用户名: 密码: 验证码:
东太平洋海隆13°N附近含金属沉积物中的有机碳氮研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据热液活动对海底沉积环境影响的程度,将海底沉积环境划分为三个部分:热液直接作用区(硫化物分布区),热液间接作用区(含金属沉积物区),正常沉积区。东太平洋海隆13°N附近所取得的三个沉积物柱状样(E271、E272、E53)属于含金属沉积物区,以它们为研究对象(E271和E272是重点研究对象),进行了粒度、粘土矿物、有机碳氮和无机碳分析,并结合已有的测年数据和金属元素含量数据,对含金属沉积物中的有机碳氮进行了系统的讨论。
     沉积物无机组分的物源分析表明,沉积物中富含铁锰的组分主要是非晶质或结晶程度较差的铁锰氧化物和氢氧化物。来自于火山灰蚀变的富铁蒙脱石也有一定的贡献,但是含量太少。铁锰氧化物或氧氧化物倾向于集中在细粒的物质中。铁锰含量自下而上的递增趋势反映了热液活动程度增强的趋势。
     三个站位沉积物中有机碳的含量都很高,E271、E272有机碳含量在0.9%-1.5%之间,而E53含量则相对更高,最高可达4.6%。E271、E272自下而上有递增的趋势,它与铁锰的含量有一定的相关性,可能有机质与铁锰之间存在某种联系。有机碳的沉积通量很低,E271上层为4.06mg/ka?cm2 ,下层仅为0.84mg/ ka?cm2。因此沉积物中高有机碳含量显示的高生产力是一种假像,并不能代表古海水表层生产力很高。
     C/N值在三个站位的变化情况各有不同。按照常规的把有机质来源分为海洋表层生物与陆源有机碳来源,那么E271和E53站位总体上水生有机碳在总有机碳中居主要成分。E272上层是海洋生物来源占优,下层是陆源生物占优。但是根据热液plume存在细菌和TEP的特性,应该考虑沉积物中有机质是表层生物源和热液影响的生物源。经过假设计算,认为热液影响的生物有机碳源受到热液柱扩散形态的影响,且与热液活动的稳定性有关。因此两相比较,认为该研究区,有机质来源应该选择表生有机碳与受热液影响生物有机碳为两个端元组分。受热液生物影响的程度为E272>E271>E53。
     在E272站位沉积物中发现的一些细菌种类与热液喷口区的嗜热细菌相似程度很高,它们可能是随着Plume飘移而迁移,并沉降到沉积物中。它们的存在对有机碳的含量和组成将会产生影响。这是一个热液生物影响沉积物有机碳的直观的证据。
     通过Fe、Mn、Al含量随深度变化的趋势,推断出碳酸钙自下而上减小不是因为热液组份的加入对其含量稀释而成的,应该是沉积环境的改变,导致其溶解度增加所致。
     在研究过程中,还对沉积物中有机碳的测定方法进行了探讨,鉴于不同方法之间带来的有机碳数据上的误差,建议建立一种标准的测试方法,便于有机碳数据的比较。计算沉积速率和沉积通量时,对E271用含水量进行了去压实校正。根据计算,当含水量变化很大时,去压实作用是有必要的。
Three cores of metalliferous sediment matter have been collected at November 2003 by the vessel Da Yang Yi Hao. We have analyzed samples about grain size, ages, TOC, TN, clay minerals et al. Oxides and oxyhdrate produced by hydrothermal activity, rich in Fe and Mn, are amorphous substance. Montmorillonite, formed by alteration of eruptions, which also rich in Fe, mabe can provie some Fe. However, it is poor in sediment, so oxides and oxydrate are main resource of Fe and Mn. Upward increase of Fe%(wt%) and Mn% in sediment display that hydrothermal activity are more intense recently.
     Organic carbon is rich in sediment and also upward increasing. There maybe some correlations among organic matter and oxides or oxyhdrates. Organic carbon flux in E271 are calculated,and 4.06mg/ka?cm2 to up segment,0.84mg/ ka?cm2 to down segment. Low values suggest that the productivity of surface plankton was not high.
