用户名: 密码: 验证码:
微生物还原Cr(Ⅵ)的特性与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铬及其化合物在工业中被广泛使用,导致大量含铬废水、废渣产生,对环境造成严重污染。在铬污染治理中,将毒性极强的六价铬还原为毒性较小的三价铬是减少铬污染危害的关键。自然界中许多菌种具有Cr(Ⅵ)还原能力,因而用微生物法治理铬污染已受到人们的广泛认可。本文对几株不同细菌还原解毒六价铬的特性和机理进行了详细研究与探讨。
     从Cr(Ⅵ)污染环境中分离筛选出一株Cr(Ⅵ)还原菌Cr-4,通过16SrRNA基因序列分析,被鉴定为炭疽芽孢杆菌(Bacillus anthracis)。该菌株对Cr(Ⅵ)具有较好的抗性,菌体能在Cr(Ⅵ)浓度高达125mg/L的液体培养基中生长,在含Cr(Ⅵ) 50mg/L的液体培养基中生长,其细胞形态仍很完整。
     对Cr-4菌株还原Cr(Ⅵ)的影响因素如碳源、培养基初始pH值、Cr(Ⅵ)初始浓度、菌液接种量、温度、阴离子SO_4~(2-)和NO_3~-、重金属离子Cu~(2+)和Zn~(2+)、外源菌种等进行了研究。结果表明,碳源能明显促进Cr(Ⅵ)的还原,在本文采用的三种碳源中,苹果酸的效果最好,其次是葡萄糖,再为琥珀酸。当培养基初始pH=7.2,菌体还原50mg/L Cr(Ⅵ) 48h,添加苹果酸、葡萄糖和琥珀酸的处理Cr(Ⅵ)去除率分别达到98%、89%和83%以上,而同样条件下未添加外源碳时,72h后Cr(Ⅵ)去除率才达到60%。培养基初始pH值对菌体还原Cr(Ⅵ)也有重要影响。实验发现,Cr-4菌株在初始pH为7.0-11.0时的还原效果明显比初始pH为4.0-6.0时要好。以葡萄糖为外源碳,还原50mg/L Cr(Ⅵ) 72h后,初始pH为7.0-11.0的Cr(Ⅵ)去除率可达到85%-99%以上,而初始pH为4.0-6.0的去除率仅为35%-65%。菌体在Cr(Ⅵ)初始浓度为10-80mg/L时,都能有效还原Cr(Ⅵ),但去除率随初始浓度升高而降低。在菌液接种量为0.5%-5%范围内,接种量越多,Cr(Ⅵ)还原越快。对比菌体分别在20℃、37℃和47℃的还原效果,发现37℃的还原效果最好。共存阴离子SO42-、NO3-和25mg/L的Zn~(2+),以及外源菌种(铜绿假单胞菌和产黄纤维单胞菌)都对Cr(Ⅵ)还原没有影响,但100mg/L的Zn~(2+)对Cr(Ⅵ)还原有一定的抑制作用,而Cu~(2+)对Cr(Ⅵ)还原有显著的促进作用。
     对细胞生长与Cr(Ⅵ)还原的关系进行考察,发现二者紧密相关。随着Cr(Ⅵ)细胞生长量的增加,Cr(Ⅵ)被还原,当Cr(Ⅵ)被还原至较低浓度时,细胞生长量又显著增加。通过检测胞内粗酶液和培养代谢液对Cr(Ⅵ)的还原作用,对菌株还原Cr(Ⅵ)的机理进行分析、研究,实验发现胞内粗酶液能还原Cr(Ⅵ),表明Cr-4菌株对Cr(Ⅵ)的还原存在酶促机理。同时,菌体以不同的碳源为电子供体还原Cr(Ⅵ)时,其机理有差异。以葡萄糖为碳源还原Cr(Ⅵ)时,有部分是代谢产物的间接还原作用,而以苹果酸或琥珀酸为碳源时,Cr(Ⅵ)的还原主要通过菌体自身的直接还原作用来完成。此外,对还原Cr(Ⅵ)后的菌体进行能谱分析,发现菌体在培养基初始pH=9.0还原Cr(Ⅵ)时,没有吸附铬,而在培养基初始pH=7.2还原Cr(Ⅵ)时,通过阳离子交换吸附了少量三价铬。
     对铜绿假单胞菌(Pseudomonas aeruginosa)的抗Cr(Ⅵ)性能、还原Cr(Ⅵ)的影响因素和机理进行研究。结果表明,铜绿假单胞菌对Cr(Ⅵ)的抗性比Cr-4菌株弱。40mg/L的Cr(Ⅵ)就对细胞形态产生了毒性影响,在Cr(Ⅵ)浓度100mg/L的液体培养基中,菌体24h内没有出现生长。三种碳源:葡萄糖、苹果酸和琥珀酸都能促进Cr(Ⅵ)的还原,其中苹果酸的效果最好。菌体在培养基初始pH=7.0还原40mg/L Cr(Ⅵ),72h后,未添加外源碳的处理Cr(Ⅵ)去除率仅为34%,而添加苹果酸的处理去除率可提高到60%。菌体在培养基初始pH为8.0-11.0时的还原效果比初始pH为4.0-7.0时要好。以葡萄糖为外加碳源,还原40mg/LCr(Ⅵ)72h后,培养基初始pH为8.0-11.0时Cr(Ⅵ)去除率可达到95%以上,而初始pH为4.0-7.0时,去除率仅为10%-50%。菌体在Cr(Ⅵ)初始浓度为10-80mg/L时,均能还原Cr(Ⅵ),但Cr(Ⅵ)去除率随初始浓度升高而降低。菌液接种量(0.5%-5%)的增加能提高Cr(Ⅵ)的去除率。铜绿假单胞菌对Cr(Ⅵ)的还原不受共存阴离子SO42-和NO3-的影响。低浓度的Zn~(2+)(25mg/L)就对Cr(Ⅵ)还原有明显的抑制作用,而Cu~(2+)却能明显促进Cr(Ⅵ)的还原。
     铜绿假单胞菌对Cr(Ⅵ)的还原机理与分离菌Cr-4相似,存在酶促机理。实验还发现,菌体以葡萄糖为碳源还原Cr(Ⅵ)时,Cr(Ⅵ)的去除有部分是代谢产物的还原作用,而以苹果酸或琥珀酸为碳源时,Cr(Ⅵ)的去除主要通过菌体自身的还原作用完成,而没有代谢产物的作用。还原Cr(Ⅵ)后菌体的能谱分析结果表明,菌体还原Cr(Ⅵ)时(培养基初始pH=7.0)通过阳离子交换吸附了三价铬。
     本文还研究了Fe(Ⅲ)对异化型铁还原菌——产黄纤维单胞菌(Cellulomonas flavigena)还原Cr(Ⅵ)的影响。结果表明,FeCl3和纤铁矿能提高菌体对Cr(Ⅵ)的还原效率,但赤铁矿对菌体还原Cr(Ⅵ)没有明显的促进作用,这说明Fe(Ⅲ)对Cr(Ⅵ)还原的影响与铁氧化物的性质相关。另外,实验还发现,当Fe(Ш)/Cr(Ⅵ)的初始浓度比较高时,Cr(Ⅵ)的去除率也相应较高。pH的变化在一定程度上反映了Cr(Ⅵ)的还原状况。
     用分离菌Cr-4和铜绿假单胞菌处理含Cr(Ⅵ)工业废水,发现分离菌Cr-4的处理效率比铜绿假单胞菌高。将分离菌Cr-4菌液接种于Cr(Ⅵ)污染土壤,能加快土壤中Cr(Ⅵ)的还原,但使土壤中铬的活性有所提高。
