用户名: 密码: 验证码:
水稻土中异化铁还原过程及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异化Fe(III)还原作用是一种微生物代谢,该过程使有机或无机的电子供体以Fe(III)作为终端电子受体而被氧化,使Fe(III)还原为Fe(II)。在自然界中只要有厌氧环境,几乎都会发生异化Fe(III)还原现象,并发现有异化铁还原微生物存在。然而直到最近10年,异化铁还原的重要性才逐渐为人们所认识。人们推测,异化Fe(III)还原可能是地球上最早的呼吸形式之一,在生命的进化历程中这一遗传烙印在一定范围和一定程度上都会被继承,且势必有更多的微生物种类都具有还原Fe(III)的能力或潜能。因此,加强异化Fe(III)还原研究对于揭示地球早期生命的能量代谢特征和生命进化具有重要的理论意义。水稻土作为研究氧化还原过程的一种模式系统一直受到人们的重视,并且其中铁的氧化还原占有重要地位。渍水土壤中氧化铁的还原作用在很大程度上受微生物的影响。在通常条件下,土壤氧化铁以微生物还原方式为主。所以,研究不同水稻土中Fe(III)微生物还原的特征及影响因素,不仅可深化人们对水稻田微生物生态的认识,而且对于阐明水稻土的形成及稻田生态系统中污染物的转化与修复机理具有重要的意义。
     水稻土中的异化铁还原过程与电子供体、受体、电子穿梭物质的作用密不可分,受到温度、光照等环境条件的影响。本文采用恒温厌氧培养的方法,较为系统的研究了不同电子供体及浓度、不同电子穿梭物质及浓度、不同电子受体及浓度对异化铁还原过程的影响。针对微生物生长的温度和光照等环境条件,探讨了水稻土中异化铁还原过程的变化。通过富集分离水稻土中的铁还原微生物,采用16S rDNA序列分析对P4菌株进行了系统分类鉴定。本论文的研究内容及获得的主要结果包括以下方面:
     1.研究了有机酸、糖类物质等电子供体对人工合成无定形氧化铁和水稻土中Fe(III)异化还原的影响。通过接种来源于不同水稻土中的混合微生物群落的混合培养试验发现,在缺乏电子供体的情况下,Fe(OH)3还原过程基本不会发生,表明体系中氧化铁的还原反应是典型的微生物学过程。添加不同电子供体后,不仅可改变铁还原过程中的Fe(II)最大累积量,也将导致Fe(III)还原过程的速率常数改变。利用有机酸盐作为电子供体时Fe(II)最大累积量大小顺序为:乳酸盐﹥丙酮酸盐﹥乙酸盐,铁还原率分别为56.70%(乳酸盐),45.47%(丙酮酸盐),35.10%(乙酸盐),Fe(II)的累积速率常数顺序为乳酸盐(0.816 d-1)﹥乙酸盐(0.520 d-1)﹥丙酮酸盐(0.318 d-1)。有机酸盐作为电子供体对异化铁还原过程的影响作用与其分子结构比如碳链长度、官能团等有关。糖类物质等作为电子供体也可以增加Fe(II)累积量和累积率常数,且在本试验条件下促进效果随浓度增加而增加。Fe(III)还原率分别为94.40%(葡萄糖),93.23%(果糖),97.38%(淀粉)和87.68%(纤维素)。速率常数分别为葡萄糖(0.937 d-1),果糖(1.035 d-1),淀粉(0.218d-1),纤维素(0.183 d-1)。土壤泥浆恒温厌氧培养试验表明,淀粉、纤维素等多糖可以促进水稻土中的异化铁还原,其浓度在0-20 g/L范围内时,Fe(II)最大累积量和速率常数随浓度增加而增大,其对土壤中Fe(III)氧化物异化还原的促进作用与土壤pH、有机质和无定形铁含量有关。对培养过程中pH与异化铁还原动力学数据的比较发现,在微生物正常生长的pH范围内,较低的pH利于Fe(III)的还原。
     2.研究了Cr(VI)、Cu(II)、As(V)和SO42-作为竞争电子受体时对水稻土中异化铁还原过程的影响。发现Cr(VI)作为竞争电子受体可使Fe(II)生成的时间滞后,且Cr(VI)浓度越大其生成Fe(II)滞后的时间越长。当Cr(VI)完全还原后,Fe(II)的积累才迅速出现。Cr(VI)的影响表现出典型的“生物—非生物联合转化”过程,即Fe(III)通过生物还原产生Fe(II),Fe(II)作为还原剂促使Cr(VI)向Cr(III)的化学转化。Cu(II)作为竞争电子受体时,Fe(II)的累积量和铁还原速率常数降低,且Cu(II)浓度越大对铁还原的影响也越大。当Cu(II)添加量为800 mg/kg时,铁还原被明显抑制。添加不同浓度As(V)后,土壤中Fe(II)的还原也被抑制,且随着浓度的增加抑制越明显。但是,As(V)的还原转化与Cr(VI)的还原过程有所区别。由As(V)和As(III)的形态分布看出,在铁还原同时存在下As(V)不可能完全被还原,反映出Fe(III)在反应过程中具有重要的调节机制。硫酸盐作为竞争电子受体时可增加水稻土中Fe(II)的最大累积量,且随硫酸盐浓度增大而增加,但Fe(II)的累积速率常数却随硫酸盐浓度的增加而持续降低。进一步的研究表明,土壤中异化铁还原微生物可以利用的碳源越多,SO42-对Fe(III)还原的影响越明显。
     3.采用微生物混合培养和土壤泥浆厌氧培养方法,研究了电子穿梭物质AQDS、黄腐酸(FA)对Fe(OH)3及不同水稻土中铁氧化物异化还原的影响。研究发现,在电子供体充足的情况下,Fe(OH)3的最终还原量并不受AQDS和FA加入量的影响,AQDS和FA对异化铁还原过程的促进作用主要是表现在增加Fe(OH)3还原的反应速率上。分别向浙江、吉林、四川和江西水稻土中添加AQDS后,土壤中Fe(II)的累积量和累积速率常数均有明显增加,表明AQDS对促进土壤中晶体氧化铁的微生物还原具有重要作用。
     4.采用土壤泥浆厌氧恒温培养和转温培养的方法,研究了温度对水稻土中异化铁还原过程的影响。在10℃-50℃范围内,温度升高不仅可以增加水稻土中Fe(II)的累积量也可以增加Fe(II)的累积速率。水稻土异化铁还原过程中Fe(III)/Fe(II)比值能够反映培养体系中Eh的变化,升高温度可导致Fe(III)/Fe(II)比值迅速降低,还原能力增加。当土壤中有机质含量较高时,有利于微生物铁还原反应的进行,其氧化还原电位(Eh)也相对较低。当温度升高时,加速的有机质的分解,可增加土壤中氧化铁的还原潜势,导致微生物铁还原过程加速,其Eh值也下降迅速。温度升高可促进微生物对于游离铁的利用,从而促进了水稻土中的异化铁还原过程。由转温培养试验看出,温度对铁还原过程的影响可能是加速反应初期有机质的迅速矿化,产生易被铁还原微生物利用的小分子碳源,从而促进土壤中氧化铁的还原。而当培养一段时间后再升温时,易分解的有机质已有所消耗,温度的效应也随之减弱,故Fe(II)的最大累积量也有所降低。
     5.采用土壤泥浆恒温厌氧培养的方法,模拟自然条件设置光照培养、避光培养、光照转避光培养及避光转光照培养四种模式,研究了光照对水稻土中异化铁还原过程的影响,并采用光学摄影显微镜初步鉴定了光合微生物的特征。研究表明,光照对水稻土异化铁还原过程的影响因土壤种类而异。光照条件对某些酸性土壤中(江西和湖南水稻土)氧化铁的还原过程几乎不产生影响;而在一些石灰性土壤中(四川和天津水稻土),在光照培养初期与避光培养基本相同,均表现为Fe(II)生成量逐渐升高的趋势。随着光照导致的蓝细菌的不断产生,光照处理中Fe(II)浓度开始降低,较之避光培养Fe(II)浓度在2种水稻土中分别降低了54.75%和78.13%。进一步的光照条件转化试验发现,石灰性土壤由避光转为光照培养后,Fe(II)生成量经过一段时间滞后,然后急剧降低,而由光照转为避光培养后,Fe(II)浓度均迅速增大,表明光照可以引起土壤中铁氧化还原平衡状态的变化。对厌氧光照培养条件下出现的绿色微生物菌体进行镜检及叶绿素光谱扫描发现,石灰性土壤在光照培养条件下可产生具有光合放氧能力的蓝细菌,其特征光吸收波长为664nm。验证了光照体系中土壤Fe(II)浓度降低是由于蓝细菌利用光合系统II进行产氧光合作用引起的化学氧化所导致的。根据镜检初步确认,天津水稻土中的蓝细菌主要是念珠蓝细菌属,四川水稻土中主要是鱼腥蓝细菌属。硫酸盐加入后可以显著抑制光合蓝细菌繁殖,延迟Fe(II)的光氧化过程。
     6.采用富集培养方法,从四川水稻土中分离得到一株兼性厌氧、革兰氏阴性的杆状菌株P4。采用PCR技术获得了1325 bp的铁还原菌株(P4)部分16S rDNA序列。经NCBI的MegaBlast同源性分析和构建铁还原菌株P4与相关菌株16S rDNA的系统进化树,将P4菌株归属为厌氧丁酸梭状芽胞杆菌。不同碳源利用试验表明,铁还原的最大反应速率大小顺序为:葡萄糖>丙酮酸盐>乳酸盐>>琥珀酸盐>丙酸盐>乙酸盐。菌株P4利用葡萄糖的Fe(III)还原率达到63.79%,丙酮酸盐为22.19%,而其他几种碳源的铁还原率均在10%以下,显示出葡萄糖和丙酮酸盐可作为菌株P4的优势碳源。
     通过本文的研究,对水稻土中电子供体、电子受体及电子穿梭物质等因素与异化铁还原的关系有了更为深入的了解,验证了培养温度及光照等环境条件对土壤泥浆培养过程中异化铁还原反应的影响程度,探讨了水稻土中异化铁还原过程的调控强化措施,加深了对水稻土中异化铁还原过程的认识,并为利用异化铁还原过程处理环境污染及其主要调控措施提供了理论依据,将为土壤环境的自净化潜能研究及污染土壤的生物修复技术建立提供新的思路。
Dissimilatory Iron Reduction (DIR), a kind of metabolism of microorganism, and Fe(III) as the terminal electron acceptor was reduced to Fe(II) in this process, coupled with the oxidation of organo/abio electron donors. DIR occurs generally in the natural anaerobic environment, where Dissimilatory Iron Reduction Bacteria (DIRB) exists universally. But, it was not focused on till last decades. Hypothetically, it is the first form of microbial respiration. Since it could be inherited in some degree in the evolution process, there must be much more microbial are capable to dissimilatory reduce Fe(III). Therefore, investigations focused on DIR process could help better understanding the evolution process and the energy metabolism in early stages, theoretically. Redox of iron oxides is prevalent in paddies, the model system in studying the redox process in natural eco-systems. It is influenced by microbial under waterlogging soil system. Study on characteristics of dissimilatory reduction of iron oxides in paddies and its influence factors, might help better understanding the paddies formation, its microbial ecology, also could help to elucidate the remediation and transformation of contamination in paddy soils.