     The distribution of C/N ratios of the organic matters in the three cores is different due to their sources. Different sources are calculated by assuming that the C/N ratio of aquatic and hydrothermal organic matter is 5 and 10 respectively. The facial aquatic organic matters are dominant in E271 and E53. At E272, the aquatic are dominant in up segment, and the hydrothermal in down segment.
     According to the variety of Fe%, Mn% and Al% with depth, we conclude that the decrease of carbonate content is due to the climate changing, but not to the increasing input of hydrothermal substance.
     Bacteria related to hydrothermal activity are found in the up segment of E272, and they are bloom here. Maybe it can increase organic carbon contend.
     Comparing with some different methods for analyzing organic carbon, we suggest that it necessary to set up a standard method for avoiding errors by different methods.
     The compaction effect need to be revised by water contend when water changes greatly with depth.
引文
Alldredge, A.L., Passow, U. and Logan, B.E., 1993. The abundance and significance of a class of large,transparent organic particles in the ocean. D eep—Sea Research I, 40: 1131-1140.
    Alt, J.C., 1988. Hydrothermal oxide and nontronite deposits on the seamounts in the Eastern Pacifc Marine and Geology, 81: 227-239.
    Antrim, J.-C.S., Ken C. Macdonald., 1988. .Fine scale Study of a Small Overlapping Spreading Center System at 12°54′N on the Pacific Rise. Mar. Geophys. Res, 9: 115-130.
    Bignall, G. and Browne, P.R.L., 1994. Surface hydrothermal alteration and evolution of the Te Kopia Thermal Area, New Zealand. Geothermics, 23(5-6): 645-658.
    Bischoff, J.L. and Rosenbauer, R.J., 1977. Recent metalliferous sediment in the North Pacific manganese nodule area. Earth and Planetary Science Letters, 33(3): 379-388.
    Bisutti, I., Hilke, I. and Raessler, M., 2004. Determination of total organic carbon - an overview of current methods. TrAC Trends in Analytical Chemistry, 23(10-11): 716-726.
    Bisutti, I., Hilke, I., Schumacher, J. and Raessler, M., 2007. A novel single-run dual temperature combustion (SRDTC) method for the determination of organic, in-organic and total carbon in soil samples. Talanta, 71(2): 521-528.
    Bordovskiy O.K., 1965. Accumulation and transfortmation of organic substances in marine sediments[J]. Marine Geology, 3: 93-114.
    Bostrom k., P.M.N.A., 1969. The origin of aluminium-poor ferromanganoan sediments ih the areas of high heat flow on the East Pacific Rise. Economic Geology, 61: 1258-1265.
    Brault, M., Marty, J.C. and Saliot, A., 1984. Fatty acids from particulate matter and sediment in hydrothermal environments from the east Pacific rise, near 13°N. Organic Geochemistry, 6: 217-222.
    Brault, M. and Simoneit, B.R.T., 1988. Steroid and triterpenoid distributions in bransfield strait sediments: Hydrothermally-enhanced diagenetic transformations. Organic Geochemistry, 13(4-6): 697-705.
    Buatier, M.D., Karpoff, A.M. and Charpentier, D., 2002. Clays and zeolite authigenesis in sediments from the flank of the Juan de Fuca Ridge. ClayMinerals, 37(1): 143-155.
    C.R. Germana, S. Colleya, M.R. Palmera, A. Khripounoffb and Klinkhammer, G.P., 2002. Hydrothermal plume-particle fluxes at 131N on the East Pacific Rise.
    Canuel, E.A. and Martens, C.S., 1993. Seasonal variations in the sources and alteration of organic matter associated with recently-deposited sediments. Organic Geochemistry, 20(5): 563-577.
    Charlou J L, Bougault H and Appriou P, e.a., 1991. Water column anomalies associated with hydrothermal activity between 11°40′and 13°N on the East Pacific Rise:discrepancies between tracers. Deep-Sea Res, 38(5): 569-596.