Chromium and its compounds are widely used in many industries and a large quantity of Cr(Ⅵ)-containing wastes are released into environment. Chromium, especially hexavalent chromium has posed great threat on environmental safety and human health. The reduction of quite toxic hexavalent chromium into less toxic trivalent chromium is the key for the detoxification of chromium. Many bacterial species have been found to be able to reduce Cr(Ⅵ) and microbial remediation has been regarded as a promising approach for the treatment of chromium pollution. In this paper, the ability and mechanisms of Cr(Ⅵ) reduction by several different strains were researched in detail.
     A novel Cr(Ⅵ)-reducing strain Cr-4 was isolated from Cr(Ⅵ)-contaminated environment and identified as Bacillus anthracis by sequence analysis of 16SrRNA. The isolate Cr-4 could grow in the presence of 125mg/L Cr(Ⅵ) and its cellular morphology keep quite intact in liquid medium containing 50mg/L Cr(Ⅵ).
     The parameters affecting Cr(Ⅵ) reduction by isolated strain, Cr-4, were thoroughly investigated, such as carbon source, initial pH value of liquid medium, initial Cr(Ⅵ) concentration, cells inoculum amount, temperature, the anions of SO_4~(2-) and NO)3~-, the heavy metals of Zn~(2+) and Cu~(2+) and the exogenous strains. The results demonstrated that addition of carbon source enhanced Cr(Ⅵ) reduction obviously. Among three carbon sources applied in the experiments, malate was the best, followed by glucose, succinate. With the initial Cr(Ⅵ) concentration of 50 mg/L and initial pH value of 7.2, more than 98%, 89% and 83% of Cr(Ⅵ) was removed after 48h by addition of malate, glucose and succinate respectively, but only 60% of Cr(Ⅵ) was removed after 72h if none of carbon source was added. The initial pH value of liquid medium also had important effect on Cr(Ⅵ) reduction. With the initial Cr(Ⅵ) concentration of 50 mg/L and glucose as carbon source, the isolate Cr-4 reduced more than 85%-99% of Cr(Ⅵ) after 72h when initial pH value was in the range of 7.0-11.0, but only 35%-65% of Cr(Ⅵ) was reduced when initial pH value was in the range of 4.0-6.0. The isolated strain, Cr-4 was able to reduce Cr(Ⅵ) at initial concentration from 10 to 80 mg/L, but the Cr(Ⅵ) removal rate decreased with the increase of initial Cr(Ⅵ) concentration. With the cells inoculum amount from 0.5%-5%, the increase of cells inoculum amount leaded to the increase of Cr(Ⅵ) removal rate. The isolate Cr-4 reduced Cr(Ⅵ) more efficiently at 37℃, compared with that at 20℃and 47℃. The anions of SO_4~(2-) and NO_3~-, exogenous strains (Pseudomonas aeruginosa and Cellulomonas flavigena) and 25mg/L Zn~(2+) did not affect the bacterial Cr(Ⅵ) reduction, but 100mg/L Zn~(2+) inhibited Cr(Ⅵ) reduction, and Cu~(2+), however, had significant enhancing effects on Cr(Ⅵ) reduction.