     DIR is closely related to the electron donors, acceptors and shuttles, affected by environmental conditions such as temperature, light. In the dissertation, effects of electron donors such as organic acids, saccharides, acceptors such as Cr(VI), Cu(II), SO42-, As(V) , and electron shuttles such as AQDS, FA, on the DIR process were investigated, and environmental conditions such as temperature, light were also discussed. 16S rDNA sequencing analyses was employed to genealogical classified the Fe(III)-reducers isolated from paddies using purified amplification culture method. The main objectives and results obtained are listed as follows:
     1. Effects of electron donors such as organic acids, saccharides on the dissimilatory reduction of amorphous Fe(OH)3 synthesized in the laboratory was studied by Co-culture incubation method. Control experiments showed that there is no obviously accumulation of Fe(II) in the system in the absence of electron donors, which suggested that the DIR is a microbiological process, typically. Addition of electron donors such as organic acids could enhance the accumulation of Fe(II) in the system and the rate constant of the DIR reaction. The dissimatory reduction ratio of Fe(OH)3 is 56.70%, 45.47%, 35.10%, and the rate constant is 0.816, 0.318, 0.520 d-1, in the presence of lactate, pyruvate, and acetate, respectively. The enhancement of organic acids is related to its molecule structure such as carbon chain length and function group. In addition, electron donors such as saccharides could also enhance the accumulation of Fe(II) in the system and the rate constant of the DIR reaction, and the accumulation of Fe(II) and the rate constant could be enhanced by the addition of saccharides concentration increased. The dissimilatory reduction ratio of Fe(OH)3 is 94.40%, 93.23%, 97.38%, 87.68% and the rate constant is 0.937, 1.035, 0.218, 0.183 d-1, in the presence of glucose, fructose, starch, and cellulose, respectively. Effects of amylose such as starch and cellulose on the dissimilatory reduction of iron oxides in the paddy soils were also investigated by soil slurry anaerobic incubation method. The acumulation of ferrous and the rate constant could be enhanced by the addition of starch and cellulose with its concentration increased from 0 to 20 g L-1. The enhancement is correlated with soil characters such as pH, organic matter, and amorphous iron content. Compare with the kinetics parameters of Fe(III) reduction in anaerobic incubation, in the range microbe normal growing pH, the lower pH is more appropriate.
     2. Cr(VI), Cu(II), As(V) and SO42- could be used as alternative electron acceptor by Dissimilatory Iron Reduction Bacteria. The investigation showed that Fe(III) reduction started only when the reduction of Cr(VI) was accomplished, and the generation of ferrous was delayed by the addition of alternative electron acceptors as Cr(VI), and it was accelerated by the increasing concentration of Cr(VI), suggested that the effect of Cr(VI) on the DIR might be an combined bio-abio transformation, in which Cr(VI) could be reduced by Fe(II) generated from DIR. When Cu(II) was used as alternative electron acceptor, both the accumulation of Fe(II), and the rate constant of DIR were decreased, and accelerated by the increasing concentration. The DIR was inhibited obviously when the concentration of Cu(II) added increased to 800 mg L-1. As(V) could served as an alternative electron acceptor, thus inhibit the DIR with the increasing concentration. Compared with Cr(VI), As(V) could not be reduced entirely, which suggested Fe(III) could regulate dissimilatory reduction of As(V) under iron-reducing conditions. Though the rate constant was decreased with the increasing concentration of sulphate, the cumulation of Fe(II) during the reduction process was increased. And the further investigation showed that the decrease of the rate constant was accelerated with the increasing electron donors could be used by DIRB.
     3. Co-culture incubation and soil slurry anaerobic incubation method were employed to study the effect of electron shuttles on the dissimilatory reduction of Fe(OH)3 and iron oxides in different paddy soils such as ZJ, JL, SC, and JX. The obtained results showed that the accumulation of Fe(II) caused by dissimilatory reduction of Fe(OH)3 was not affected by the addition of AQDS or FA, but the rate constant was increased when the electron shuttle such as AQDS or FA was added. As contrast, the accumulation of Fe(II) caused by dissimilatory reduction of iron oxides in paddy soils and the rate constant was increased by the addition of AQDS.
     4. Soil slurry incubated under anaerobic constant and variable temperature to investigate the effect of temperature on DIR process. The result showed that, both Fe(II) accumulation amount and rate constant were increased at higher temperature. The Fe(III)/Fe(II) ratio could has a corelationship with Eh. Decomposition of soil organic matter was improved at higher temperature, thus the reductive capacity of iron oxides in the soils was increased, and the Fe(III)/Fe(II) ratio decreased dramatically with the increase of temperature at the meantime. Therefore, DIR process was improved, and the Eh was decreased at the same time. And the consumption of free iron oxides by DIRB was increased with the increase of temperature, which could also improve the DIR process. The results from soil slurry incubation under variable temperature also showed that, the effect of temperature might closely related to the mineralization of soil organic matter, which could provide a low molecular carbon source-facilitated the consumption by DIRB. Thus, the maximum Fe(II) accumulation amount might decreased under the higher temperature only when soil slurry incubation under constant temperature first. This might attributed to the depletion of soil organic matter which was facilitated to mineralization.
     5. Soil slurry was incubated under anaerobic constant temperature conditions, treatments including illuminous incubation, dark incubation, illuminous to dark incubation, and dark to illuminous incubation were setup to simulate natural conditions to investigate the effect of illumination on the dissimilatory reduction of iron oxides in paddy soils. Under illuminous conditions, the trend of Fe(II) vs incubation time is different in anaerobic incubated calcareous paddy soils, it increased at the initial stages and then decreased to a very low concentration. To SC and TJ, the accumulation of Fe(II) was decreased in by 54.75% and 78.13%. When illumination was ceased, Fe(II) content increase dramatically. Phototrophic bacteria, identified to be cyanobacteria by Optics Image microscope, can oxidizing Fe(II) to Fe(III) through photosynthesis respiration by photosynthetic system II which producing O2. Added sulphate can inhibit the process of Fe(II) oxidation, and the phototrophs bacteria were poisoned by excess sulphate.
     6. An anaerobic, gram-negative, rod-shaped organism P4 was isolated from Sichuan paddy soil using purified amplification culture method. Adopting the PCR acquired parts of 16S rDNA sequences of Fe(III)-reducting strain P4 with 1325 bp. Through NCBI MegaBlast homology analysis and 16S rDNA phylogenetic tree construction, strain P4 belonged to Clostridium butyricum. With different carbon sources, the maximal reaction rate of iron reduction was in proper order for: glucose>pyruvate>lactate>>succinate>propionat >acetate. With glucose as carbon source, The dissimatory reduction ratio of Fe(OH)3 is 63.79%, pyruvate is 22.19%, the others are all below 10%, showing glucose and pyruvate be the dominant carbon source for strain P4.
     Aimed at the dissimilatory reduction of iron oxides in paddy soils, taken the environmental conditions into account, the DIR process was investigated by Co-culture and soil slurry incubation method under anoxic conditions. Effect of intrinsic factor such as electron donors, acceptors, shuttles, and environmental factors such as temperature, light were investigated to disclose mechanism of dissimilatory iron reduction. This work indicated that the DIR process could be regulation and controlled to decontaminate reducible pollutants in natural environments, and will be helpful to understand the DIR process and would also provide basic understanding to the natural attenuation of reducible organic pollutants in the contaminated sediments, subsurface environments, and soil profiles. This investigation provides a feasible remediation technology and might potentially be used in conjunction with the existing remediation strategies.
引文
[1] Vasudevan D, Dorley P, Zhuang X. Adsorption of hydroxpridines and quinolines at the metal oxide water interface: roloftautomeric equilibrium[J]. Environ Sci Technol. 2001, 35(10):2006-2013.
    [2] Xie XD. Mineralogy-Acentraldiscipline of geological science[J]. Journal of Mineralogical Society of Japan, 1997, 26(3): 127-128.
    [3] Oades JM. The nature and distribution of iron compounds in soils[J]. Soil and Fertilizer. 1963, 26(1): 69-80.
    [4] 陆彦椿, 徐琪. 水稻土中铁锰在发生层中分异特点的研究[J]. 土壤通报. 1984, 15(5):201-204.
    [5] 张效年. 中国水稻土的黏土矿物[J]. 土壤学报, 1961, 9(3): 81-101.
    [6] Schwertmann U. Die fraktionierte Extraktion der freien Eisen Oxyde im Boden, ihre mineralogischen Formen und ihre Entstehungsweisen[J]. Z Pfl Dung Bodenk, 1959, 84:194-204.
    [7] Jackson ML. Chemical composition of soils[C]. In: “Chemistry of the soil”ed. Beer, 2nd, 1964, London: Chapman and Hall.
    [8] Kojima M, Kawaguchi K. Identification of free iron minerals in rustly mottles in paddys soils in Japan[J]. Soil Science and Plant Nutrition, 1969, 15: 48-51.
    [9] 熊毅, 李庆逵. 中国土壤[M]. 1987, 北京:科学出版社.
    [10] 于天仁. 土壤化学原理[M]. 1987, 北京:科学出版社.
    [11] 熊毅. 土壤胶体的物质基础[M]. 1983, 北京:科学出版社.
    [12] 于天仁, 陈志诚. 土壤发生中的化学过程[M]. 1990, 北京:科学出版社.
    [13] 马毅杰, 陈家坊. 我国红壤中氧化铁形态及其特性和功能[J]. 土壤. 1998, 1:1-6
    [14] Schwertmann U. Use of oxalate for Fe extracts from soils. Soil science. 1973, 53: 244-246.
