotide sequence of the ppc gene and deduced amino acid sequence [J]. Journal of Biochemistry,1984,95(4):909-916.
    [5]Lin C. F, Wei C, Jiang L. Z, et al. Isolation, characterization and expression analysis of a leaf-specific phosphoenolpyruvate carboxylase gene in Oryza sativa [J]. DNA Seq,2004, 15(4):269-276.
    [6]Yanai Y, Okumura S, Shimada H. Structure of Brassica napus phosphoenolpyruvate carboxylase genes:missing introns causing polymorphisms among gene family members [J]. Biosci Biotechnol Biochem,1994,58(5):950-953.
    [7]Kai Y, Matsumura H, Inoue T, et al. Three-dimensional structure of phosphoenolpyruvate carboxylase:a proposed mechanism for allosteric inhibition [J]. Proc Natl Acad Sci U S A, 1999,96(3):823-828.
    [8]Ku M. S, Kano-Murakami Y, Matsuoka M. Evolution and expression of C4 photosynthesis genes [J]. Plant Physiol,1996,111(4):949-957.
    [9]Edwards G. E, Furbank R. T, Hatch M. D, et al. What does it take to be C4? Lessons from the evolution of C4 photosynthesis [J]. Plant Physiol,2001,125(1):46-49.
    [10]Matsumura H, Xie Y, Shirakata S, et al. Crystal structures of C4 form maize and quaternary complex of E. coli phosphoenolpyruvate carboxylases [J]. Structure,2002,10(12): 1721-1730.
    [11]Pathirana M. S, Samac D. A, Roeven R, et al. Analyses of phosphoenolpyruvate carboxylase gene structure and expression in alfalfa nodules [J]. Plant J,1997,12(2): 293-304.
    [12]Sakurai T, Satou M, Akiyama K, et al. RARGE:a large-scale database of RIKEN Arabidopsis resources ranging from transcriptome to phenome [J]. Nucleic Acids Res,2005, 33(Database issue):D647-650.
    [13]Matsuoka M, Furbank R. T, Fukayama H, et al. Molecular engineering of C4 photosynthesis [J]. Annu Rev Plant Physiol Plant Mol Biol,2001,52:297-314.
    [14]Zhang X. Q, Li B, Chollet R. In vivo regulatory phosphorylation of soybean nodule phosphoenolpyruvate carboxylase [J]. Plant Physiol,1995,108(4):1561-1568.
    [15]Hata S, Izui K, Kouchi H. Expression of a soybean nodule-enhanced phosphoenolpyruvate carboxylase gene that shows striking similarity to another gene for a house-keeping isoform [J]. Plant J,1998,13(2):267-273.
    [16]Ku M. S, Agarie S, Nomura M, et al. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants [J]. Nat Biotechnol,1999,17(1): 76-80.
    [17]Zhang F, Chi W, Wang Q, et al. Molecular cloning of C4-specific Ppc gene of sorghum and its high level expression in transgenic rice [J]. Chinese Science Bulletin,2003,48(17):6.
    [18]袁莉民,仇明,王朋等.C_4转基因水稻秧苗叶片气孔与叶鞘维管束结构特征[J].中国农业科学,2006,39(5):902-909.
    [19]张建福,孙亚萍,马宏敏等.转甘蔗pepc基因籼稻恢复系N175的遗传学分析[J].分子植物育种,2009,7(4):666-670.
    [20]Fukayama H, Hatch M. D, Tamai T, et al. Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants [J]. Photosynth Res,2003,77(2-3):227-239.
    [21]Taniguchi Y, Ohkawa H, Masumoto C, et al. Overproduction of C4 photosynthetic enzymes in transgenic rice plants:an approach to introduce the C4-like photosynthetic pathway into rice [J]. J Exp Bot,2008,59(7):1799-1809.
    [22]Le V. Q, Foyer C, Champigny M. L. Effect of light and NO3 on wheat leaf phosphoenolpyruvate carboxylase activity:evidence for covalent modulation of the C3 enzyme [J]. Plant Physiol,1991,97(4):1476-1482.
    [23]Sharam P, Nisha, Malik C. P. Photosynthetic responses of groundnut to moisture stress [J]. Photosynthetica,1993,29(1):157-160.
    [24]Thind S. K, Malik C. P. Correlated changes of some aminoacids and protease in wheat seedlings subjected to water and temperature stresses [J]. Phyton Ann Rev Bot,1988, 28:261-269.
    [25]Pandey D. M, Goswami C. L, Kumar B, et al. Hormonal regulation of photosynthetic enzymes in cotton under water stress [J]. Photosynthetica,2001,38(3):403-407.
    [26]Dizengremel. P. Effects of ozone on the carbon metabolism of forest trees [J]. Plant Physiology and Biochemistry,2001,39(3):729-742.
    [27]Vernon D. M, Ostrem J. A, Schmitt J. M, et al. PEPCase transcript levels in mesembryanthemum crystallinum decline rapidly upon relief from salt stress [J]. Plant Physiol, 1988,86(4):1002-1004.