     The relation between cells growth and Cr(Ⅵ) reduction was detected. It was observed that the cells growth of Cr-4 and Cr(Ⅵ) reduction were well correlated. The growth of cells stimulated Cr(Ⅵ) reduction and efficient Cr(Ⅵ) reduction conversely promoted the cells growth. The cell-free extracts and filtrates of cultures were used to reduce Cr(Ⅵ) in order to research the mechanisms of Cr(Ⅵ) reduction by the isolate Cr-4. The results demonstrated that the cell-free extracts was able to reduce Cr(Ⅵ), indicating that the enzyme-catalyzed mechanism was applied in Cr(Ⅵ) reduction by the isolate Cr-4. Additionally, it was found that the mechanism was different when different carbon source was applied as the electron donors. When glucose was used as carbon source, a part of Cr(Ⅵ) was reduced by the metabolites, but no Cr(Ⅵ) was reduced by the metabolites when malate or succinate was used as carbon source. The energy-dispersive X-ray microanalyzer was employed to test the adsorption of chromium by cells after Cr(Ⅵ) reduction. The results of energy spectrums showed that Cr(Ⅲ) was adsorbed by cation exchange during Cr(Ⅵ) reduction at initial pH value of 7.2, but no chromium was adsorbed when Cr-4 reduced Cr(Ⅵ) at initial pH value of 9.0.
     Another strain, Pseudomonas aeruginosa, was also used to reduce Cr(Ⅵ). Its resistance to Cr(Ⅵ), the factors influencing Cr(Ⅵ) reduction and the mechanisms of Cr(Ⅵ) reduction were researched. It was found that the resistance of Pseudomonas aeruginosa to Cr(Ⅵ) was not as good as that of the isolate Cr-4. The cellular morphology was affected by 40mg/L Cr(Ⅵ), and the cells was not grown in 24h in the presence of 100mg/L Cr(Ⅵ). Three carbon sources, glucose, malate and succinate applied in the experiments, were found to promote Cr(Ⅵ) reduction, and malate had the best effects. With the initial Cr(Ⅵ) concentration of 40mg/L and initial pH value of 7.0, only 34% of Cr(Ⅵ) was removed by Pseudomonas aeruginosa after 72h if there was no carbon source was applied, and the Cr(Ⅵ) removal rate increased to 60% when malate was used as carbon source. Pseudomonas aeruginosa reduced Cr(Ⅵ) more efficiently at initial pH value of 8.0-11.0 than that at 4.0-7.0. With the initial Cr(Ⅵ) concentration of 40mg/L and glucose as carbon source, more than 95% of Cr(Ⅵ) was removed after 72h at initial pH value of 8.0-11.0, but only 10%-50% of Cr(Ⅵ) was removed at initial pH value of 4.0-7.0. The Cr(Ⅵ) removal rate decreased with the increase of initial Cr(Ⅵ) concentration ranging from 10 to 80 mg/L, and the increase of cells inoculum amount (0.5%-5%) leaded to the increase of Cr(Ⅵ) removal rate. The anions of SO_4~(2-) and NO_3~- had no effects on Cr(Ⅵ) reduction. Zn~(2+) inhibited Cr(Ⅵ) reduction significantly even the concentration of Zn~(2+) was only 25mg/L, but Cu~(2+) was found to promote Cr(Ⅵ) reduction significantly.
     The mechanism of Cr(Ⅵ) reduction by Pseudomonas aeruginosa is like that of the isolate Cr-4. Pseudomonas aeruginosa reduced Cr(Ⅵ) by enzyme-catalyzed mechanism, and a part of Cr(Ⅵ) was reduced by the metabolites when glucose was applied as carbon source, but no Cr(Ⅵ) was reduced by the metabolites when malate or succinate was used as carbon source. The energy spectrum showed that Pseudomonas aeruginosa adsorbed chromium by cation exchange during Cr(Ⅵ) reduction (initial pH=7.0).
     The effect of Fe(Ⅲ) on Cr(Ⅵ) reduction by dissimilatory iron-reducing strain, Cellulomonas flavigena, was also investigated. The results demonstrated that addition of FeCl3 or lepidocrocite promoted Cr(Ⅵ) reduction and increased Cr(Ⅵ) removal rate, but addition of hematite did not lead to the increase of Cr(Ⅵ) removal rate, which indicates that the effect of Fe(Ⅲ) on Cr(Ⅵ) reduction appears different due to the diversity of iron-oxides. In addition, the results demonstrated that the Cr(Ⅵ) removal rate increased with the increase of initial concentration ratio of Fe(Ⅲ)/ Cr(Ⅵ), and the change of pH value reflected Cr(Ⅵ) reduction to some extent.
