用户名: 密码: 验证码:
紫金山金铜矿露采高边坡稳定性评价及坡角优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国东南沿海的福建、广东等都是多山的省份,随着建设开发在这些省份的兴起,众多边坡将应运而生。如京—福高速公路福建段仅200多公里内就有180多处高于40米的边坡。在矿产开发方面,露天采场、尾矿坝等都会形成众多的高边坡,如紫金山露天矿的东帮边坡原设计坡高将达880米。
     大量的工程建设、矿山开采形成的高边坡也带来了边坡稳定性问题。边坡的开挖不当将导致边坡的变形破坏,进而延误工期,影响施工安全,并且耗费大量的治理费用。特别是在大型露天采矿工程中,由于露天矿的采矿深度越来越深,如果对矿山边坡稳定性认识不足或处理不当将会造成巨大的经济损失和重大人员伤亡。因此研究边坡稳定性问题具有十分重要的意义。
     我国要建立一个环境友好型、资源节约型社会,在工程中就得落实优化设计。优化设计就是在保证边坡稳定性的前提下,尽可能地节约成本。在矿山边坡中,由于边坡规模巨大,优化设计要考虑到利用边坡岩体的自稳能力,采场高边坡坡角的大小成为边坡优化设计的主要对象,对矿山的安全生产和经济效益有着直接的关系。可见对露天采场高边坡坡角的优化进行研究,具有十分重要的经济价值和工程实践意义。
     因此,本论文以紫金山露天采场边坡工程为例,研究该边坡的稳定性及其坡角优化。本论文从边坡工程地质条件着手,通过对结构面的特征进行分析以及优势结构面进行分组来研究边坡的岩体结构,进而确定边坡变形破坏模式及其影响因素。根据室内岩块试验的结果,结合Hoek-Brown强度准则确定岩体强度参数。然后采用极限平衡法中的Sarma法定量计算边坡的整体稳定性和局部稳定性,再利用有限差分数值模拟方法通过分析边坡的变形、应力、应变,进一步验证边坡整体与局部的稳定性。在此基础上,建立优化模型,并且引入线性规划理论计算确定了最优坡角组合,以指导施工和设计工作。文章的主要内容如下:
     (一)首先从地形地貌、岩性、水文地质和物理地质现象角度对紫金山采场边坡进行工程地质条件分析。在定性分析中侧重对岩体结构特性进行分析研究。通过对紫金山采场边坡工程地质现场调查,了解紫金山露天采场边坡结构面的分布特征、规模,并对节理进行优势分组研究,进而对岩体结构进行分类,然后采用赤平投影法研究岩体结构组合规律、稳定性和边坡变形特征。然后,根据岩性和岩体结构特征,进行边坡岩体的岩组划分,为后续的稳定性计算奠定基础。
     (二)在此基础上,对采场不同类型岩石做室内岩块物理力学试验,根据Hoek-Brown经验强度准则,取得比较可靠的岩体强度参数,选取有代表性的强度参数用于边坡稳定性分析。
     (三)通过边坡稳定性的定性分析得出采场边坡的破坏模式总体上分为两大类,即局部(浅层)破坏模式和整体(深层)破坏模式。局部破坏模式按潜在滑动面的形状又可细分为沿碎裂结构岩体中最不利滑动面滑移的圆弧破坏模式和Ⅲ级结构面组合切割岩体形成的楔形破坏模式。整体破坏模式主要为沿结构面的折线破坏模式。
     (四)在以上定性分析的基础上,选取符合边坡工程实际情况的计算参数,并选择边坡工程代表性计算剖面,采用极限平衡法中的Sarma法,在天然、暴雨、地震、暴雨加地震4种工况下定量计算采场边坡的整体稳定性系数和局部稳定性系数并综合分析稳定性计算结果,评价露天采场边坡的稳定性。在整体稳定性方面,考虑了结构面对稳定性的影响,以Ⅲ级结构面划分条块。局部稳定性计算中采用自动搜索最危险滑动面的方法,搜索出碎裂结构岩体中的最不利滑动面,并以此作为局部稳定性分析的滑动面。
     (五)按边坡岩组的划分建立准三维计算模型,在Mohr-Coulomb本构模型上,采用有限差分法,应用FLAC3D程序,模拟了该边坡在天然工况下的局部稳定性及其变形特征,以及考虑了优势节理J3、J5后的整体稳定性及其变形特征。然后将有限差分模拟与Sarma法计算结果对比,表明两种方法所得结果基本吻合,从而获得了边坡变形机制的深入了解,验证了边坡破坏模式。
     (六)从安全和经济角度对紫金山露天采场边坡进行坡角的优化设计,以边坡整体稳定性和局部稳定性为约束条件,构建起边坡坡角与最小工程费用的目标函数关系,并且引入线性规划理论,确定了紫金山露天采场边坡的最优坡角组合。将优化前后结果对比,研究表明原设计方案经过坡角的优化计算后,在满足的边坡的稳定性要求的前提下,通过提高下部块状结构岩体边坡的坡角,并放缓上部碎裂、散体结构岩体边坡的坡角,总坡角保持不变的调整方案,达到了节约开挖工程费用的目的。
     综上所述,本论文特色在于:(1)针对紫金山采场边坡岩性主要为花岗岩,属于岩质边坡,在定性分析方面,重点放在岩体结构分析上,对节理进行统计、优势分组,对结构面进行赤平投影分析,提出了该边坡可能的几种破坏模式;(2)在定量分析上,分别运用Sarma法与有限差分法,既分析边坡的整体稳定性又分析边坡的局部稳定性;(3)结合紫金山露天采场边坡岩体结构的特点,以标高604米为界,将其分为上下两个部分,构建了以边坡整体稳定性和局部稳定性为约束条件,以最小开挖工程费用为目标函数的最优化模型,并且引入应用成熟的最优化理论—线性规划,求解出最优的上下坡角组合,节约了工程费用。
The southeast coastal province of China, such as Fujian and Guangdong, are mountainous.With the rapid development of construction in these provinces, there are a large number of slopes. For example, there are 180 high slopes in Beijing-Fuzhou Expressway, which is just 200 kilometers. In the aspect of mineral development, open pit and tailing dam will be the formation of such a large number of high slope,for example the Zijinshan opencast mine will be as high as 880 meters.