    [15] Schwertmann U. Defferenzierung der Eisenoxide des, Bodens durch Extraktion mit Ammonium oxalate-losung. Z. Pfl. Dung. Bodenk. 1963, 105:194-200.
    [16] 陈家坊, 何群. 中性水稻土的胶体含量对其物理性质的影响[J]. 土壤, 1979, 2:45-49.
    [17] Wada K, Higashi T. The categories of aluminium- and iron- humus complexes in Ando soils determined by selective dissolution[J]. Soil Science. 1976, 27:357-368.
    [18] 赵安珍, 张效年.氧化铁对红壤电荷性质的影响[J]. 土壤. 1991, 23(5): 231-235.
    [19] 陈铭, 刘更另, 孙富臣. 有机质和游离铁对湘南红壤表面电荷性质的影响[J]. 热带亚热带土壤科学. 1997, 6(1): 20-25
    [20] 陈铭, 刘更另. 湘南第四纪红壤的粘粒矿物组成、肥力特点与表面化学性质[J]. 中国农业科学. 1994, 27(2):24-30
    [21] 丁振华, 王明仕, 冯俊明. 天然铁(氢)氧化矿物对铜离子的吸附特征[J]. 矿物学报. 2003, 23(1): 70-74.
    [22] 丁振华, 冯俊明, 王明仕. 天然氧化铁矿物对铅离子的吸附研究[J]. 生态环境. 2003, 12(2): 131-134.
    [23] 王维君, 邵宗臣, 何群. 红壤粘粒对 Co、Cu、Pb 和 Zn 吸附亲和力的研究[J]. 土壤学报. 1995, 32(2):167-178.
    [24] 丁振华, 冯俊明. 氧化铁矿物对重金属离子的吸附及其表面特征[J]. 矿物学报. 2000, 20(4): 349-352.
    [25] 朴河春, 袁芷云, 刘广深等. 硒酸盐和亚硒酸盐在土壤中吸附作用差异[J]. 土壤通报, 1996,27(3): 130-132.
    [26] 冉勇, 刘铮. 我国主要类型土壤对稀土元素的吸附和解吸特征[J]. 中国稀土学报. 1992, 10(4): 377-380.
    [27] 冉勇, 刘铮. 稀土元素在土壤和氧化物表面的吸附和解吸研究[J]. 环境科学学报. 1993, 13(3): 288-294.
    [28] 邵宗臣, 陈家坊. 土壤和氧化铁对氟化物的吸附和解吸[J]. 土壤学报. 1986, 23(3):236-242.
    [29] 欧阳天贽, 叶发兵, 李学垣. 苄嘧磺隆在几种氧化物表面的吸附及氯离子对吸附的影响[J]. 中国农业科学. 2003, 36(12):1614-1617.
    [30] Moder BT, Uwe-Goos K, Eisenreich SJ. Sorption of nonionic, Hydrophobic organic chemicals to mineral surfaces[J]. Environmental Science and Technology, 1997, 31:1079-1086.
    [31] 黄成敏, 龚子同, 杨德涌. 海南岛北部玄武岩上土壤发生研究 II.铁氧化物特征[J]. 土壤学报. 2002, 39(4):449-458.
    [32] 章明奎. 土壤氧化铁的形态在浙江红壤和黄壤分类中的意义[J].浙江农业大学学报. 1990, 16(1):42-50.
    [33] 苏玲, 林咸永, 章永松,等. 水稻土淹水过程中不同土层铁形态的变化及对磷吸附解吸特性的影响[J]. 浙江大学学报:农业与生命科学版. 2001, 27(2) :124-128.
    [34] Kumar S. Changes in some physico-chemical properties and activities of iron and zinc on submergence of some rice soils[J]. Soil Sci. 1981, 29(1):204-207.
    [35] Moore PAJr, Patrick WHJr. Iron availability and uptake by rice in acid sulfate soils[J]. Soil Sci. 1989, 53(2):471-476.
    [36] Sah RN, Mikkelsen DS, Hafez AA. Phosphorus behavior in flooded-drained soilsⅡ. Iron transformation and phosphorus sorption [J]. Soil Sci. 1989, 53 (6): 1723-1729.
    [37] Sah RN, Mikkelsen DS, Hafez AA. Phosphorus behavior in flooded-drained soils Ⅲ. Phosphorus desorption and availability[J]. Soil Sci. 1989, 53 (6):1729-1732.
    [38] Jugsujinda A, Patrick WHJr. Methane and water soluble iron production under controlled soil pH and redox conditions[J]. Commun Soil Sci PlantAnal. 1996, 27(9,10) :2221-2227.
    [39] Schwertmann U. Inhibitory effect of soil organic matter on the crystallization of amorphous ferric hydroxide[J]. Nature. 1966, 212:645-646.
    [40] Cornell RM, Schwertmann U. Influence of organic anions on the crystallization of ferrichydrite [J]. Clay and clay minerals. 1976, 27:402-410.
    [41] Kodama H, Schnitzer M. Effect of fulvic acid on the crystallization of Fe( Ⅲ) oxides[J]. Feodermo. 1977, 19:291-297.
    [42] Fischer WR. The effect of bivalent iron on the solution and transformation of iron(Ⅲ ) hydroxide [J]. Soil and fertilizer. 1973, 36:3917-3920
    [43] 薛德榕. 水稻土的化学变化.水稻生理生态译丛(二)[M]. 北京:农业出版社, 1982, 79-83.
    [44] Brennan EW, Lindsay WL. Reduction and oxidation effect on the solubility and transformation of iron oxides [J]. Soil Sci. Soc. Am. 1998, 62(4): 930-937.
    [45] Lovley DR. Microbial Fe(III) reduction in subsurface environments[J]. FEMS Microbiology Reviews. 1997, 20: 305-313.
    [46] Lovley DR, Coates JD. Novel forms of anaerobic respiration of environmental relevance[J]. Curro. Opin. Microbiol. 2000, 3, 252-237.
     Thamdrup B. Bacterial manganese and iron reduction in aquatic sediments[J]. Advance in Microbial Ecology. 2000, 16:40-84.
     Lovley DR, Holmes DE, Nevin KP. Dissimilatory Fe(III) and Mn(lV) Reduction[J]. Advance in Microbiology Physiology. 2004, 49:219-286.
     Vargas M, Kashefi K, Blunt-Harris EL, et al. Microbiological evidence for Fe(III) reduction on early Earth[J]. Nature. 1998, 395, 65-67.
     Nevin KP, Lovley DR. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens[J]. Appl. Environ. Microbiol. 2000, 66: 2248-2251.
     Childers SE, Ciufo S, Lovley DR. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis[J]. Nature. 2000, 416:767-769.
     Das A, Caccavo JrF. Dissimilatory Fe(III) oxide reduction by Shewanella alga BrY requires adhesion[J]. Curr. Microbiol. 2000, 40: 344-347.
     Arnold RG, Hoffmann MR, Dichristina TJ, et al. Regulation of dissimilatory Fe(III) reduction activity in Shewanella putrefaciens[J]. Appl. Environ. Microbiol. 1990, 56: 2811-2817.
     Myers CR, Myers JM. Localization of cytochromes to the outermembrane of anaerobically grown Shewanella putrefaciens MR-1[J]. J. Bacteriol. 1992, 174 (11): 3429-3438.
     Leang C, Coppi MV, Lovley DR. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens[J]. J Bacteriol. 2003, 185: 2096-2103.
     Butler JE, Kaufmann F, Coppi MV, et al. MacA, a diheme c-type cytochrome involved in Fe(III) reduction by Geobacter sulfurreducens[J]. J Bacteriol. 2004, 186: 4042-4045
     Caccavo F, Das A. Adhesion of dissimilatory Fe(III)-reducing bacteria to Fe(III) minerals[J]. Geomicrobiol. J. 2002, 19: 161-177.
     Reguera G, McCarthy KD, Mehta T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature. 2005, 435:1098-1101.
     Beliaev AS, Saffarini DA. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction[J]. J. Bacteriol. 1998, 180 (23):6292-6297.
     Beliaev AS, Saffarini DA, McLaughlin JL, et al. MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1[J]. Mol. Microbiol. 2001, 39(3): 722-730.
     DiChristina TJ, Moore CM, Haller CA. Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II protein secretion gene[J]. J. Bacteriol. 2002, 184 (1):142-151.
     Newman DK, Kolter R. A role for excreted quinines in extracellular electron transfer[J]. Nature. 2000, 405:94-97.
     Das A, Caccavo F. Adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY to crystalline Fe(III) oxides[J]. Curr. Microbiol. 2001, 42: 151-154.
     Roden EE, Zachara JM. Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth [J]. Environ Sci Technol. 1996, 30:1618-1628.
     Nevin KP, Lovley DR. Mechanisms for Fe(III) oxide reduction in sedimentary environments[J]. Geomicrobiol J. 2002, 19:141-159.
     Seeliger S, Cord-Ruwisch R, Schink B. A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria[J]. J Bacteriol. 1998, 180:3686-3691.
     Arnold RG, Dichristina TJ. Reductive dissolution of Fe(III) oxides by Pseudomonas sp.200[J]. Biotech.Bioeng. 1988, 32:1081-1096.
     Lovley DR, Coates JD, BluntHarris EL, et al. Humic substances as electron acceptors for microbial respiration[J]. Nature. 1996, 382, 445-448.
     Saffarini DA, Blumerman SL, Mansoorabadi KJ. Role of menaquinones in Fe (Ⅲ ) reduction by membrane fractions of Shewanella putrefaciens [J]. J Bacteriol. 2002, 184: 846-848.
     Myers CR, Myers JM. Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron ( Ⅲ ), fumarate, and nitrate by Shewanella putrefaciens MR-1[J]. J Bacteriol. 1997, 179: 1143-1152.
     Myers JM, Myers CR. Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone[J]. J Bacteriol. 2000, 182: 67-75.
     Dobbin PS, Butt JN, Powell AK, et al. Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe(Ⅲ ) by Shewanella f rigidimarina NCIMB 400[J]. Biochem J. 1999, 342: 439-448.
     Reyes-Ramirez F, Dobbin P, Sawers G, et al. Characterization of transcriptional regulation of Shewanella frigidimarina Fe (III)-induced flavocytochrome c reveals a novel iron-responsive gene regulation system[J]. J Bacteriol. 2003, 185:4561-4571.