     The isolate Cr-4 and Pseudomonas aeruginosa were respectively applied to treat the Cr(Ⅵ)-containing industrial wastewater. The isolate Cr-4 was found to have a higher Cr(Ⅵ) removal efficiency than Pseudomonas aeruginosa. The isolate Cr-4 was also inoculated to Cr(Ⅵ)-contaminated soil. It was observed that the cells of Cr-4 promoted Cr(Ⅵ) reduction, but increased the activity of chromium in soil.
引文
[1] 孔志明主编. 环境毒理学,第二版. 南京:南京大学出版社,2004,165-168
    [2] 国 家 环 保 局 . 2004 年 环 境 统 计 年 报 . http://www.zhb.gov.cn/eic/ 1648807535025696/20051128/13253. shtml, 2005-11-28
    [3] 刘卫国,张新申,刘明华. 制革工业中铬污染及防治. 皮革科学与工程,2001,11(3):1-6
    [4] 汤克勇. 铬的污染源及其危害. 皮革科学与工程,1997,7(1):33-37
    [5] 孟凡生,王业耀,汪春香,等. 铬污染地下水的 PCR 修复试验. 工业用水与废水,2005,36(2):22-25
    [6] 石磊,赵由才,牛冬杰. 铬渣的无害化处理和综合利用. 中国资源综合利用,2004,10:5-8
    [7] 古昌红,单振秀,丁社光. 铬盐生产基地对水体污染的研究. 矿业安全与环保,2006,33(4):18-20
    [8] Kota? J,Stasicka Z. Chromium occurrence in the environment and methods of its speciation. Environmental Pollution,2000,107:263-283
    [9] 赵堃,柴立元,王云燕,等. 水环境中铬的存在形态及迁移转化规律. 工业安全与环保,2006,32(8):1-3
    [10] Nieboer E,Jusys A A. Biologic chemistry of chromium. In: Chromium in the natural and human environments. New York:Wiley Interscence,1988,21
    [11] 李晶晶,彭恩泽. 综述铬在土壤和植物中的赋存形式及迁移规律. 工业安全与环保,2005,31(3):31-33
    [12] 李桂菊. 铬在植物及土壤中的迁移与转化. 中国皮革,2004,33(5):30-34
    [13] 徐衍忠,秦緒娜,刘祥红,等. 铬污染及其生态效应. 环境科学与技术,2002,25(增刊):8-9
    [14] Casadevall M,Fresco P C,Kortenkamp A. Chromium( Ⅵ )-mediated DNA damage:oxidative pathways resulting in the formation of DNA breaks and abasic sites. Chemico-Biological Interactions,1999,123:117-132
    [15] Kareus S A,Kelley C,Walton H S,et al. Release of Cr( Ⅲ ) from Cr( Ⅲ) picolinate upon metabolic activation. Journal of Hazardous Materials,2001,B84:163-174
    [16] Bryan G W,Langstom W J. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environmental Pollution,1992,76: 89-131
    [17] Venugopal N B R K,Reddy S L N. Nephrotoxic and hepatotoxic effects of hexavalent and trivalent chromium in a fresh water teleost Anabas scandens, biochemical and environmental changes. Ecotoxicology and Environmental Safety,1992,24:287–293
    [18] Ramirez P,Barrera G,Rosas C. Effect of chromium and cadmium upon respiration and survival of Callinectes similes. Bulletin of Environmental Contamination and Toxicology,1989,43:850-857
    [19] Rai U N,Tripathi R D,Kumar N. Bioaccumulation of chromium and toxicity on growth, photosynthesis pigments, photosynthesis, in vivo nitrate reductase activity and protein content in a chlorococcalean green algae Glaucocystis nostochinearum. Chemosphere,1992,25:1721-1732
    [20] Gorbi G,Corradi M G. Chromium toxicity on two linked trophic levels. Ecotoxicology and Environmental Safety,1993,25:64-71
    [21] 杜良,王金生. 铬渣毒性对环境的影响与产出量分析. 安全与环境学报,2004,4(2):34-37
    [22] 廖白基. 环境中微量重金属元素的污染危害与迁移转化,第一版. 北京:科学出版社,1989,152-158
    [23] 牛晓霞. 含铬废水的处理方法综述. 洛阳大学学报,1999,14(4):39-43
    [24] 刘俊良,杨全利,刘明德. 含铬废水处理技术综述. 河北科技图苑,1997,37(3):13-15
    [25] 吴成宝,胡小芳,罗韦因,等. 浅谈铁氧体法处理电镀含铬废水. 电镀与涂饰,2006,25(5):51-55
    [26] 谢少雄,黄功浩,黄美燕. 铁屑法处理电镀含铬废水的试验及应用. 工业水处理,2003,23(6):28-30
    [27] 贾金平,谢少艾,陈虹锦. 电镀废水处理技术及工程实例,第一版. 北京:化学工业出版社,2003,58
    [28] 安成强,崔作兴,郝建军,等. 电镀三废治理技术,第一版. 北京:国防工业出版社,2002,113
    [29] 邵涛,姜春梅. 膨润土对不同价态铬的吸附研究. 环境科学研究,1999,12(6):47-49
    [30] 马宏瑞,黄宁选,张景飞,等. 泥炭对溶液中铬的吸附及其在制革废水处理中的应用. 环境化学,2003,22(6):596-600
    [31] 宋志敏,丁建础. 用煤处理含铬( Ⅵ )废水的试验研究. 矿业安全与环保,2005,32(4):9-13
    [32] 田森林,张启华,管彦伟. 锯屑处理含铬废水的试验研究. 安全与环境学报,2002,2(4):11-13
    [33] 史会齐,周嵘,焦贺贤等. 花生壳综合利用研究——花生壳对 Cr( Ⅵ )的吸附作用. 河南大学学报,2004,34(2):41-43
    [34] 张慧,李宁,戴友芝. 重金属污染的生物修复技术. 化工进展,2004,23(5):562-565
    [35] 王亚雄,郭瑾珑,刘瑞霞. 微生物吸附剂对重金属的吸附特性. 环境科学,2001,22(6):72-75
    [36] 沈杰,张朝晖,周晓云,等. 生物法去除水中重金属离子的研究. 水处理技术,2005,31(3):5-8
    [37] D?nmez G,Aksu Z. Removal of chromium( Ⅵ) from saline wastewaters by Dunaliella species. Process Biochemistry,2002,38:751-762