     The slope stability problem has been brought by the formation of high slope, with a large number of engineering construction and mining. The improper slope excavation will lead to slope deformation and failure, thus the safety of construction would be affected. Especially in the large opencast mining engineering, because of the mining depth, if the slope stability was not paid attention to, a great loss of economics and life would be brought. Hence the study on the stability of high slope in opencast mine has very important economic value and engineering practice significance.
     If the society is built to be an environment-friendly and resource-saving society, the optimal design must be implemented in every projects. Optimum design is to save the cost as much as possible on the basis of slope stability requirement. In the aspect of mine slope, the main object of optimum design is slope angle. Hence the study on the optimal slope angle in opencast mine has very important economic value and engineering practice significance.
     Therefore, this paper took slope engineering of Zijinshan opencast mine as example and studyed the stability and optimal angle of high slope. This paper began with engineering geological conditions, then analysed the mechanism of deformation and failure, besides builds geological model. According to the result of examination and test, combining with Hoek-Brown strength criteria, rock intension was established. The stability coefficient of slope was calculated by limit equilibrium method, and stress and strain was analyzed by FLAC to validate stability of slope. Based on these, the optimal angle of slope was analyzed to guide the design and construction work.
     The main content as follows,
     (1) First, the engineering geological condition was analysed from the aspect of topography, geomorphology, lithology, hydrogeology, and physical geological phenomenon. In the qualitative analysis, this paper focused on the analysis of the characteristics of rock mass structure. The distributing character and scale of structural plane was researched by engineering geological survey. And rock mass structural character and slope deformation character was established by stereogram. Then, according to lithology and rock mass structure, the rock group division was done to provide material basis for the stability of the calculation.