    [28]Rademacher T, Hausler R. E, Hirsch H. J, et al. An engineered phosphoenolpyruvate carboxylase redirects carbon and nitrogen flow in transgenic potato plants [J]. Plant J,2002, 32(1):25-39.
    [29]Fontaine V, Cabane M, Dizengremel P. Regulation of phosphoenolpyruvate carboxylase in Pinus halepensis needles submitted to ozone and water stress [J]. Physiol Plant,2003, 117(4):445-452.
    [30]Timpa J. D, Burke J. J, Quisenberry J. E, et al. Effects of water stress on the organic Acid and carbohydrate compositions of cotton plants [J]. Plant Physiol,1986,82(3):724-728.
    [31]Jeanneau M, Gerentes D, Foueillassar X, et al. Improvement of drought tolerance in maize:towards the functional validation of the Zm-Asrl gene and increase of water use efficiency by over-expressing C4-PEPC [J]. Biochimie,2002,84(11):1127-1135.
    [32]方立锋,丁在松,赵明.转ppc基因水稻苗期抗旱特性研究[J].作物学报,2008,34(7):1220-1226.
    [33]Gonzalez M. C, Sanchez R, Cejudo F. J. Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings [J]. Planta,2003, 216(6):985-992.
    [34]陈锦清,郎春秀,胡张华等.反义pep基因调控油菜籽粒蛋白质/油脂含量比率的研 究[J].农业生物技术学报,1999,7(4):316-320.
    [35]Kubis S. E, Pike M. J, Everett C. J, et al. The import of phosphoenolpyruvate by plastids from developing embryos of oilseed rape, Brassica napus. L, and its potential as a substrate for fatty acid synthesis [J]. J Exp Bot,2004,55(402):1455-1462.
    [36]侯李君,施定基,蔡泽富等.蓝藻正反义pepcA基因导入对大肠杆菌中脂类合成的调控[J].中国生物工程杂志,2008,(5):52-58.
    [37]Radchuk R, Radchuk V, Gotz K. P, et al. Ectopic expression of phosphoenolpyruvate carboxylase in Vicia narbonensis seeds:effects of improved nutrient status on seed maturation and transcriptional regulatory networks [J]. Plant J,2007,51(5):819-839.
    [38]Rolletschek H, Borisjuk L, Radchuk R, et al. Seed-specific expression of a bacterial phosphoenolpyruvate carboxylase in Vicia narbonensis increases protein content and improves carbon economy [J]. Plant Biotechnol J,2004,2(3):211-219.
    [39]Gennidakis S, Rao S, Greenham K, et al. Bacterial- and plant-type phosphoenolpyruvate carboxylase polypeptides interact in the hetero-oligomeric Class-2 PEPC complex of developing castor oil seeds [J]. Plant J,2007,52(5):839-849.
    [40]Sanchez R, Cejudo F. J. Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from Arabidopsis and rice [J]. Plant Physiol, 2003,132(2):949-957.
    [41]Sanchez R, Flores A, Cejudo F. J. Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress [J]. Planta,2006,223(5):901-909.
    [42]Gregory A. L, Hurley B. A, Tran H. T, et al. In vivo regulatory phosphorylation of the phosphoenolpyruvate carboxylase Atppcl in phosphate-starved Arabidopsis thaliana [J]. Biochem J,2009,420(1):57-65.
    [43]Matzke M. A, Primig M, Trnovsky J, et al. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants [J]. Embo J,1989,8(3):643-649.
    [44]Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans [J]. Plant Cell, 1990,2(4):279-289.
    [45]Ayub R, Guis M, Ben Amor M, et al. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits [J]. Nat Biotechnol,1996,14(7):862-866.
    [46]Day A. G, Bejarano E. R, Buck K. W, et al. Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus [J]. Proc Natl Acad Sci U S A,1991,88(15):6721-6725.
    [47]左刚,毛建平.转录水平siRNA介导的基因沉默[J].中国生物工程杂志,2005,25(12):78-81.
    [48]谢兆辉.RNA沉默在植物生物逆境反应中的作用[J].遗传,2010,32(6):561-570.
    [49]Lipardi C, Wei Q, Paterson B. M. RNAi as random degradative PCR:siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs [J]. Cell,2001, 107(3):297-307.
    [50]Waterhouse P. M, Graham M. W, Wang M. B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA [J]. Proc Natl Acad Sci U S A,1998,95(23):13959-13964.
    [51]Chuang C. F, Meyerowitz E. M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana [J]. Proc Natl Acad Sci U S A,2000,97(9): 4985-4990.
    [52]Wesley S. V, Helliwell C. A, Smith N. A, et al. Construct design for efficient, effective and high-throughput gene silencing in plants [J]. Plant J,2001,27(6):581-590.