    [38] 李志超. 微生物对甲基汞的降解作用. 环境科学,1984,5(3):61-64
    [39] 王保军. 烟草头孢霉 F2 对氯化汞解毒作用的研究. 环境科学学报,1992,12(3):275-278
    [40] Ohtake H,Fuji E,Toda K. Reduction of toxic chromate in an industrial effluent by use of a chromate reducing strain of Enterobacter cloacae. Environmental Technology,1990,11:663-668
    [41] Yamamoto K,Kato J,Yano T,et al. Kinetics and modeling of hexavalent chromium reduction in Enterobacter cloacae. Biotechnology and Bioengineering,1993,41:129-133
    [42] Compos J,Martinez-Pacheco M,Cervantes C. Hexavalent-chromium reduction by a chromate resistant Bacillus sp. strain. Antonie van Leeuwenhoek,1995,68:203-208
    [43] Lloyd J R. Bioremediation of metals: the application of microorganisms that make and break minerals. Microbiology Today,2002,29:67-69
    [44] 郭学军,黄巧云,赵振华,等. 微生物对土壤环境中重金属活性的影响. 应用与环境生物学报,2002,8(1):105-110
    [45] Siegel S M,Keller P,Siegel B Z,et al. Metal speciation, separation and recovery. In:Proc Intern Symp. Chicago:Kluwer Academic Publishers,1986,77-94
    [46] Francis A J,Dodge CJ. Anaerobic microbial dissolution of transition and heavy metal oxdides. Applied and Environmental Microbiology,1988,54(4):1009-1014
    [47] 周顺桂,周立祥,黄焕忠. 生物淋滤技术在去除污泥中重金属的应用. 生态学报,2002,22(1):125-133
    [48] Geoffrey W, Codd G A, Gadd G M. Accumulation of cobalt, zinc and manganese by the estuarine green microalgae Chlorella salina immobilized in alginate microbeads. Environmental Science and Technology,1992,26(1):176-177
    [49] Wilkinson S C,Goulding K H,Robinson P K,et al. Mercury accumulation and volatilization in immobilized algal cell systems. Biotechnology Letter,1989,11(12):861-864
    [50] Chang J S,Law R,Chang C C. Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU 21. Water Research,1997,31(7):1651-1658
    [51] 严国安,李益健. 固定化小球藻净化污水的初步研究. 环境科学研究,1994,7(1):39-42
    [52] 杨芬. 固定化藻细胞对水中 Cu( Ⅱ )的吸附研究. 曲靖师专学报,2000,19(6):46-48
    [53] Bayramoglu G,Denizli A,Bektas S,et al. Entrapment of Lentinus sajorcaju into Ca-alginate gel beads for removal of Cd( Ⅱ) ions from aqueous solution: Preparation and biosorption kinetics analysis. Microchemical Journal,2002,72(1):63-76
    [54] Arica M Y,Arpa C,Ergene A,et al. Ca-alginate as a support for Pb( Ⅱ) and Zn( Ⅱ ) biosorption with immobilized Phanerochaete chrysosporium. Carbohydrate Polymers,2003,52:167-174
    [55] Iqbal M,Edyvean R G J. Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium. Miner. Eng.,2004,17:217-223
    [56] Michel L J,Macasbie L E,Dean A C R. Cadmium accumulation by immobilized cells of a Citrobacter sp. using various phosphate donors. Biotechnology and Bioengineering,1986,28(9):1358-1365
    [57] Brierley J A,Brierley C L,Decker R F,et al. Treatment of microorganisms with alkaline solution to enhance metal uptake properties. United States Patent. 4690894,1987-9-1
    [58] 陆开形,唐建军,蒋德安. 藻类富集重金属的特点及其应用展望. 应用生态学报,2006,17(1):118-122
    [59] Lee D C,Park C J,Yang J E,et al. Screening of hexavalent chromium biosorbent for marine algae. Appl. Microbiol. Biotechnol.,2000,54(3):445-448
    [60] Cetinkaya D G,Aksu Z,Ozturk A,et al. A comparative study on heavy metal biosorption characteristics of some algae. Process Biochemistry,1999,34(9):885-892
    [61] Gupta V K,Shrivastava A K,Jain N. Biosorption of chromium( Ⅵ) from aqueous solutions by green algae spirogyra species. Water Research,2001,35(17):4079-4085
    [62] 马锦民,瞿建国,夏君,等. 失活微生物和活体微生物处理含铬( Ⅵ )废水研究进展. 环境科学与技术,2006,29(4):103-105
    [63] 李强,陈明,崔富昌,等. 生物吸附剂 ZL5-2 对 Cr( Ⅵ ) 的吸附机理. 环境科学,2006,27(2):343-346
    [64] 王竞,陶颖,周集体,等. 细菌胞外高聚物对水中六价铬的生物吸附特性. 水处理技术,2001,27(3):145-147
    [65] 任乃林,李红. 改性木屑处理六价铬的研究. 工业用水与废水,2005,36(3):33-35
    [66] Nadhem K H,Chen X,Mohammed M F,et al. Adsorption kinetics for the removal of chromium( Ⅵ) from aqueous solution by adsorbents derived from used tyres and sawdust. Chemical Engineering Journal,2001,84:95-105