     Gordon EJ, Pike AD, Hill AE, et al. Identification and characterization of a novel cytochrome c3 from Shewanella frigidimarina that is involved in Fe (III) respiration[J]. Biochem J. 2000, 349: 143-150.
     Myers JM, Myers CR. MtrB is required for proper incorporation of the cytochromes omcA and omcB into the outer membrane of Shewanella putrefaciens MR-1[J].Appl Environ Microbiol. 2002, 68: 5585 -5594.
     Pitts KE, Dobbin PS, Reyes-Ramirez F, et al. Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome mtrA[J]. J Bio Chem. 2003, 278: 27758-27765.
     Myers JM, Myers CR. Genetic complementation of an outer membrane cytochrome omcB mutant of Shewanella putrefaciens MR-1 requires omcB plus downstream DNA[J]. Appl. Environ. Microbiol. 2002, 68:2781-2793.
     Magnuson TS, Hodges-Myerson AL, Lovley DR. Characterization of a membrane-bound NADH-dependent Fe(III) reductase form the dissimilatory Fe(III)-reducing bacterium geobacter sulfurreducens[J]. FEMS Microbiol.Lett. 2000, 185(2):205-211.
     Myers JM, Myers CR. Isolation and sequences of omcA, a gene encoding a decaheme outer membrane cytochrome c of shewanella putrefaciens MR-1, and detection of omcA homologs in other strains of S. putrefaciens[J]. Biochemi. Biophys. Acta. 1998, 373(1):237-251.
     Nevin KP, Lovley DR. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans[J]. Appl. Environ. Microbiol. 2002, 68:2294-2299.
     Nevin KP, Lovley DR. Mechanism for Fe(III) reduction in sedimentary environments[J]. Geomicrobiol. J. 2002, 19:141-159.
     Hernandez ME, Newman DK. Extracellular electron transfer[J]. Cell. Mol. Life Sci. 2001, 58: 1562-1571.
     鲍志戎, 于湘晖. 铁锰氧化还原细菌研究概况[J]. 微生物学通报. 1996, 23(1):48-50.
     麦克拉伦 AD. 著, 闵九康、关松荫等译, 土壤生物化学[M], 北京:农业出版社, 1984, 402-409.
     Lovley DR. Organic matter mineralization with the reduction of ferric iron: A review[J]. Geomicrobiol. J. 1987, 5: 375-399.
     Lovley DR, Phillips, EJP. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Appl. Environ. Microbiol. 1988, 54: 1472-1480.
     Stein LY, La Duc MT, Grundl TJ, et al. Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments[J]. Environ. Microbiol. 2001, 3:10-18.
     Anderson RT, Rooney-Varga J, Gaw CV, et al. Anaerobic benzene oxidation in the Fe(III)-reduction zone of petroleum-contaminated aquifers[J]. Environ. Sci. Technol. 1998, 32: 1222-1229.
     Rooney-Varga NJ, Anderson RT, Fraga JL, et al. Microbial communities associated with anaerobic benzene mineralization in a petroleum-contaminated aquifer[J]. Appl. Environ. Microbiol. 1999, 65: 3056-3063.
     R?ling WFM, van Breukelen BM, Braster M, et al. Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer[J]. Appl. Environ. Microbiol. 2001, 67: 4619-4629.
     Holmes DE, Finneran KT, Lovley DR. Enrichment of Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments[J]. Appl. Environ. Microbiol. 2002, 68: 2300-2306.
     Snoeyenbos-West OL, Nevin KP, Lovley DR. Stimulation of dissimilatory Fe(III) reduction results in a predominance of Geobacter species in a variety of sandy aquifers[J]. Microbial. Ecol. 2000, 39, 153-167.
     Anderson RT, Vrionis HA, Ortiz-Bemad L, et al.. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer[J]. Appl. Environ. Microbiol. 2003, 69: 5884-5891.
     Nevin KP, Finneran KT, Lovley DR. Microorganisms associated with uranium bioremediation in a high salinity subsurface sediment[J]. Appl. Environ. Microbiol. 2003, 69:3672-3675.
     Coppi M, Leang C, Lovley D. et al. Development of a genetic system for Geobacter sulfurreducens. [J]. Appl. Environ. Microbiol. 2001, 67, 3180-3187.
     Lovley DR, Chapelle FH. Deep subsurface microbial processes[J]. Rev. Geophsy. 1995, 33: 365-381.
     Krumholz LR. Desulfuromonas chloroethenica sp. novo uses tetrachloroethylene and trichloroethylene as electron acceptors[J]. Internat. J. Syst. Bacteriol. 1997, 47, 1262-1263.
     Loffler FE, Sun Q, Li J, et al. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonasand Dehalococcoides species[J]. Appl. Environ. Microbiol. 2000, 66, 1369-1374.
     Sung Y, Ritalahti KM, Sanford RA, et al. Characterization of two tetrachloroethene-reducing, acetateoxidizing bacteria and their description as Desulfuromonas michiganensis sp. Novo[J]. Appl. Environ. Microbiol. 2003, 69, 2964-2974.
     Venkateswaran K., Moser DP, Dollhopf ME, et al. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensissp novo[J]. Int. J. Syst. Bacteriol. 1999, 49, 705-724.
     Heidelberg JF, Paulsen LT, Nelson KE, et al. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis[J]. Nature Biotechnol. 2002, 20, 1093-1094.
     Lovley DR, Phillips EJP, Lonergan DJ. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganeseby Alterornonas putrefaciens[J]. Appl. Environ. Microbiol. 1989, 55(3), 700-706.
     Kashefi K, Holmes DE, Reysenbach AL, et al. Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens, gen., nov., sp. novo[J]. Appl. Environ. Microbiol. 2002, 68:1735-1742.
     Kashefi K, Lovley DR. Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum[J].Appl. Envrion. Microbiol. 2000, 66(3):1050-1056.
     Tor JM, Lovley DR. Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus[J]. Environ. Microbiol. 2001, 3:281-287.
     Tor JM, Kashefi K, Lovley DR. Acetate oxidation coupled to Fe(III) reduction in hyperthermophilic microorganisms[J]. Appl. Environ. Microbial. 2001, 67:1363-1365.
     Kashefi K, Tor JM, Holmes DE, et al. Geoglobus ahangari, gen. nov., sp. nov., a novel hyperthermophilic Archaeum capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor[J]. Int. J. Syst. Evol. Microbiol. 2002, 52, 719-728.
     Kashefi K, Lovley DR. Extending the upper temperature limit for life[J]. Science. 2003, 301, 934.
     Childers S, Lovley DR. Differences in Fe(III) reduction in the hyperthermophilic archaeon, Pyrobaculum islandicum, versus mesophilic Fe(III)- reducing bacteria[J]. FEMS Microbiol. Lett. 2001. 195, 253-258.
     Balashova VV, Zavarzin GA. Anaerobic reduction of ferric iron by hydrogen bacteria[J]. Microbiology, 1979, 48: 773-778.
     Mikoulinskais O, Akimenko V, Galouchko A, et al. Cytochrome c-dependent methacrylate reductase from Geobacter sulfurreducens AM-I[J]. Eur. J. Biochem. 1999, 263:346-352.
     Galushko AS, Schink B. Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducensin pure culture and in syntrophic coculture[J]. Arch. Microbiol. 2000, 174:314-321.
     Esteve-Nú?ez A, Rothermich MM, Sharma M, et al. Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture[J]. Environ Microbiol. 2005, 7(5):641-648.
     Methe BA, Nelson KE, Eisen JA, et al. Genome of Geobacter sulfurreducens: Metal reduction in subsurface environments[J]. Science. 2003, 302:1967-1969.
     Schnarrenberger C, Martin W. Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants: A case study of endosymbiotic gene transfer Eur[J]. J. Biochem. 2002, 269:868-883.
     Coates JD, Councell TB, Ellis DJ, et al. Carbohydrateoxidation coupled to Fe (III) reduction, a novel form of anaerobic metabolism[J]. Anaerobe. 1998, 4:277-282.
     Kusel K, Dorsch T, Acker G, et al. Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose[J]. Appl. Environ. Microbiol. 1999, 65:3633-3640.
    [118] Lovley DR, Lonergan DJ. Anaerobic oxidtion of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15[J]. Appl. Environ. Microbiol. 1990, 56:1858-1864.
    [119] Myers CR, Myers JM. Isolation and characterization of a transposon mutant of Shewanella putrefaciens MR-I deficient in fumarate reductase[J]. Appl. Microbiol. Lett. 1997, 25:162-168.
    [120] Pronk JT, De Bruyn Je, Bos P, et al. Anaerobic growth of Thiobacillus ferrooxidans[J]. Appl. Environ. Microbiol. 1992, 58: 2227-2230.
    [121] Das A, Mishra AK, Roy P. Anaerobic growth on elemental sulfur using dissimilar iron reduction by autotrophic Thiobacillus ferrooxidans[J]. FEMS Microbiol. Lett. 1992, 97: 167-172.
    [122] Ohmura N, Sasaki K, Matsumoto N, et al. Anaerobic respiration using Fe3 +, So, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans[J]. J. Bacteriol. 2002, 184: 2081-2087.
    [123] Hafenbradl D, Keller M, Dirmeier R, et al. Ferroglobus placidus gen nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+at neutral pH under anoxic conditions[J]. Arch. Microbiol. 1996, 166:308-314.
    [124] Shelobolina ES, Anderson RT, Vodyanitskii YN, et al. Importance of clay size minerals for Fe(III) respiration in a petroleum-contaminated aquifer[J]. Geobiolog. 2003, 2(1): 67-76.
    [125] Gregory KB, Bond DR, Lovley DR. Graphite electrodes as electron donors for anaerobic respiration [J]. Environ. Microbiol. 2004, 6: 596-604.
    [126] Coppi MV, O'Neil RO, Lovley DR. Identification of an uptake hydrogenase required for hydrogen-dependent reduction of Fe(III) and other electron acceptors by Geobacter sulfurreducens[J]. J. Bacteriol, 2004, 186:3022-3028.
    [127] Coates JD, Lonergan DJ, et al. Desulfuromonas palmitatis sp. nov., a long-chain fatty acid oxidizing Fe(III) reducer from marine sediments[J]. Arch. Microbiol. 1995, 164: 406-413.