    Charnock, H., 1964. Anomalous bottom water in the Red Sea. Nature, 203: 590-591. Churcher, P.L. and Dickhout, R.D., 1987. Analysis of ancient sediments for total organic carbon - some new ideas. Journal of Geochemical Exploration, 29(1-3): 235-246.
    Corliss J. B., M.L., J. Dymond, 1978. The chemistry of hydrothermal mounds near the Galapagos Risft.. Earth and Planetary Science Letters, 40: 12-24.
    Costerton, J.W., 1995. Overview of microbial biofilm. Journal of Industrial Microbiology, 15: 137-140.
    Cronan, D.S. and Hodkinson, R.A., 1997. Geochemistry of hydrothermal sediments from ODP Sites 834 and 835 in the Lau Basin, southwest Pacific. Marine Geology, 141(1-4): 237-268.
    D. Ben Othman, C.J.A., 1990. U-Th isotopic systematics at 13°N east Pacific Ridge segment. Earth and Planetary Science Letters, 98(1): 129-137.
    Dekov, V.M. and Damyanov, Z.K., 1997. Native silver-copper alloy in metalliferous sediments from the East Pacific Rise axial zone (20°30'-22°10'S). Oceanologica Acta, 20(3): 501-512.
    Dekov, V.M., Scholten, J.C., Botz, R., Garbe-Schonberg, C.D. and Stoffers, P., 2007. Fe-Mn-(hydr)oxide-carbonate crusts from the Kebrit Deep, Red Sea: Precipitation at the seawater/brine redoxcline. Marine Geology, 236(1-2): 95-119.
    Di Leo, P., Dinelli, E., Mongelli, G. and Schiattarella, M., 2002. Geology and geochemistry of Jurassic pelagic sediments, Scisti silicei Formation, southern Apennines, Italy. Sedimentary Geology, 150(3-4): 229-246.
    Didyk, B.M. and Simoneit, B.R.T., 1990. Petroleum characteristics of the oil in a Guaymas Basin hydrothermal chimney. Applied Geochemistry, 5(1-2): 29-40.
    Dtrick R S, B.P.e.a., 1987. Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise[J]. Nature, 326: 35-41.
    Dymond, J., Corliss, J.B. and Heath, G.R., 1977. History of metalliferous sedimentation at deep sea drilling site 319 in the South Eastern Pacific. Geochimica et Cosmochimica Acta, 41(6): 741-753.
    Dymond, J. and Roth, S., 1988. Plume dispersed hydrothermal particles: A time-series record of settling flux from the Endeavour Ridge using moored sensors. Geochimica et Cosmochimica Acta, 52(10): 2525-2536.
    Edmond J M, e., 1982. Chemistry of hot spring on the East Pcific Rise and their effluent dispersal . Nature, 297(20): 187-191.
    Elderfiel H, S.A., 1996. Mid-ocean ridge hydrothermal fluxes and the chemical compositon of ocean[J]. Annual Review of Earth and Planetary Sicences, 24: 191-224.
    Emerson S, H.J.I., 1988. Processes Controlling the Organic Carbo n Content of Open Ocean Sediments. Paleoceanography, 3: 621-634.
    FEDER H M, N.A.S., JEWETT S C., 1994. The northeastern Chucki Sea:Bet hos-environmental interactions[J]. Mar. Ecol. Prog. Ser., 111: 171-173.
    Froelich, P.N., 1980. Analysis of organic carbon in marine sediments. Limnology and Oceanography, 25(3): 564-572.
    G.A.Barth., 1994. Plate boundary geometry to Moho depths within the 9°03'N and 12°54'N overlapping spreading centers of the East Pcific Rise. Earth and planetary Scinece Letters, 128: 99-112.
    German, C.R., Colley, S., Palmer, M.R., Khripounoff, A. and Klinkhammer, G.P., 2002. Hydrothermal plume-particle fluxes at 13°N on the East Pacific Rise. Deep Sea Research Part I: Oceanographic Research Papers, 49(11): 1921-1940.
    Gieskes, J.M. et al., 2002. Geochemistry of fluid phases and sediments: relevance to hydrothermal circulation in Middle Valley, ODP Legs 139 and 169. Applied Geochemistry, 17(11): 1381-1399.