    [53]张银波,江木兰,胡小加.油菜PEPase基因的克隆及其对应RNAi载体的构建[J].中国油料作物学报,2005,27(1):1-4.
    [54]杨礼香,王正询,柯德森等.拟南芥血红蛋白1(AtGLB1)超量表达载体和RNAi表达载体的构建及转化[J].华中农业大学学报,2010,29(4):413-416.
    [55]马超,何娟,郝青南等.构建番茄红素β/ε环化酶基因RNAi植物表达载体及其表达分析[J].核农学报,2010,24(3):482-489.
    [56]Yu J. Y, Deruiter S. L, Turner D. L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells [J]. Proc Natl Acad Sci U S A,2002,99(9): 6047-6052.
    [57]Burch-Smith T. M, Anderson J. C, Martin G. B., et al. Applications and advantages of virus-induced gene silencing for gene function studies in plants [J]. Plant J,2004,39(5): 734-746.
    [58]王宏芝,李瑞芬,王国英等.病毒诱导的基因沉默及其在植物功能基因组学研究中的应用[J].自然科学进展,2005,15(1):8-14.
    [59]Ratcliff F, Martin-Hernandez A. M, Baulcombe D. C. Technical Advance. Tobacco rattle virus as a vector for analysis of gene function by silencing [J]. Plant J,2001,25(2):237-245.
    [60]张策,谢远红,罗云波等.VIGS诱导番茄果实LeETR4沉默及其对乙烯生成的影响[J].食品工业科技,2008,29(3):125-130.
    [61]阮小蕾,王加峰,李华平.VIGS介导的转复制酶基因番木瓜对prsv的抗性[J].华中农业大学学报,2009,28(4):418-422.
    [62]崔艳红,贾芝琪,李颖等.利用VIGS技术研究马铃薯抗晚疫病基因R3a和RB的信号传导[J].园艺学报,2009,36(7):997-1004.
    [63]Zhang B, Wang Q, Pan X. MicroRNAs and their regulatory roles in animals and plants [J]. J Cell Physiol,2007,210(2):279-289.
    [64]Tang G, Tang X, Mendu V, et al. The art of microRNA:various strategies leading to gene silencing via an ancient pathway [J]. Biochim Biophys Acta,2008,1779(11):655-662.
    [65]Lu S, Sun Y. H, Chiang V. L. Adenylation of plant miRNAs [J]. Nucleic Acids Res,2009, 37(6):1878-1885.
    [66]Schwab R, Ossowski S, Riester M, et al. Highly specific gene silencing by artificial microRNAs in Arabidopsis [J]. Plant Cell,2006,18(5):1121-1133.
    [67]Warthmann N, Chen H, Ossowski S, et al. Highly specific gene silencing by artificial miRNAs in rice [J]. PLoS One,2008,3(3):e1829.
    [68]Khraiwesh B, Ossowski S, Weigel D, et al. Specific gene silencing by artificial MicroRNAs in Physcomitrella patens:an alternative to targeted gene knockouts [J]. Plant Physiol,2008,148(2):684-693.
    [69]黄军艳,许李明,张学江等.人工microRNAs干扰At3A06基因增强了拟南芥对菌核病的敏感性[J].中国油料作物学报,2010,32(3):345-348.
    [70]Niu Q. W, Lin S. S, Reyes J. L, et al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance [J]. Nat Biotechnol,2006,24(11):1420-1428.
    [71]Allen E, Xie Z, Gustafson A. M, et al. microRNA-directed phasing during trans-acting siRNA biogenesis in plants [J]. Cell,2005,121(2):207-221.
    [72]Montgomery T. A, Yoo S. J, Fahlgren N, et al. AGO1-miR173 complex initiates phased siRNA formation in plants [J]. Proc Natl Acad Sci U S A,2008,105(51):20055-20062.
    [73]Schwab R, Ossowski S, Warthmann N, et al. Directed gene silencing with artificial microRNAs [J]. Methods Mol Biol,592:71-88.
    [74]Clough S. J,Bent A. F. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J]. Plant J,1998,16(6):735-743.
    [75]Zhang X, Henriques R, Lin S. S, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method [J]. Nat Protoc,2006,1(2):641-646.
    [76]廖俊杰.采用CTAB法快速提取植物DNA[J].天津农业科学,1993,(3):6.
    [77]Chen C, Ridzon D. A, Broomer A. J, et al. Real-time quantification of microRNAs by stem-loop RT-PCR [J]. Nucleic Acids Res,2005,33(20):e179.
    [78]Varkonyi-Gasic E, Wu R, Wood M, et al.Protocol:a highly sensitive RT-PCR method for detection and quantification of microRNAs [J].Plant Methods,2007,3:12.
    [79]李贺,张志宏,高秀岩等.草莓microRNA的RT-PCR鉴定[J].中国农业科学,2009,42(4):1465-1472.
    [80]赵翠格,刘頔,李凤兰等.植物种子油脂的生物合成及代谢基础研究进展[J].种子2010,29(4):56-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700