    [128] Coates, JD, Ellis DJ, Gaw CV. Geothrix fermentans gen. novo sp. nov., a noval Fe(III)- reducing bacterium from hydrocarbon contaminated aquifer[J]. Internat. J. Sys. Bacteriol. 1999, 49:1615-1622.
    [129] Lovley DR, Fraga JL, Coates JD, et al. Humics as an electron donor for anaerobic respiration[J]. Environ. Microbiol. 1999, 1:89-98.
    [130] Kusel K, Roth U, Drake HL. Microbial reduction of Fe(III) in the presence of oxygen under low pH conditions[J]. Environ. Microbiol. 2002, 4:414-421.
    [131] Lin WC, Coppi MV, Lovley DR. Geobactersulfurreducenscan grow with oxygen as a terminal electron acceptor[J]. Appl. Environ. Microbiol. 2004, 70:2525-2528.
    [132] Lovley DR, Phillips EJP. Rapid assay for microbially reducible ferric iron in aquatic sediments[J]. Appl. Environ. Microbiol. 1987, 53, 1536-1540.
    [133] Lovley DR, Phillips EJP, Gorby YA, et al. Microbial reduction of uranium[J]. Nature. 1991, 350:413-416.
    [134] Lovley DR, Phillips EJP. Reduction of uranium by Desulfovibrio desulfuricans[J]. Appl. Environ. Microbiol. 1992, 58(3):850-856.
    [135] Lovley DR. Microbial reduction of iron, manganese, and other metals[J]. Adv. Agron. 1995, 54:175-231.
    [136] Kashefi K, Tor J, Nevin KP, et al. Reductive precipitation of gold by dissimilatory Fe(III)-reducing Bacteria and Archaea[J]. Appl. Environ. Microbiol. 2001, 67:3275-3279.
    [137] Lovley DR, Fraga JL, Blunt-Harris EL, et al. Humic substances as a mediator for microbially catalyzed metal reduction [J]. Acta Hydrochirn. Hydrobiol. 1998, 26, 152-157.
    [138] Lovley DR, Kashefi K, Vargas M, et al. Reduction of humic substances and Fe(III) by hyperthermophilic microorganisms[J]. Chern. Geol. 2000, 169, 289-298.
    [139] Coleman ML, Hedrick DB, Lovley DR, et al. Reduction of Fe(III) in sediments by sulphate-reducing bacteria[J]. Nature. 1993, 361:436-438.
    [140] Lovley DR, Roden EE, Phillips EJP, et al. Enzymatic iron and uranium reduction by sulfate-reducing bacteria[J]. Marine Geol. 1993, 113:41-53
    [141] Holmes DE, Bond DR, Lovley DR. Electron transfer to Fe(III) and graphite electrodes by Desulfobulbus propionicus[J]. Appl. Environ. Microbiol. 2004, 70:1234-1237.
    [142] Gorby Y, Lovley DR. Electron transport in the dissimilatory iron-reducer, GS-15[J]. Appl. Environ. Microbiol. 1991, 57:867-870.
    [143] Finneran KT, Housewright MR, Lovley DR. Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments[J]. Environ. Microbiol. 2002, 4:510-516.
    [144] Krumholz LR, Sharp R, Fishbain SS. A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation[J]. Appl. Environ. Microbiol. 1996, 62:4108-4113.
    [145] De Wever H, Cole JR, Fettig MR, et al. Reductive dehalogenation of trichloroacetic acid by Trichlorobacter thiogens gen. novo sp. Novo [J]. Appl. Environ. Microbiol. 2000, 66, 2297-2301.
    [146] He Q, Sanford RA. Characterization of Fe(III) reduction by Anaeromxyobacter dehalogens[J]. Appl. Environ. Microbiol. 2003, 69, 2712-2718.
    [147] Tender LM, Reimers CE, Stecher HA, et al. Harnessing microbially generated power on the seafloor [J]. Nature. Biotechnol. 2002, 20, 821-825.
    [148] Reimers CE, Tender LM, Fertig S, et al. Harvesting energy from the marine sediment-water interface [J]. Environ Sci Technol. 2001, 35:192-195.
    [149] Bond DR, Holmes DE, Tender LM, et al. Electrode reducing microorganisms harvesting energy from marine sediments[J]. Science. 2002, 295, 483-485.
    [150] Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes[J]. Appl. Environ. Microbial. 2003, 69, 1548-1555.
    [151] Lovley DR, Phillips EJP. Manganese inhibition of microbial iron reduction in anaerobic sediments[J]. Geornicrobiol. J. 1988, 6, 145-155.
    [152] Lovley DR, Goodwin S. Hydrogen concentrations as an indicator of the predominant terminal electron accepting reactions in aquatic sediments[J]. Geochirn. Cosrnochirn.Acta. 1988, 52, 2993-3003.
    [153] Stolz, LF, Oremland RS. Bacterial respiration of arsenic and selenium[J]. FEMS Microbiol. Rev. 1999, 23, 615-627.
    [154] Cervantes FJ, Duong-Dac T, Ivanova AE, et al. Selective enrichment of Geobacter sulfurreducens from anaerobic granularsludge with quinones as terminal electron acceptors. Biotechnology Letters. 2003, 25:39-45.
    [155] Scott DT, McKnight DM, Blunt-Harris EL, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J]. Environ. Sci. Technol. 1998,32, 2984-2989.
    [156] Tebo BM, Obraztsova AY. Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors[J]. FEMS Microbiol. Lett. 1998, 162, 193-198.
    [157] Finneran K, Forbush HM, VanPraagh CVG, et al. Desuljitobacterium metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals, humics, and chlorinated compounds [J]. Int. J. Syst. Evol. Microbiol. 2002, 52, 1929-1935.
    [158] Kim HJ, Park HS, Hyun MS, et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens[J]. Enzyme Microbiol. Technol. 2002, 30, 145-152.
    [159] Chaudhuri SK, Lovley DR. Electricity from direct oxidation of glucose in mediator-less microbial fuel cells[J]. Nature. Biotechnol. 2003, 21, 1229-1232.
    [160] Lovley DR. Dissimilatory Fe(III) and Mn(IV) reduction[J]. Microbiol Rev, 1991, 55: 259-287.
    [161] 曲东 , Schnell S. 纯培养条件下不同氧化铁的微生物还原能力 [J]. 微生物学 . 2001, 41(6):745-749.
    [162] 曲东, 张一平, Schnell S, 等. 水稻土中铁氧化物的厌氧还原及其对微生物过程的影响[J]. 土壤学报. 2003(6):858-86.
    [163] Lovley DR, Blunt-Harris EL. Role of humics-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction[J]. Appl Environ Microbiol. 1999, 65:4252-4254.
    [164] William DB, Fang YL, Richard AR, et al. Reaction-based modeling of quinone-mediated bacterial iron(III) reduction. Geochimicaet Cosmochimica Acta. 2003, 15(67):2735-2748.
    [165] Coates JD, Ellis DJ, Roden E, et al. Recovery of humics-reducing bacteria from a diversity of sedimentary environments[J]. Appl Environ Microbiol. 1998, 64:1504-1509.
    [166] Benz M, Schink B, Brune A. Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria[J]. Appl Environ Microbiol. 1998, 64:4507-4512.
    [167] Luu Y-Su, Ramsay JA. Review: microbial mechanisms of accessing insoluble Fe(III) as an energy source[J]. World Journal of Microbiology & Biotechnology, 2003, 19:215-225.
    [168] Nevin KP, lovely DR. Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments[J]. Environ. Sic. Technol. 2000, 34:2472-2478.
    [169] Turick CE, Tisa LS, Caccavo F. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as terminal electron acceptor by Shewanella algae BrY[J]. Appl Environ Microbiol. 2002, 68:2436-2444.
    [170] Brock TD, Gustafson, J. Ferric Iron Reduction by Sulfur- and Iron-Oxidizing Bacteria[J]. Appl. Environ. Microbiol. 1976, 32: 567-571.
    [171] Bridge T, Johnson, DB, Reduction of Soluble Iron and Reductive Dissolution of Ferric Iron-Containing Minerals by Moderately Thermophilic Iron-Oxidizing Bacteria[J]. Appl. Environ. Microbiol. 1998, 64:2181-2186.
    [172] Gorlenko V, Tsapin A, Namsaraev Z, et al. Anaerobranca californiensis sp. nov., an Anaerobic, Alkalithermophilic, Fermentative Bacterium Isolated from a Hot Spring on Mono Lake[J]. Int. J. Syst. Evol. Microbiol. 2004, 54: 739-743.
    [173] Slobodkin AI. Thermophilic microbial metal reduction. Microbiology[J]. 2005, 74(5):501-514.
    [174] Finneran KT, Johnsen CV, Lovley DR. Rhodoferax ferrireducens gen. nov., sp. nov.; a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III)[J].Int. J. Syst. Evol. Microbiol. 2003, 53:669-673.
    [175] Slobodkin AI, Reysenbach AL, Strutz N, et al. Thermoterrabacterium ferrireducens gen. nov., sp., nov. a Thermophilic Anaerobic, Dissimilatory Fe(III)-Reducing Bacterium from a Continental Hot Spring[J]. Int. J. Syst. Bacteriol. 1997, 47:541-547.
    [176] Kieft TL, Fredrickson JK, Onstott TC, et al. Dissimilatory Reduction of Fe(III) and Other Electron Acceptors by a Thermus Isolate[J]. Appl. Environ. Microbiol. 1999, 65:1214-1221.
    [177] Roh Y, Liu SV, Li G, et al. Isolation and Characterization of Metal-Reducing Thermoanaerobacter Strains from Deep Subsurface Environments of the Piceance Basin, Colorado[J]. Appl. Environ. Microbiol. 2002, 68:6013-6020.
    [178] Westermann P, Ahring BK, Mah RA. Temperature compensation in Methanosarcina barkeri by modulation of hydrogen and acetate affinity[J]. Appl. Env. Microbiol. 1989, 55, 1262-1266.
    [179] Chin K, Conrad R. Intermediary metabolism in methanogenic paddy soil and the influence of temperature[J]. FEMS Microbiology Ecol. 1995, 18, 85-102.
    [180] Abdollahi H, Nedwell DB. Seasonal temperature as a factor influencing bacterial sulfate reduction in a salt marsh sediment[J]. Microb. Ecol. 1979, 5:73-79.
    [181] Westermann P, Ahring BK. Dynamics of methane production, sulfate reduction, and denitrification in a permanently waterlogged alder swamp[J]. Appl. Environ. Microbiol. 1987, 53:2554-2559.