    [67] Cho N S,Aoyama M,Sek K,et al. Adsorption by coniferous leaves of chromium ion from effluent. J. Wood Sci.,1999,45:266-270
    [68] Lalvani S B,Hubner A,Wiltowski T S. Removing Cr6+ and Cr3+ by using lignin. Energy Sources,2000,22(1):45-46
    [69] Tunali S , Kiran I , Akar T. Chromium( Ⅵ) biosorption characteristics of Neurospora crassa fungal biomass. Minerals Engineering,2005,18:681-689
    [70] 叶锦韶,尹华,彭辉,等. 掷孢酵母对含铬废水的生物吸附. 暨南大学学报,2005,26(3):401-405
    [71] Park D,Yun Y S,Jo J H,et al. Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Research,2005,39:533-540
    [72] 夏金兰,申丽,何环,等. 游离和固定化 Synechococcus sp.细胞对铬( Ⅵ ) 生物吸附性能的比较研究. 中南大学学报(自然科学版),2006,37(2):241-246
    [73] 苏秀娟,朱一民,赵晨,等. 悬浮酵母菌吸附 Pb( Ⅱ ),Cr( Ⅵ )的机理. 东北大学学报(自然科学版),2006,27(8):922-925
    [74] Chen G Q,Zeng G M,Tu X,et al. Application of a by-product of Lentinus edodes to the bioremediation of chromate contaminated water. Journal of Hazardous Materials,2006,B135:249-255
    [75] Wang Y T. Microbial reduction of chromate. In:Environmental Microbe-metalInteractions. Washington, D, C:ASM Press, 2000,225-232
    [76] Bopp L H , Ehrich H L. Chromate resistance plasmid in Pseudomonas fluorescens strain LB300. Arch. Microbiol.,1988,150(4):422-430
    [77] Wang P C,Mori T,Toda K,et al. Membrane-associated chromated reductase activity from Enterobacter cloacae. J. Bacteriol.,1989,172:1670-1672
    [78] Blake II R C,Choate D M,Bardhan S,et al. Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ. Toxicol. Chem.,1993,12:1365-1376
    [79] Myers C R,Carstens B P,Antholine W E,et al. Chromium( Ⅵ) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Appl. Microbio.l,2000,88:98-106
    [80] Shen H,Wang Y T. Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl. Environ. Microbiol.,1993,59:3771-3777
    [81] McClean J,Beveridge T J. Chromate reduction by a Pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl. Environ. Microbiol.,2001,67:1076-1084
    [82] Garbisu C,Alkorta Itziar,Llama M J,et al. Aerobic chromate reduction by Bacillus subtilis. Biodegradation,1998,9:133-141
    [83] Philip L, Iyengar L, Venkobachar C. Cr( Ⅵ ) reduction by Bacillus coagulans isolated from contaminated soils. J. Environ. Eng.,1998,124(12):1165-1170
    [84] Lovley D R,Phillips E J P. Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl. Environ. Microbiol.,1994,60:726-728
    [85] Michel C,Brugna M,Aubert C,et al. Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Appl. Microbiol. Biotechnol.,2001,55:95-100
    [86] Chardin B , Giudici-Orticoni M-T , Luca G D , et al. Hydrogenases in sulfate-reducing bacteria function as chromium reductase. Appl. Microbiol. Biotechnol.,2003,63:315-321
    [87] Smith W L,Gadd G M. Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. J. Appl. Microbiol.,2000,88:983-991
    [88] Cheung K H, Gu J-D. Reduction of chromate(CrO42-) by an enrichment consortium and an isolated of marine sulfate-reducing bacteria. Chemosphere,2003,52:1523-1529
    [89] Suzuki T,Miyata N,Horitsu H,et al. NAD(P)H-dependent chromium( Ⅵ) reductase of Pseudomonas ambigua G-1: A Cr(Ⅴ) intermediate is formed during the reduction of Cr( Ⅵ ) to Cr( Ⅲ ). J. Bacteriol.,1992,174:5340-5345
    [90] Kalabegishvili T L, Tsibakhashvili N Y, Holman H-Y N. Electron spin resonance study of chromium( Ⅴ) formation and decomposition by basalt-inhabiting bacteria. Environ. Sci. Technol.,2003,37:4678-4684
    [91] Neal A L,Lowe K,Daulton T L,et al. Oxidation state of chromium associated with cell surfaces of Shewanella oneidensis during chromate reduction. Appl. Surf. Sci.,2002,202:150-159
    [92] Ackerley D F,Gonzalez C F,Keyhan M,et al. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environmental Microbiology,2004,6(8):851-860
    [93] Vázquez-Morillas A,Vaca-Mier M,Alvarez P J. Biological activation of hydrous ferric oxide for reduction of hexavalent chromium in the presence of different anions. European Journal of Soil Biology,2006,42:99-106