    Goldberg E D , A.G.O.S., 1958. Chemistry of Pacific pelagic sediments[J]. Geochimica et Cosmochimica Acta, 13: 153-212.
    Hekinian FevierM, A.F., et al,. 1983. East Pacific Rise near 13°N:Geology of NewHydrothermal Field[J]. Science, 219: 1321-1324.
    Hekinian, R., Fevier,M.,Avedik,F.,Cambon,P.,Charlou,J.L.,Needham,H.D.,Raillard,J, Boulègue,J., Merlivat,L.,Moinet,A.,Manganini,S.and Lange,J.,, 1983a. East Pacific Rise near 13°N:Geology of New Hydrothermal Field Science, 219: 1321-1324.
    Hoagland K, R.J., Gretz M ,et al, 1993. Diatom extracellular polymeric substances: Function,fine structure, chemistry, and physiology. Journal of Phycology, 29: 537-566.
    Humphris, S.E., P. M. Herzig, D. J. Miller, J.C. etal, 1995. The internal structure of an active seafloor massive sulphide deposit. Nature, 377: 713-716.
    Ishiwatari, R., Hirakawa, Y., Uzaki, M., Yamada, K. and Yada, T., ,, 1994. Organic geochemistry of the Japan Sea sediments.1. Bulk organic matter and hydrocarbon analysis of core KH79-3, C3 from the Oki Ridge for paleoenvironmen tassessments.
    K.D.Klitgord and J.Mammerickx, 1982. Northern East Pacific Rise:magnetic anomaly and bathymetric framework. J.Geophys.Res, 87: 6725-6750.
    Kathleen Crane, 1987. Structural evolution of the East Pacific Rise axis from 13°10′N to 10°35′N:interpretations from SeaMARC I data. Tectonophysics, 136: 65-124.
    Kawahta, H., Suzuki, A., Ahagon, N., 1998. Biogenic sediments in the West Caroline Basin, the western equatorial Pacific during the last 330,000 years. Marine Geology, 149(155-176).
    Kawka, O.E. and Simoneit, B.R.T., 1990. Polycyclic aromatic hydrocarbons in hydrothermal petroleums from the Guaymas Basin spreading center. Applied Geochemistry, 5(1-2): 17-27.
    Kawka, O.E. and Simoneit, B.R.T., 1994. Hydrothermal pyrolysis of organic matter in Guaymas Basin: I. Comparison of hydrocarbon distributions in subsurface sediments and seabed petroleums. Organic Geochemistry, 22(6): 947-978.
    Khripounoff A, T, C., Vangriesheim, A. and P, C., 2000. Near-bottom biological and mineral particle flux in the Lucky Strike hydrothermal vent area (Mid-Atlantic Ridge) Journal of Marine Systems, 25(2): 101-118.
    Kim S.L., M.L.S., 1998. Distribution and near-bottom transport of larvae and other plankton at hydrothermal vents. Deep-sea researchⅡ, 45: 23-440.
    King, P. et al., 1998. Analysis of total and organic carbon and total nitrogen in settling oceanic particles and a marine sediment: an interlaboratory comparison. Marine Chemistry, 60(3-4): 203-216.
    Krom, M.D. and Berner, R.A., 1983. A rapid method for the determination of organic and carbonate carbon in geological samples. Journal of Sedimentary Petrology, 53(2): 660-663.
    Kuhn T, B.H.e.a., 2000. Volcanic and hydrothermal history of ridge segments near the Rodrigues Triple Junction(Central Indian Ocean) deduced from sediment geochemistry. Marine and Geology, 169: 391-409.
    Kyte F T, L.M., et al, 1993. Cenozoic sedimentation history of the central North Pacific:Inference from the elemental geochemistry of core LL44-GPC3[J]. Geochimica et Cosmochimica Acta, 57: 1719-1740.
    Leif, R.N. and Simoneit, B.R.T., 1995. Ketones in hydrothermal petroleums and sediment extracts from Guaymas Basin, Gulf of California. Organic Geochemistry, 23(10): 889-904.