    [182] Sieburth, JM. Seasonal selection of estuarine bacteria by water temperature [J]. J. Exp. Mar. Biol. Ecol. 1967, 1:98-121.
    [183] 朱文涛, 邱新平. 化学动力学中活化能与反应热和活化焓关系的研究[J]. 清华大学学报(自然科学版). 1999, 39(6):23-24.
    [184] 陈静, 李健美. 活化能与温度关系图的计算机辅助释疑[J].化学研究.2000, 11(3):54-57.
    [185] 川口桂三郎. 汲惠吉译.水田土壤学[M]. 北京:农业出版社, 1985, 25-43, 182-207, 288-291.
    [186] Partrick WH, Henderson RE. Reduction and oxidation cycles of manganese and iron in flood soil and in water solution[J]. Soil Sci. Soc. Am. J. 1981, 45:855-859.
    [187] Schwertmann U. The effect of pedogneic environments on iron oxide minerals[J]. Adv Soil Sci., 1985, 1:172-200.
    [188] Takahashi T, Park CY, Nakajima H, et al. Ferric iron transformation in soils with rotation of irrigated rice-upland crops and effect on soil tillage properties[J]. Soil Sci., Plant Nutr., 1999, 45: 163-173.
    [189] Widdel F, Schnell S, Heising S, et al. Ferrous iron oxidation by anoxygenic phototrophic bacteria[J]. Nature. 1993, 362:834-835.
    [190] Ehrenreich A, Widdel F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism[J]. Appl Environ Microbiol. 1994, 60(12): 4517-4526.
    [191] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京科学出版社. 2001, 9-42.
    [192] Beukes NJ, Klein C. Models for iron-formation deposition, In Schopf J W, Klein C (ed.), The Proterozoic biosphere. Cambridge University Press, Cambridge. 1992, 147-151.
    [193] 于天仁. 土壤发生中的化学过程. 北京:科学出版社,1990.
    [194] 陈家坊. 水稻土的氧化物. 李庆逵, 中国水稻土[M]. 北京:科学出版社, 1992, 155-161.
    [195] 陈家坊, 何群, 邵宗臣等.土壤中氧化铁的活化过程的探讨[J]. 土壤学报. 1983, 20(4):387-392.
    [196] 陈家坊, 何群, 许祖贻. 水稻土发僵原因的初步分析[J]. 土壤通报.1984, 15:53-56.
    [197] 何群, 陈家坊, 许祖诒. 土壤中氧化铁的转化及其对土壤结构的影响[J]. 土壤学报. 1981,18:326-333.
    [198] Gold S, 谭正喜. 铁铝氧化物与粘土矿物的相互作用及其对土壤物理性质的影响[J]. 土壤学进展. 1991, 19(2):18-22.
    [199] 于天仁, 丁昌璞. 红壤性水稻土中代换性盐基的状况及其在发生上的意义[J]. 土壤学报. 1958, 33:31-43.
    [200] 陈家坊. 土壤粘粒中的氧化物. 于天仁, 土壤化学原理[M]. 北京:科学出版社, 198, 73-105.
    [201] 陈家坊. 土壤中的氧化铁. 于天仁, 王振权主编, 土壤分析化学[M]. 1988, 337-361.
    [202] 龚子同. 水稻土的形成.李庆逵主编, 中国水稻土[M]. 北京:科学出版社, 1992, 4-7.
    [203] Gates WP, WilKinson HT. Swelling properties of microbially reduced ferruginous smectite[J]. Clay Miner. 1993,41:360-364.
    [204] Komadel P, Stucki JW. Reduction of structural iron in smectites by microorganisms[R]. In: Sixth Meeting of the European Clay Groups. Seville. 1987, 322-324.
    [205] Kostka JE, Nealson KH. Reduction of structural Fe(III) in smectite by a pure culture of the Fe-reducing bacterium shewanella putrefaciens strain MR-1[J].Clays clay miner. 1996, 44: 522-529.
    [206] Stucki JW, Roth CB. Oxidation-reduction mechanism for structural iron in montronite[J]. Soil Sci. Soc. Am. J. 1977, 41:808-814.
    [207] 何群, 陈家坊. 中性水稻土的铁解及其影响[J]. 土壤学报. 1986, 23:184-188.
    [208] Stucki JW. Redox Processes In Smecties: Soil Environmental Significance[J]. Adv. In GeoEcology.1997, 30:395-406.
    [209] 贾国东, 钟佐桑. 铁的地球化学综述[J]. 环境科学进展. 1999, 7: 74-84.
    [210] 李良谟, 潘映华.无定形氧化铁作为嫌气下NH4+氧化时电子受体的研究[J]. 土壤学报. 1988,25(2):184-190.
    [211] Sah RN, Mikkelsen DS. Phosphorus behaviors in flooded-drained soils. Effects on phosphorus sorption [J]. Soil Sci. Soc. Am. J. 1989, 53:1718-1722.
    [212] Ponnamperuma FN. Chemical kinetics of wetland rice soils relative to soil fertility [M]. In Wetland soils: Characterization, Classification, and utilization.1985, 71-89.
    [213] Matini JA, et al.Potassium supplying and fixing capacity of some Costa Rican latosols and andosols determed by successive cropping extractions and incubation[J].Soil Sci.,1977, 23:37-47.
    [214] 高淑涛, 李华兴, 郭庆荣. 广东不同母质发育水稻土钾素的固定与释放[J]. 土壤通报. 2006, 37(1):88-91.
    [215] 谢建昌. 土壤钾素研究的现状和展望[J]. 土壤学进展. 1981, (1):1-16.
    [216] 魏朝富, 杨剑虹, 屈明, 等.紫色水稻土钾有效性和钾释放的研究[J]. 植物营养与肥料学报. 1998, 4(4):352-359.
    [217] 李庆逵. 中国水稻土[M]. 北京:科学出版社. 1992, 10-20.
    [218] 于天仁. 水稻土的发生与类型[J]. 土壤. 1982, 14(2):41-45.
    [219] 罗家贤, 包梅芬.几种粘土矿物和一些土壤的钾固定[J]. 土壤学报, 1988, 25(4):379-385.
    [220] Zhao F, Wu J, McGrath SP. Soil organic sulphur and its turnover [M]. In Piccolo A. ed. Humic Substances in Terrestrial Ecosystems. Elsevier, Oxford, 1996.
    [221] 刘崇群. 我国南方土壤硫素状况和硫肥施用[J]. 土壤学报. 1981, 18(2):185-193.
    [222] 马同生. 我国水稻土中硅素缺丰原因[J]. 土壤通报. 1997, 28(4):169-171.
    [223] Trivedi P, Axe L, Dyer J. Adsorption of metal ions onto goethite: single-adsorbate and competitivesystems[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2001, 191:107–121.
    [224] Ponthieu M, Juillot F, Hiemstra T, et al.. Metal ion binding to iron oxides[J].Geochimica et Cosmochimica Acta. 2006, 70:2679-2698.
    [225] 曲东, Schnell S.外源氧化铁对水稻土甲烷形成的影响[J]. 环境科学学报. 2002, 22(1):65-69
    [226] Conrad R. Concentration of hydrogen to methane production and control of hydrogen contrations in methanogenic soils and sediments[J]. FEMS. Microbiology Ecology. 1999,28: 193-202
    [227] Yao H, Conrad R. Thermodynamics of methane production in different rice paddy soils from China, the Philippines and Italy [J]. Soil Biology & Biochemistry. 1999, 31:463-473.
    [228] Jaeckel U, Schnell S. Suppression of methane emission from rice paddies by ferric iron fertilization [J]. Soil Biology & Biochemistry. 1999, 32:1700-1714.
    [229] Roden EE. Diversion of electron flow from methanogenesis to crystalline Fe(III) oxide reduction in carbon-limited cultures of wetland sediment microorganisms[J] Appl. Environ. Microbiol, 2003, 69(9): 5702-5706.
    [230] Kennedy LG, Everett JW. Microbial degradation of simulated landfill leachate: solid iron/sulfur interactions[J] Advances in Environmental Research, 2001, 5:103-116.
    [231] Lueders T, Fridrich MW. effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil[J]. Appl. Environ. Microbiol, 2002, 68(5): 2484-2494.
    [232] Van Bodegom, PM, Scholten JCM, Stams AJM. Direct inhibition of methanogenesis by ferric iron[J]. FEMS Microbiol. Ecol, 2004, 49: 261-268.
    [233] Qu Dong, Schnell S. Effect of iron oxide addition on methanogenesis in paddy soil [J]. Bio-Spectrum. VAAM Jahrestagung Goettingen. 1999, 11l-112.
    [234] 曲东 , Schnell S. 纯培养条件下不同氧化铁的微生物还原能力 [J]. 微生物学 , 2001, 41(6):745-749.
    [235] 曲东, 张一平, Schnell S, 等. 水稻土中铁氧化物的厌氧还原及其对微生物过程的影响[J]. 土壤学报, 2003(6):858-86.
    [236] Hoden JF, Adams MW. Microbe–metal interactions in marine hydrothermal environments[J]. Curro Opin. Microbiol, 2003, 7: 160-165.
    [237] Lovley DR, Phillips EJP. Reduction of uranium by Desulfovibrio desulfuricans [J]. Appl. Environ. Microbiol. 1992, 58:850-856.
    [238] Shelobolina ES, Sullivan SA, O’Neill KR, et al. Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid-resistant bacterium from Low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranea sp. nov[J]. Appl Environ Microbiol, 2004, 70(5):2959-2965.
    [239] Ishii N, Tagami K, Enomoto S, et al. Influence of microorganisms on the behavior of technetium and other elements in paddy soil surface water [J]. J Environ Radioact. 2004, 77:369-380.
    [240] Abdelouas A, Grambow B, FattahiM, et al. Microbial reduction of Tc-99 in organic matter-rich soils [J]. Sci Total Environ. 2005, 336:255-268.
    [241] Istok J, Senko J, Krumholz L, et al. In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer[J]. Environ Sci Technol. 2004, 38:468-475.
    [242] Lloyd, J. R., Sole V. A., Van Praagh C. V. G., et al. Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria[J]. Appl. Environ. Microbiol, 2000, 66(9): 3743-3749.
    [243] O’Loughlin EJ, Kelly SD, Kemner KM, et al. Reduction of AgI, AuIII, CuII, and HgII by FeII/FeIII hydroxysulfate green rust[J]. Chemosphere. 2003, 53: 437-446.