    [94] Viera M,Curutchet G,Donati E. A combined bacterial process for the reduction and immobilization of chromium. International Biodeterioration & Biodegradation,2003,52:31-34
    [95] 瞿建国,申如香,徐伯兴,等. 硫酸盐还原菌还原 Cr( Ⅵ ) 的初步研究. 华东师范大学学报(自然科学版),2005,1:105-110
    [96] Wang Y-T,Xiao C S. Factors affecting hexavalent chromium reduction in pure cultures of bacteria. Water Research,1995,29(11):2467-2474
    [97] Rege M A,Petersen J N,Johnstone D L,et al. Bacterial reduction of hexavalent chromium by Enterobacter cloacae strain HO1 grown on sucrose. Biotechnology Letters,1997,19(7):691-694
    [98] Fulladosa E,Desjardin V,Murat J-C,et al. Cr( Ⅵ ) reduction into Cr( Ⅲ) as a mechanism to explain the low sensitivity of Vibrio fischeri bioassay to detect chromium pollution. Chemosphere,2006,65:644-650
    [99] DeLeo,P C,Ehrlich H L. Reduction of hexavalent chromium by Pseudomonas fluorescens LB300 in batch and continuous cultures. Appl. Microbiol. Biotechnol.,1994,40:756-759
    [100] Sultan S , Hasnain S. Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresource Technology,2007,98:340-344
    [101] 周海涛,白毓谦. 一株六价铬还原菌的分离及其用于含铬废水处理的初步研究. 青岛海洋大学学报,1991,21(3):104-110
    [102] 汪频,李福德,刘大江. 硫酸盐还原菌还原铬( Ⅵ ) 的研究. 环境科学,1993,14(6):1-4
    [103] 龙腾发,柴立元,傅海洋. 碱性介质中还原高浓度 Cr( Ⅵ ) 细菌的分离及其特性. 应用与环境生物学报,2006,12(1):80-83
    [104] Shakoori A R,Makhdoom M,Haq R U. Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Appl. Microbiol. Biotechnol.,2000,53:348-351
    [105] Laxman R S,More S. Reduction of hexavalent chromium by Streptomyces griseus. Minerals Engineering,2002,15:831-837
    [106] 王保军,杨惠芳,李文忠. 真菌还原 Cr( Ⅵ )的研究. 微生物学报,1998,38(2):108-113
    [107] Ohtake H,Fujii E,Toda K. A survey of effective electron-donors for reduction of toxic hexavalent chromium by Enterobacter cloacae. J. Gen. Appl. Microbiol.,1990,36(3):198-206
    [108] Komori K,Wong P C,Ohtake H. Factors affecting chromate reduction in Enterobacter cloacae strain HO1. Appl. Microbiol. Biotechol.,1989,31(4):567-570
    [109] Shen H,Wang Y-T. Modeling hexavalent chromium reduction in E.coli ATCC 33456. Biotechnol. Bioeng.,1994,43:293-300
    [110] Viamajala S,Peyton B M,Sani R K,et al. Toxic effects of chromium( Ⅵ) on anaerobic and aerobic growth of Shewanella oneidensis MR-1. Biotechnol. Prog.,2004,20:87-95
    [111] Shen H,Wang Y T. Biological reduction of chromium by E.coli. Journal of Environmental Engineering,1994,120:560-570
    [112] 冯易君,谢家理,向芹,等. 共存离子对硫酸盐还原菌(SRB)处理含铬废水的影响研究. 环境污染与防治,1995,17(4):15-17
    [113] Wang Y-T,Shen H. Modeling Cr( Ⅵ) reduction by pure bacterial cultures. Water Research,1997,31(4):727-732
    [114] Ohtake H,Fujii E,Toda K. Bacterial reduction of hexavalent chromium: kinetic aspects of chromate reduction by Enterobacter cloacae HO-1. Biocatalysis,1990,4(2):224-231
    [115] Shen H,Wang Y T. Hexavalent chromium removal in a two-stage bioreactor system. Journal of Environmental Engineering,1995,121(11):798-804
    [116] Evans M N,Chirwa,Wang Y-T. Hexavalent chromium reduction by Bacillus sp. in a packed-bed bioreactor. Environ. Sci. Techno.,1997,31:1446-1451
    [117] Evans M N,Chirwa,Wang Y-T. Chromium( Ⅵ ) reduction by Pseudomonas fluorescens LB300 in fixed-film bioreactor. Journal of Environmental Engineering,1997,123(8):760-766
    [118] Konovalova V V,Dmytrenko G M,Nigmatullin R R,et al. Chromium( Ⅵ) reduction in a membrane bioreactor with immobilized Pseudomonas cells. Enzyme and Microbial Technology,2003,33:899-907
    [119] Dermou E,Velissariou A,Xenos D,et al. Biological chromium( Ⅵ) reduction using a trickling filter. Journal of Hazardous Materials,2005,B126:78-85
    [120] 倪修龙,王毓芳,徐章华. 含铬废水的生物治理. 上海化工,2000,25(23):4-6
    [121] 吴乾菁,李昕,李福德,等. 微生物治理电镀废水的研究. 环境科学,1997,18(5):47-50