    Leong, L.S. and Tanner, P.A., 1999. Comparison of Methods for Determination of Organic Carbon in Marine Sediment. Marine Pollution Bulletin, 38(10): 875-879.
    Magenheim, A.J. and Gieskes, J.M., 1992. Hydrothermal discharge and alteration in near-surface sediments from the Guaymas Basin, Gulf of California. Geochimica et Cosmochimica Acta, 56(6): 2329-2338.
    Miller A R, D.C.D., 1966. Hot brines and recent iron deposits in deeps of the Red Sea. Geochimica et Cosmochimica Acta, 30: 341-359.
    Muller, P.J., Suess, E.,, 1979. Productivity, sedimentation rate, and sedimentary organic matter in the oceans. . Deep-Sea Res., 26A: 1347-1362.
    Nakaseama, M., Ishibashi, J., Yamanaka, T. and Fujino, K., 2006. Hydrothermal circulation within modern sediment layer in submarine volcanoes, Wakaniko crater, south Kyushu, Japan. Geochimica et Cosmochimica Acta, 70(18, Supplement 1): A441-225.
    P. Gente, J.M.A., V. Renard, Y. Fouquet and D. Bideau, 1986. Detailed geological mapping by submersible of the East Pacific Rise axial graben near 13°N Earth and Planetary Science Letters, 78(2-3): 224-236.
    Park Y.A., K., B.K., 1992. Origin and dispersal of recent clay minerals in the Yellow Sea. Marine Geology, 104(1-4): 205-213.
    Pedersen, T.F., Vogel, J.S. and Southon, a.R., 1986. Copper and manganese in hemipelagic sediments at 21°N, east pacific rise: Diagenetic contrasts. Geochimica et Cosmochimica Acta. 50(9): 2019-2031.
    Peter M. Herzig, R.H., R. Hardman, M. Osmaston, J. A. Karson, R. S. White and K. Rohr 1999.5. Economic Potential of Sea-Floor Massive Sulphide Deposits: Ancient and Modern Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 357: 861-875.
    Petzing, J. and Chester, R., 1979. Authigenic marine zeolites and their relationship to global Volcanism. Marine Geology, 29: 253-271.
    Pierre Choukroune, J.F.a.R.H., 1984a. Tectonics of the East Pacific Rise near 12°50′N: a submersible study. Earth and Planetary Science Letters, 68(1): 115-127.
    Pierre Choukroune, J.F.a.R.H., 1984b. Tectonics of the East Pacific Rise near 12°50′N: a submersible study. Earth and Planetary Science Letters, 68(1): 115-127.
    Poulton, S.W. and Canfield, D.E., 2006. Co-diagenesis of iron and phosphorus in hydrothermal sediments from the southern East Pacific Rise: Implications for the evaluation of paleoseawater phosphate concentrations. Geochimica et Cosmochimica Acta, 70(23): 5883-5898.
    Prahl F g, B.j.t., Carpenter r.,, 1980. The early diagenesis of aliphatic hydrocarbons and organic matter in sedimentary particulates from Dabob Bay, Washington[J]. Geochimica et Cosmochimica Acta, 44:1967-1976.
    Prahl, F.G., Muehlhausen, L.A., Lyle, M.,, 1989. An organic geochemical assessment of oceanorgraphic condition at Manope Site C over past 26,000 years. Paleoceanography, 4: 495-510.
    Robertson, A.H.F. and Varnavas, S.P., 1993. The origin of hydrothermal metalliferous sediments associated with the early Mesozoic Othris and Pindos ophiolites, mainland Greece. Sedimentary Geology, 83(1-2): 87-113.
    Rona P A, S.P., 1993. A special issue on sea-floor hydrothermal mineralization: New perspectives-Preface. Economic Geology, 88: 1933-1976.
    RUHLEMANN C, F.M., HALE W,et al., 1996. Late quaternary productivity changes in the western equatorial Atlantic: Evidence from230Th-normalized carbonate and organic carbon accumulation rates[J]. Marine Geology, 135(127-152).