     (2) Based on this, the rock mass physical and mechanical examination was done, the reliable parameter was get by Hoek-Brown strength criteria. Then the parameter was chosen to use in the slope stability analysis.
     (3) The failure mode was divided into two species that were partial failure and integral failure by qualitative analysis. According to the shape of sliding surface, the partial failure mode was divided into two types, that were arc failure mode and cuniform failure mode. And the integral failure mode was polygonal line controled by structural plane.
     (4) Based on qualitative analysis, calculation parameters and section plane were chosen, which accorded with the fact. The stability coefficient was calculated by Sarma method in all kinds of conditions, such as natural, storm, earthquake, storm plus earthquake. Then slope stability was evaluated by the stability coefficient. In the integral failure mode, the slope rock mass was divided by the 3rd structural plane. In partial failure mode, the automatic search method was used to search the sliding plane.
     (5) The quasi three dimensional calculation model was created according to petrofabric division. The stress distribution, failure mode and mechanical mechanism were established by finite difference numerical analysis under Mohr-Coulomb constitutive model. The plastic zone was found by FLAC3D to show the potential sliding surface, in order to give suggestions to monitoring and engineering treatment.Then the finite difference simulation results compared with the Sarma method that match the results from two methods to get slope deformation mechanism of the in-depth understanding of the slope failure mode verification.
     (6) The optimization design of Zijinshan open pit slope was done from the aspect of security and economics. The optimal angle of slope was determined, according to safety and economy. The objective function relationship between slope angle and engineering cost was built by constraint condition of partial and integral stability. Then linear programming was imported to confirm the optimal slope angle. Optimal results will be compared before study, and shows that after the original design slope angle of the optimization calculation, the stability of the slope to meet the requirements under the premise of the lower block structure of rock by increasing the slope of the slope angle, and slow down the upper fragmentation, rock slope of the granular structure slope angle, the total remains the same slope angle adjustment programs, achieve cost-saving purpose of excavation.Studies had shown that cost-saving purposes had been reached by increasing the lower angle and slowing down the upper angle.
     Therefore, there are some advantages as follow, (1) Because of the lithology of Zijinshan slope, this paper focused on the analysis of rock mass structure. The joints were grouped, and faults were analysed by the use of stereographic projection in order to analyse the stability of the slope. (2) In quantitative analysis, the integral and partial slope stability were analysed by the use of Sarma and FDM. (3) According to the rock mass structure of Zijinshan slope, the slope was divided into two parts at the level of 604 meters. The objective function relationship between slope angle and engineering cost was built by constraint condition of partial and integral stability. Then linear programming was imported to confirm the optimal slope angle.
引文
[1]晏鄂川,唐辉明.工程岩体稳定性评价与利用[M].北京:中国地质大学出版社,2002.
    [2]唐辉明.工程地质学基础[M].北京:化学工业出版社,2008.
    [3]章勇武,马惠民.山区高速公路滑坡与高边坡病害防治技术实践[M].北京:人民交通出版社,2007.
    [4]王树仁,何满潮,武崇福等.复杂工程条件下边坡工程稳定性研究[M].北京:科学出版,2007.
    [5]曹兰柱,贾兰.露天矿深部境界陡帮开采最终帮坡角的确定[J].辽宁工程技术大学学报,2009,28(增刊):25~27.
    [6]朱赞成,徐化祥,宋卫东.大黑山钼矿非永久性边坡稳定性研究[J].铁道建筑,2007,(6):65~68.
    [7]金爱兵,孙金海,吴顺川.露天矿深部开采边坡稳定性分析与治理方案研究[J].金属矿山,2005,(6):5~9.
    [8]阳雨平,侯斌.露天铝土矿边坡稳定性预测研究及其控制技术[J].矿业研究与开发,2006,26(6):35~38.
    [9]任高峰,王官宝,郭玉龙.渗流与应力耦合作用对边坡稳定性影响的数值模拟研究[J].矿业安全与环保,2006,33(6):26~29.
    [10]黄伟,杨仕教,曾晟,等.雪峰砂岩矿多滑面边坡稳定模糊可靠度分析[J].矿业研究与开发,2007,27(3):22~24.