    [244] Bernad IO, Anderson RT, Vrionis HA, et al. Vanadium respiration by Geobacter metallireducens: novel strategy for In situ removal of vanadium from Groundwater[J]. Appl. Environ. Microbiol, 2004, 70(5):3091-3095.
    [245] Parmar N, Warren LA, Roden EE, et al. Solid phase capture of strontium by the iron reducing bacteria Shewanella alga strain BrY[J].Chemical Geology, 2000, 169:281-288.
    [246] Roden RE, Leonardo MR, Ferris FG. Immobilization of strontium during iron biomineralization coupled to dissimilatory hydrous ferric oxide reduction[J]. Geochim. Cosmochim.Acta, 2002, 66(16): 2823-2839.
    [247] Zachara JM, Fredrickson JK, Smith SC, et al. Solubilization of Fe(III) oxide-bound trace metals by a dissimilatory Fe(III)reducing bacterium[J]. Geochim. Cosmochim.Acta, 2000, 65(1): 75-93.
    [248] Niggemyer A, Spring S, Stackebrandt E, et al. Isolation and characterization of a novel As(V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium[J]. Appl. Environ. Microbiol, 2001, 67(12): 2256-5580.
    [249] Bose P, Sharma A. Role of iron on controlling speciation and mobilization of arsenic in subsurface environment[J]. Wat. Res. 2002, 36, 4916-4926.
    [250] Mandal, B.K., Suzuki, K.T.. Arsenic round the world. A review [J]. Talanta. 2002, 58, 210–235.
    [251] Appelo CAJ, vander Weiden, MJJ, Tournassat C, et al. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic[J]. Environ. Sci. Technol. 2002, 36, 3096-3103.
    [252] Nickson RT, McArthur JM, Ravenscroft P, et al. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal [J]. Appl. Geochem. 2000, 15, 403-413.
    [253] Dixit S, Hering JG. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility[J]. Environ. Sci. Technol. 2003, 37, 4182-4189.
    [254] Manning BA, Fendorf SE, Goldberg S. Surface structures and stability of arsenic(III) on goethite: spectroscopic evidence for innersphere complexes[J]. Environ. Sci. Technol. 1998, 32, 2383-2388.
    [255] Regenspurg S, Gobner A, Peiffer S, et al. Potential remobilization of toxic anions during reduction of arsenated and chromated schwertmannite by the dissimilatory Fe(III)-reducing bacterium Acidiphilium Cryptum JF-5[J]. Water, Air, and Soil Pollution: Focus. 2002, 2: 57-67.
    [256] Pedersen HD, Postma D, Jakobsen R. Release of arsenic associated with the reduction and transformation of iron oxides[J].Geochimica et Cosmochimica Acta. 2006, 70: 4116-4129.
    [257] McCormick M, Gerdenich M, Kao L, et al. Geochemistry of Hydrous Ferric Oxide Reduction by Geobacter metallireducens: Implications for Sustained Dechlorination of Tetrachloromethane[J]. Journal of Conference Abstracts. 2000, 5(2), 685-691.
    [258] Backhus DA, Picardal FW, Johnson S, et al. Soil- and surfactant-enhanced reductive dechlorination of carbon tetrachloride in the presence of Shewanella putrefaciens 200[J]. Journal of Contaminant Hydrology. 1997, 28: 337-361.
    [259] Vogel TM, Criddle CS, McCarty PL. Transformations of halogenated aliphatic compounds[J].Environ Sci Technol, 1987, 21(8): 722-736.
    [260] Lovley DR, Woodward JC, Chapelle FH. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands [J]. Nature. 1994, 370: 128-131.
    [261] Lovley DR, Baedecker MJ, Lonergan DJ, et al. Oxidation of aromatic contaminants coupled to microbial iron reduction [J]. Nature. 1989, 339: 297-299.
    [262] Lovley DR, Anderson RT. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface[J]. Hydrogeology Journal. 2000, 8:77-88.
    [263] Hong Y, Xu M, Guo J, et al. Respiration and growth of Shewanella decolorationis S12 with azo compound as sole electron acceptor[J]. Appl Environ Microbiol. 2006, DOI 10.1128/ AEM.01415-06.
    [264] 许玫英, 钟小燕, 曹渭等. 脱色西瓦氏菌(Shewanella decolorations)S12T的脱色特性[J]. 微生物学通报. 2005, 32(1):5-9.
    [265] Hong Y, Chen X, Guo J, et al. Effects of electron donors and acceptors on anaerobic reduction of azo dyes by Shewanella decolorationis S12[J]. Appl Microbiol Biotechnol. 2006. DOI 10.1007/s00253-006-0657-2.
    [266] Chen Y, Zhong X, Cao W, et al. Shewanella decolorationis sp. nov., decolorizing bacterium isolated from activated sludge of a waste-water treatment plant [J]. Int J Syst Evol Microbiol.2005, 55: 363-368.
    [267] Pearce CI, Lloyd JR, Guthrie JT. The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigment[J]. 2003, 58:179-196.
    [268] Rau J, Knackmuss H-J, Stolz A. Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria [J]. Environ Sci Technol. 2002, 36:1497-1504.
    [269] Xu M, Guo J, Kong X, et al. Fe(III)-enhanced Azo Reduction by Shewanella decolorationis S12. Appl Microbiol Biotechnol. DOI 10.1007/s00253-006-0773-z.
    [270] 傅大放, 赵联芳. Cr6+对厌氧微生物的毒性作用研究[J]. 东南大学学报(自然科学版). 2002, 32(4):672-675.
    [271] Ona-nguema G, Abdelmoula M, Jorand F, et al. Microbial Reduction of Lepidocrocite by Shewanella putrefaciens; The Formation of Green Rust [J]. Hyperfine Interactions. 2002, 139/140: 231-237.
    [272] Dong HL, Fredrickson JK, Kennedy DW, et al. Mineral transformation associated with the microbial reduction of magnetite[J]. Chemical Geology, 2000, 169: 299-318.
    [273] Zachara JM, Kukkadapu RK, Fredrickson JK,et al. Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria[J]. Geomicrobiol. J. 2002, 19, 179-207.
    [274] Karlin R. Magnetic mineral diagenesis in Suboxic sediments at Bettis Site W-N, NE Pacific Ocean[J]. Journal of Geophysical Research. 1990, 95, 4421-4436.
    [275] Pyzik AJ, Sommer SE. Sedimentary Iron Monosulfides: Kinetics and Mechanism of Formation[J]. Geochim. Cosmochim. Acta. 1981, 45, 687-698.
    [276] Yao W, Millero FJ. Oxidation of Hydrogen Sulfide by Hydrous Fe(III) Oxides in Seawater[J], Mar. Chem.1996, 52, 1-16.
    [277] Rickard DT. The Microbiological Formation of Iron Sulfides[J]. Stokholm Contrib. Geol., 1969, 20, 49-66.
    [278] Herbert RB, Benner SG, Pratt AR, et al. Surface chemistry and morphology of poorly crystalline iron sulfides precipitated in media containing sulfate-reducing bacteria[J]. Chem. Geol. 1998, 144, 87-97.
    [279] Thamdrup B, Finster K, Hansen JW, et al. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron and manganese [J]. Appl. Environ. Microbiol. 1993, 59, 101-108.
    [280] Neal AL, Techkarnjanaruk S, Dohnalkova A, et al. Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate-reducing bacteria[J]. Geochim. Cosmochim. Acta. 2001, 65, 223-235.
    [281] Berner RA. Sedimentary pyrite formation: an update[J]. Geochim. Cosmochim. Acta, 1984, 48, 605-615.
    [282] Kim BH, Kim HJ, Hyun MS, et al. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens [J]. J Microbiol Biotechol. 1999, 9: 127-131.
    [283] Pham CA. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila isolated from a microbial fuel cell [J]. FEMS Microbiol Lett. 2003, 223 :129 -134.
    [284] Cummings DE, Anyhony WM, Benjamin B, et al. Evidence for microbial Fe(III) reduction in anoxic mining impacted lake sediments[J]. Appl. Environ. Microbiol, 2000, 66(1):154-162.
    [285] Dassonville F, Godon JJ, Renault P, et al. Microbial dynamics in anaerobic soil slurry amended with glucose, and their dependence on geochemical processes[J]. Soil biology& biochemistry. 2004, 36: 1417-1430.
    [286] Finneran, KT, Claudia VJ, Lovley DR. Rhodoferax ferrireducens sp. nov., a psychrotolerat, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III)[J]. Int. J. Syst. Evol. Microbiol, 2003, 53: 669-673.
    [287] Roh Y, Shi V, Liu GS, et al. Isolation and characterization of metal-reducing thermoanaerobacter from deep subsurface environment of the Piceance basin, Colorado[J]. Appl. Environ. Microbiol, 2002, 68(12): 6013-6020.
    [288] Kazumi J, H?ggblom MM, Young LY. Degradation of Monochlorinated and Nonchlorinated Aromatic compounds under iron-reducing conditions[J]. Appl. Environ. Microbiol, 1995, 61(11): 4069-4073.
    [289] Rooney-Varga J, Anderson RT, Farga J. Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer[J]. Appl. Environ. Microbiol, 1999, 65(7): 3056-3063.
    [290] Coates JD, Councell TB, Ellis DJ. et al. Carbohydrate oxidation coupled to Fe (III) reduction, a novel form of anaerobic metabolism[J]. Anaerobe, 1998, 4:277-282.
    [291] Nevin KP, Finneran KT, Lovley DR. Microorganisms associated with uranium bioremediation in a high-salinity subsurface sediment[J]. Appl. Environ. Microbiol, 2003, 69(6): 3672-3675.
    [292] Nielsen JL, Juretschko S, Wagner M. et al. Abundance and phylogenetic affiliation of iron reducers in activated sludge as assessed by fluorescence in situ hybridization and microautoradiography[J]. Appl. Environ. Microbiol, 2002, 68(9): 4629-4636.
    [293] 曲东, 谭中欣, 王保莉等. 外源物质对水稻土铁还原的影响[J]. 西北农林科技大学学报(自然科学版). 2003, 31(4):6-10.
    [294] 曲东, 曹宁, 王保莉. 添加EDTA及黄腐酸对水稻土中有效磷浓度的影响[J]. 西北农林科技大学学报(自然科学版). 2003, 31(3):127-130.