    Rushdi, A.I. and Simoneit, B.R.T., 2002. Hydrothermal alteration of organic matter in sediments of the Northeastern Pacific Ocean: Part 1. Middle Valley, Juan de Fuca Ridge. Applied Geochemistry, 17(11): 1401-1428.
    Simoneit, B.R.T., 1984. Hydrothermal effects on organic matter--high vs low temperature components. Organic Geochemistry, 6: 857-864.
    Simoneit, B.R.T., Aboul-Kassim, T.A.T. and Tiercelin, J.J., 2000. Hydrothermal petroleum from lacustrine sedimentary organic matter in the East African Rift. Applied Geochemistry, 15(3): 355-368.
    Simoneit, B.R.T., Leif, R.N. and Ishiwatari, R., 1996. Phenols in hydrothermal petroleums and sediment bitumen from Guaymas Basin, Gulf of California. Organic Geochemistry, 24(3): 377-388.
    Simoneit, B.R.T., Summerhayes, C.P. and Meyers, P.A., 1986. Sources and hydrothermal alteration of organic matter in Quaternary sediments: A synthesis of studies from the Central Gulf of California. Marine and Petroleum Geology, 3(4): 282-297.
    Skornyarona, I.S., 1965. Dispersed iron and manganese in Pacific Ocean sediments. Intet Geol Rev, 7: 2161-2174.
    SMeyem P. A., 1994. Preservation of Elemental an d Isotopic So urce Identification of Sedimentary Organ ic Matter. Chemical Geology, 144: 289-302.
    st-Onge G and HiUaire Marcel C, 2001. Isotopic Constraints of Sedimentary Inputs and Organic Carbon Burial Rates in the Saguenay Fjord,Quebe. Marine Geology, 176: 1-22.
    Stein R, 1991. Accumulation of Organic Carbon in Marine Sediments. Springer-Verlag, Berlin.: 217pp.
    Sturz, A., 1989. Low temperature hydrothermal alteration in near-surface sediments, Salton Sea geothermal area : Sturz, A J Geophys Res V94, NB4, April 1989, P4015-4024. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 26(6): 293-208.
    Takahashi T., 1975. Cabonate chemistry of seawater and the calcium carbonate compensation depth in the oceans. Journal of Foraminiferal Research, Special Pubication 13: 11-26.
    Team, G.S., 1979. Massive deep-sea sulfide ore deposits discovered on the East Pacific Rise. Nature, 277: 523-528.
    Thompson, A.W.H.B., J.C. Duplessy and N.J. Shackleton ,, 1979. Disappe- arance ofpink-pigmented Globigerinoides ruber at 120,000 yr BP in the Indian and Pacific Oceans. Nature 280: 554–558.
    Tritlla, J., Cardellach, E. and Sharp, Z.D., 2001. Origin of vein hydrothermal carbonates in triassic limestones of the Espadan Ranges (Iberian Chain, E Spain). Chemical Geology, 172(3-4): 291-305.
    Tung, J.W.T. and Tanner, P.A., 2003. Instrumental determination of organic carbon in marine sediments. Marine Chemistry, 80(2-3): 161-170.
    Ujiie Hiroshi et al., 2001. Upward decrease of organic C/N ratios in the Okinawa Trough cores: proxy for tracing the post-glacial retreat of the continental shore line. Palaeogeography, Palaeoclimatology, Palaeoecology, 165(1-2): 129-140.
    V.G. Tarasov, A.V. Gebruk, A.N. and Mironov, L.I.M., 2005. Deep-sea and shallow-water hydrothermal vent communities: Two different phenomena? Chemical Geology, 224: 5-39.
    Van Iperen, J.a.H., W., 1985. A method for the determiantion of organic carbon in calcareous marine sediments. Marine Chemistry, 64: 179-187.
    Venkatesan, M.I., Ruth, E., Rao, P.S., Nath, B.N. and Rao, B.R., 2003. Hydrothermal petroleum in the sediments of the Andaman Backarc Basin, Indian Ocean. Applied Geochemistry, 18(6): 845-861.
    Von Damm, K.L. et al., 1985. Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. Geochimica et Cosmochimica Acta, 49(11): 2197-2220.