    [122] Turick C E,Apel W A. Isolation of hexavalent chromium-reducing anaerobes from hexavalent-chromium-contaminated and noncontaminated environments. Appl. Microbiol. Biotechnol.,1996,44:683-688
    [123] 叶锦韶,尹华,彭辉. 微生物抗重金属毒性研究进展. 环境污染治理技术与设备,2002,3(4):1-4
    [124] Alonso Ana, Sanchez P, Martínez J. Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrobial Agents and Chemotherapy,2000,44(7):1778-1782
    [125] Cervantes C, Ohtake H, Chu L et al. Cloning, nucleotide sequence, and expression of chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. J. Bacteriol.,1990,172(1):287-291
    [126] Nies A, Nies D H, Silver S. Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J. Bio. Chem.,1990,265(10):5648-5653
    [127] Alvarez A H, Moreno-Sánchez R, Cervantes C. Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. Journal of Bacteriology,1999,181(23):7398-7400
    [128] Pimentel B E, Moreno-Sánchez R, Cervantes C. Efflux of chromate by Pseudomonas aeruginosa cells expressing the ChrA protein. FEMS Microbiology Letters,2002,212(2):249-254
    [129] 吴赛玉. 简明生物化学,第一版. 合肥:中国科学技术大学出版社,1999,168-172
    [130] Camargo F A O,Okeke B C,Bento F M,et al. In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+. Appl. Microbiol. Biotechnol.,2003,62:569-573
    [131] Abe F,Miura T,Nagahama T,et al. Isolation of a highly copper-tolerant yeast, Cryptococcus sp., from the Japan trench and the induction of superoxide dismutase activity by Cu2+. Biotechnol. Lett.,2001,23:2027-2034
    [132] Lowe K L,Straube W,Little B,et al. Aerobic and Anaerobic reduction of Cr( Ⅵ ) by Shewanella oneidensis: effects of cationic metals, sorbing agents and mixed microbial cultures. Acta Biotechnol.,2003,23(2):161-178
    [133] Park C H,Keyhan M,Wielinga B,et al. Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Applied and Environmental Microbiology,2000,66(5):1788-1795
    [134] Ganguli A , Tripathi A K. Survival and chromate reducing ability of Pseudomonas aeruginosa in industrial effluents. Letters in Applied Microbiology,1999,28:76-80
    [135] Ganguli A , Tripathi A K. Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl. Microbiol. Biotechnol.,2002,58:416-420
    [136] 刘志丹,周良,杜竹玮,等. 异化金属还原菌的研究进展. 微生物学通报,2005,32(5):156-159
    [137] 林君英,计时华. 食物中游离态二价铁及游离态三价铁的测定. 广东微量元素科学,1996,3(8):29-33
    [138] Hansel C M,Wielinga B W,Fendorf S. Structural and compositional evolution of Cr/Fe solids after indirect chromate reduction by dissimilatory iron-reducing bacteria. Geochimica et Cosmochimica Acta,2003,67(3):401-412
    [139] 曲东,Schnell S. 纯培养条件下不同氧化铁的微生物还原能力. 微生物学报,2001,41(6):745-749
    [140] Lovley D R. Microbial Fe(Ш) reduction in subsurface environments. FEMS Microbiology Reviews,1997,20:305-313
    [141] Cummings D E,March A W,Bostick B. Evidence for microbial Fe( Ⅲ) reduction in anoxic, mining-impacted lake sediments. Appl. Environ. Microbiol.,2000,66:154-162
    [142] Das A,Caccavo F J. Dissimilatory Fe( Ⅲ ) oxide reduction by Shewanella alga BrY requires adhesion. Current Microbiology,2000,40:344-347
    [143] Becquer T,Quantin C,Sicot M,et al. Chromium availability in ultramafic soils from New Caledonia. The Science of the Total Environment,2003,301:251-261
    [144] 陈英旭,朱祖祥,何增耀. 土壤中铬的有效性与污染生态效应. 生态学报,1995,15(1):79-84
    [145] 陈英旭,何增耀,吴建平. 土壤中铬的形态及其转化. 环境科学,1994,15(3):53-56
    [146] Tseng J K,Bielefeldt A R. Low-temperature chromium( Ⅵ) biotransformation in soil with varying electron acceptors. J Environ Qual,2002,31:1831-1841
    [147] Desjardin V,Bayard R,Huck N,et al. Effect of microbial activity on the mobility of chromium in soils. Waste Management,2002,22:195-200
    [148] Tokunaga T K,Wan J,Firestone M K,et al. In situ reduction of chromium( Ⅵ) in heavily contaminated soils through organic carbon amendment. J. Environ. Qual.,2003,32:1641-1649
    [149] 施积炎,陈英旭,林琦,等. 根分泌物与微生物对污染土壤重金属活性的影响. 中国环境科学,2004,24(3):316-319

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700