    [295] 曲东, Schnell S, Conrad R. 外源氧化铁对水稻土中有机酸含量的影响[J]. 应用生态学报. 2002,13(11):1425-1428.
    [296] 曲东, 张一平, Schnell S, Conrad R. 水稻土中铁氧化物的厌氧还原及其对微生物过程的影响[J]. 土壤学报. 2003, (6):858-863.
    [297] Schwertmann U, Cornll RM. Iron oxides in the Laboratory, Peroration. VCH, Weinheim, New York Press. 1991, 69-144.
    [298] 刘贝贝, 曲东. 不同重金属离子对异化铁(III) 还原过程的影响[J]. 西北农林科技大学学报(自然科学版). 2006, 34(9): 115-120.
    [299] 李松, 曲东. 厌氧混合培养下Cr(VI)的微生物还原能力[J]. 西北农林科技大学学报(自然科学版). 2006, 34(10):107-112.
    [300] 孙宏飞, 曲东, 张磊. 混合培养中晶体磷酸铁的异化还原能力[J]. 西北农林科技大学学报(自然科学版). 2006, 34(11):173-178.
    [301] 刘硕, 曲东. 苯系物作为唯一电子供体对铁还原过程的影响[J]. 西北农林科技大学学报(自然科学版). 2006, 34(10):101-106.
    [302] Schnell S, Ratering S. Simultaneous determination of iron(III), iron(II) and Manganese(II) in Environmemtal Samples by Ion Chromatography[J]. Envirn. Sci. Technol, 1998, 32:1530-1537.
    [303] 曲东, 王保莉. 邻氮二菲分光光度法同时测定水稻土中的Fe(II)和Fe(III)[J]. 西北农业大学学报. 1991, 19:85-88.
    [304] 赵慧敏, 全燮, 杨凤林等. 小分子有机碳源对滴滴涕污染沉积物生物修复作用的基础研究[J]. 环境科学学报. 2002, 22(1):51-55.
    [305] Madigan MT, Martinko JM, Parker J. Brock Biology of Microorganisms[M]. 杨文博, 牛淑敏, 刘方等译. 微生物生物学(第八版). 北京科学出版社. 2000, 641-644.
    [306] 南京土壤研究所主编. 中国土壤:改良利用, 性质, 肥沃度, 生成分类[M]. 北京:科学出版社, 1980.
    [307] Chidthaisong A, Rosenstock B, Conald R. Measurement of monosacchrarides and conversion of glucose to acetate in anoxic rice filed soil[J]. Appl. Environ. Microbiol, 1999, 65:2350-2355.
    [308] Qu Dong,Stefan R,Schnell S. Microbial Reduction of Weakly Crystalline Iron(III) Oxides and Suppression on Methanogenesis in Paddy Soil[J]. Bulletin of Environmental Contamination and Toxicology. 2004, 72(6): 1172-1181.
    [309] Campos VL, Moraga R, Yanez J, et al. Chromate reduction by Serratia marcescens isolated from tannery effuent[J]. Bulletin of environmental contamination and toxicology, 2005, 75(2):400-406.
    [310] Xu W, Liu Y, Zeng G, et al. Enhancing effect of iron on chromate reduction by Cellulomonas flavigena[J]. Journal of hazardous materials, 2005, 126(1-3):17-22.
    [311] Murray BM. Environmental chemistry of soils[M]. Oxford University Press. 1994.
    [312] Scheid D, Stubner S, Conrad R. Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition[J].FEMS Microbiol. Ecol, 2004, 50(2): 101-110.
    [313] O’Flaherty V, Mahony TR, O’Kennedy, et al. Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulfate-reducing bacteria[J]. Process Biochem. 1998, 33:555–569.
    [314] Reis MAM, Almeida JS, Lemos PC, et al. Carrondo, Effect of hydrogen sulfide on growth of sulfate reducing bacteria[J]. Biotech. Bioeng. 1992, 40, 593–600.
    [315] Fendorf S, Wielinga B, Hansel CM. Chromium transformations in natural environments: the role ofbiological and abiological processes in chromium(VI) reduction[J]. Int. Geol. Rev. 2000, 42, 691-701.
    [316] Jeyasingh J, Philip L. Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions[J]. J Hazard Mater, 2005, 118(1-3):113-120.
    [317] Sun XH, Dorner HE.Adsorption and oxidation of Arsenite on goethite[J].Siol Sci.1998,163:278-287
    [318] 周琦. GB7467-87, 环境保护国家标准汇编-水质六价铬的测定[M]. 北京:中国标准出版社. 1990,216-219.
    [319] 李荣华, 曲东. 厌氧水稻土中水溶性As(III)和As(V)的测定方法研究[J]. 西北农林科技大学学报(自然科学版). 2005, 33(6):79-83.
    [320] 王秀丽, 徐建民, 谢正苗等. 重金属铜和锌污染对土壤环境质量生物学指标的影响[J]. 浙江大学学报(农业与生命科学版). 2002, 28 (2):190-194.
    [321] Gery B, Steck TR. Concentrations of Copper Thought To Be Toxic to Escherichia coli Can Induce the Viable but Nonculturable Condition[J]. Appl. Environ. Microbiol. 2001, 67(11):5325-5327.
    [322] Sani RK, Peyton BM, Brown LT. Copper-Induced Inhibition of Growth of Desulfovibrio desulfuricans G20: Assessment of Its Toxicity and Correlation with Those of Zinc and Lead [J]. Appl. Environ. Microbiol. 2001, 67(10):4765-4772.
    [323] Markwiese JT, Meyer JS, Colberg PJS. Copper tolerance in iron-reducing bacteria: implications for copper mobilization in sediments [J]. Environmental Toxicology and Chemistry. 1998, 17(4):675-678.
    [324] Maithreepala RA, Doong RA. Synergistic Effect of copper ion on the reductive dechlorination of carbon tetrachloride by surface-bond Fe(II) associated with goethite[J]. Environmental Science and Technology, 2004, 38: 260-268.
    [325] 陈世和, 陈建华, 王士芬. 微生物生理学原理[M]. 上海:同济大学出版社. 1992, 30-51.
    [326] Nevin KP, Lovely DR. Lack of production of electron shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens[J].Appl Environ Microbiol, 2000, 66:2248-2251.
    [327] Torrents A, Anderson BG, Bilboulian S, et al. Atrazine photolysis: mechanistic investigations of direct and nitrate- mediated hydroxy radical processes and the influence of dissolved organic carbon from the chesapeake Bay[J]. Environ Sci Technol, 1997, 31:1476 –1482.
    [328] Lovley DR, Woodward JC, Chapelle F H. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms[J]. Appl Envrion Micrbiol, 1996, 62(1):288-291.
    [329] Roden E, Wetzel R. Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction invegetated and unvegetated freshwater wetland sediments[J]. Limnol. Oceanogr., 1996, 41(8):1733-1748.
    [330] 丁昌璞, 李九玉. 中国半湿润、半干旱、干旱地区某些土壤的氧化还原状况[J]. 干旱地区研究. 2006, 23(4):515-520.
    [331] Kirschbaum MUF. The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic C storage[J]. Soil Biology and Biochemistry. 1995, 27: 753- 760.
    [332] Lloyd J, Taylor JA. On the temperature dependence of soil respiration[J]. Functional Ecology, 1994, 8: 315-323.
    [333] Roden EE, Sobolev D, Glazer B, et al. Potential for microscale bacterial Fe redox cycling at the aerobic–anaerobic interface[J]. Geomicrobiol J. 2004, 21: 379–391.
    [334] Straub KL, Benz M, Schink B. Iron metabolism in anoxic environments at near neutral pH[J]. FEMSMicrobiol Ecol. 2001, 34:181–186.
    [335] Hanert HH. The genus Gallionella. In: The Prokaryotes[M]. Starr MP, Stolp H, Trueper HG, et al. Springer, Berlin, 1981, 509-515.
    [336] Emerson D, Revsbech NP. Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: field studies[J]. Appl Environ Microbiol. 1994, 60:4022-4031.
    [337] Emerson D, Moyer C. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH[J]. Appl Environ Microbiol. 1997, 63:4784-4792.
    [338] Edwards KJ, Rogers DR, Wirsen CO, et al. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic alpha- and, gamma-Proteobacteria from the deep sea[J]. Appl Environ Microbiol. 2003, 69:2906-2913.
    [339] Sobolev D, Roden EE. Characterization of a neutrophilic, chemolithoautotrophic Fe(II)-oxidizing β-Proteobacterium from freshwater wetland sediments[J]. Geomicrobiol J. 2004, 21:1-10.
    [340] Emerson D, Weiss JV. Bacterial iron oxidation in circumneutral freshwater habitats: findings from the field and the laboratory [J]. Geomicrobiol J.2004, 21: 405–414.
    [341] Baker BJ, Banfield JF. Microbial communities in acid mine drainage[J]. FEMS Microbiol Ecol 2003, 44:139-152.
    [342] Finneran KT, Housewright ME, Lovley DR. Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments[J]. Environ Microbiol. 2002, 4:510–516.
    [343] Senn DB, Hemond HF. Nitrate controls on iron and aresenic in an urban lake[J]. Science. 2002, 296:2373–2376.
    [344] Shelobolina ES, Gaw-VanPraagh, C, Lovley DR. Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri[J]. Geomicrobiol J. 2003, 20:143–156.
    [345] Konhauser KO, Hamade T, Raiswell R, et al. Could bacteria have formed the Precambrian banded iron formations?[J] Geology. 2002, 30:1079-1082.
    [346] 曲东, 贺江舟, 孙丽蓉. 不同水稻土中氧化铁的微生物还原特征[J]. 西北农林科技大学学报(自然科学版). 2005, 33(4):97-101.
    [347] Kondratieva EN, Pfennig N, Trüper HG. The phototrophic prokaryotes. in Balows et al. The Prokaryotes[M]. Springer-Verlag, New York. 1992, 312-330.
    [348] Prescott LM, Harley JP, Kleiv DA. Microbiology(fifth Edditon)[M]. Beijing: Higher Education Press. 2002, 468-477.
    [349] Arnor DI. Copper enzyme in isolated chloroplasts Polyphenoloxidase in BETA VULGARIS[J]. Plant Physiohogy, 1949, 24:1-5.
    [350] Taillefert M, Bono A, Luther G. Reactivity of freshly formed Fe(III) in synthetic solutions and (pore)waters: voltammetric evidence of an aging process[J]. Environ Sci Technol. 2000, 34:2169–2177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700