    [11]William G,Pariseau,Saurabh Puri, Steve C. Schmelter.A new model for effects of impersistent joint sets on rock slope stability[J].International Journal of Rock Mechanics & Mining Sciences,2007,45:122-131.
    [12]Y. Obara,N.Nakamura,S.S.Kang, et al.Measurement of local stress and estimation of regional stress associated with stability assessment of an open-pit rock slope[J].International Journal of Rock Mechanics & Mining Sciences,2000,37:1211-1221.
    [13]Seong-Seung Kang, Bo-An Jang, Choo-Won Kang, et al. Rock stress measurements and the state of stress at an open-pit limestone mine in Japan[J].Engineering Geology,2002,67: 201-217.
    [14]P.Ramirez Oyanguren,C.Gonzalez Nicieza, M.I.Alvarez Fernandez,et al. Stability analysis of Llerin Rockfill Dam:An in situ direct shear test[J]. Engineering Geology,2008,100:120-130.
    [15]A.R.Bye,F.G.Bell. Stability assessment and slope design at Sandsloot open pit,South Africa[J]. International Journal of Rock Mechanics & Mining Sciences,2001,38:449-466.
    [16]M.C.He, J.L.Feng, X.M. Sun.Stability evaluation and optimal excavated design of rock slope at Antaibao open pit coal mine, China[J]. International Journal of Rock Mechanics & Mining Sciences,2008,45:289-302.
    [17]Skempton,A.W. Long Term Stability of Clay Slopes,Geot.1964,14(2):77-101.
    [18]Hirotaka Ochiai,Yasuhiko Okada. A fluidized landslide on a natural slope by artificial rainfall. Landslides.2004.1:211-219.
    [19]Jinoh Won, Kwangho You, Sangseom Jeong, et al.Coupled effects in stability analysis of pile-slope systems[J]. Computers and Geotechnics,2005,32:304-315.
    [20]Okubo S.Local safety factor applicable to wide rouge of failure criteria[J]. Rock Mechanics and Rock Engineering,1997,30(4):32-36.
    [21]Chau KT, Wong RHC, Liu J, et al. Shape effects on the coefficient of restitution during rockfall mpacts[C].Ninth International congress on Rock Mechanics,ISRM Congress, Paris.1999.
    [22]李天斌,王兰生.岩质工程高边坡稳定性及其控制[M].北京:科学出版社,2008.
    [23]孙玉科,牟会宠,姚宝魁.边坡岩体稳定性分析[M].北京:科学出版社,1988.
    [24]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [25]熊将,王涛,盛谦.库区边坡稳定性计算的改进Sarma法[J].岩土力学.2006,27(2):323~326.
    [26]何翔,冯夏庭,张东晓.岩体渗流-应力耦合有限元计算的精细积分方法[J].岩石力学与工程学报.2006,25(10):2003~2008.
    [27]王颂,季福全.乌江银盘水电站左岸高边坡稳定性研究[J].人民长江,2007,38(9):87~90.
    [28]万林海,金海元,吴伟功等.有限差分强度折减法的应用分析[J].人民黄河,2005,27(9):43~46.
    [29]姚旭龙,朱明,丘鑫等.有限差分法在露天采场边坡稳定性分析中的应用[J].化工矿物与加工,2007,(11):35~37.
    [30]李文秀,郭玉贵,戴兰芳.柔性防护条件下露天矿山边坡稳定性模拟分析[J].岩石力学与工程学报,2006,25(6):245~249.
    [31]朱玉生,曹守虎.伊敏—露天矿内排土对端帮稳定性的影响[J].岩土工程学报,2005,27(9):1026~1032.
    [32]李海蒙,李军财,蔡美峰等.某矿山边坡滑坡分析及综合治理技术研究[J].中国矿业,2006,15(6):58~60.
    [33]高大钊.土力学可靠性分析原理[M].中国建筑工业出版社,1994.
    [34]王玲.边坡稳定可靠性分析及综合支护体系研究[D].西安:长安大学,2005.
    [35]刘宇飞.基于MATLAB的土质边坡稳定可靠度计算及应用研究[D].中南大学硕士学位论文,2008.
    [36]李荣伟.白音华三号露天煤矿首采区非工作帮边坡稳定性研究[D].西安科技大学硕士学位论文,2008.
    [37]刘汉东,薛雷,祁萌.工程地质类比法程序化设计[J].华北水利水电学院学报,2007,28(2):62~64
    [38]周代荣,张丙先.工程地质类比法在水库塌岸预测中的应用[J].广东水利水电,2007,(4):13~15.
    [39]龚纯,王正林.精通MATLAB最优化计算[M].北京:电子工业出版社,2009,346~350.
    [40]Mukul Tripathi,Shuham Agrawal,Mayank Kumar Pandey.Real world disassembly modeling and sequenceing problem:Optimization by Algorithm of Self-Guided Ants(ASGA)[J]. Robotics and Computer-Integrated Manufacturing.2009(25).
    [41]J.cea著;胡毓达,郑权译.最优化理论与算法[M].北京:高等教育出版社,1983.
    [42]王福胜,李明毅,朱凯.国内外成本动因优化理论研究现状及评述[J].哈尔滨工业大学学报,2003,35(2):214~218.
    [43]夏元友,孙锡民,蒋超等.含弱面岩质路堑边坡坡角优化设计方法及应用[J].公路交通科技.2006,23(10):25~28.
    [44]李长冬,唐辉明,胡新丽.二维黄金分割法在水沟断面优化设计中的应用[J].路基工程,2008,(1):7~8.
    [45]朱大勇,钱七虎,周早生,郑鸿泰.岩体边坡临界滑动场计算方法及其在露天矿边坡设计中的应用[J].岩石力学与工程学报.1999,18(5):497~502.
    [46]徐光黎,唐辉明,潘别桐等.岩体结构模型与应用[M].武汉:中国地质大学出版社,1993.
    [47]孙广忠.岩体结构力学[M].北京:中国铁道出版社,1998.
    [48]《工程地质手册》编写委员会.工程地质手册[M].北京:中国建筑工业出版社,1992.
    [49]杜时贵.岩体结构面的工程性质[M].北京:地震出版社,1999.
    [50]徐郝明,王家鼎.广东某高速公路岩质边坡岩体结构面特征研究[J].西北大学学报,2007,37(1):119~122.
    [51]E.Hoek,J.W.Bray.Rock Slope Engineering[M].卢世宗等译.冶金工业出版社,1983.
    [52]刘佑荣,唐辉明.岩体力学[M].武汉:中国地质大学出版社,1997.
    [53]郑宏.严格三维极限平衡法[J].岩石力学与工程学报,2007,26(8):1529~1537.
    [54]张永兴.边坡工程学[M].北京:中国建筑工业出版社,2008.
    [55]张均锋.三维简化Janbu法分析边坡稳定性的扩展[J].岩石力学与工程学报,2004,23(17):2876~2881.
    [56]万文,曹平,吴永恒.塑性极限平衡法分析复杂岩质边坡的稳定性[J].中国安全科学学报,2004,14(6):100~108.
    [57]杨明成.基于力平衡求解安全系数的—般条分法[J].岩石力学与工程学报,2005,24(7):1216~1221.
    [58]吴海真,顾冲时.联合运用改进的极限平衡法和动态规划分析边坡稳定性[J].水利学报,2007,38(10):1272~1277.
    [59]郑颖人,时卫民.不平衡推力法与Sarma法的讨论[J].岩石力学与工程学报,2004,23(17):3030~3026.
    [60]唐辉明,晏鄂川,胡新丽.工程地质数值模拟的理论和方法[M].武汉:中国地质大学出版社,2001.
    [61]黄平,孟永钢.最优化理论与方法[M].北京:清华大学出版社,2009.
    [62]B.Gatmiri,C.Arson, K.V.Nguyen. Seismic site effects by an optimized 2D BE/FE method[J].Soil Dymamics Earthquake Engineeering,2008,28:632-645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700