    Wakeham, S.G., Cowen, J.P., Burd, B.J. and Thomson, R.E., 2001. Lipid-rich ascending particles from the hydrothermal plume at Endeavour Segment, Juan de Fuca Ridge. Geochimica Et Cosmochimica Acta, 65(6): 923-939.
    Waksman s a, 1939. On the distrution of organic matter in the bottom and chemical nature and origin of marine human[J]. Soil science, 38(On the distrution of organic matter in the bottom and chemical nature and origin of marine human[J]): 125-147.
    Winter A, S.W.G., 1994. Coccolithophores[M]. Cambridge University Press: 219-229.
    Yamanaka, T. and Sakata, S., 2004. Abundance and distribution of fatty acids in hydrothermal vent sediments of the western Pacific Ocean. Organic Geochemistry, 35(5): 573-582.
    丁旋, 1998.十五万年以来的古气候及其研究方法综述.地质科技情报, 17(2): 39-44.
    于文泉, 2006.胶州湾李村河口区沉积物有机碳、酸可挥发硫化物及重金属的环境响应.中国科学院海洋研究所.
    同济大学, 1985.古海洋学概论.同济大学出版社.
    何良彪, 1983.黄河三角洲近岸区粘土矿物的分布图式.科学通报, 28(9): 554-556.
    杜同军,翟世奎,任建国, 2002.海底热液活动与海洋科学研究.青岛海洋大学学报, 32(4): 597-602.
    孟宪伟,吴世迎,1997.东北太平洋热液活动模式初探.海洋学报, 09: 138-144.
    林文洲, 2000.现代海底热液成矿作用综述.成都理工学院学报, 27: 264-267.
    侯增谦,莫宣学, 1996.10.现代海底热液成矿作用研究现状及发展方向.地学前缘, 3(3~4): 263-273.
    俞旭,江超华等, 1984.现代海洋沉积矿物及其X射线衍射研究.科学出版社.
    殷学博,刘长华等, 2007.东太平洋海隆(EPR)13°N热液区附近沉积物粒度特征. 海洋科学, 31(1): 49-54.
    袁春伟,曾志刚, 2007.东太平洋海隆13°N附近沉积物岩心地球化学特征.海洋地质与第四纪地质27(4): 45-53.
    郝玉,龙江平., 2007.北极楚科奇海海底表层沉积物有机碳的生物地球化学特征. 海洋科学进展, 25(1): 63-72.
    鹿化煜,安., 1997.前处理方法对黄土沉积物粒度测量影响的实验研究.科学通报, 42(23): 2535-2538.
    彭汉昌, 1992.深海沉积物中的钙十字沸石.海洋学报, 14(6): 68-73. 曾志刚, 2002.海底热液活动探索.
    刘志飞, 2004.南海南部晚第四纪东来季风演化的粘土矿物记录.中国科学D辑地球科学, 34(3): 272-279.
    刘传联,祝.成., 2001.南海南部第四纪表层海水古生产力变化的钙质超微化石证据.海洋地质与第四纪地质, 21(4): 61-66.
    别风雷,李胜荣等., 2004.4.现代海底多金属硫化物矿床.成都理工学院学报, 27(4): 335-342.
    吕晓霞,翟世奎,牛丽凤, 2005.5.长江口柱状沉积物中有机质C/N比的研究.环境化学, 24(3): 254-259.
    吴世迎, 2002.海底热液硫化物资源研究现状与展望.科学对社会的影响(1).
    孙有斌,高.,鹿化煜,, 2001.前处理方法对北黄海沉积物粒度的影响.海洋与湖沼, 32(6): 665-671.
    孙军, 2005.海洋中的凝集网与透明胞外聚合颗粒物[J].生态学报, 25(5): 1191-1198.
    杨子庚, 2000.海洋地质学.
    杨作升, 1988.黄河、长江、珠江沉积物中粘土的矿物组合、化学特征及其与物源区气候环境的关系.海洋与湖沼, 19(4): 336-346.
    贾国东,彭平安,傅家谟, 2002.珠江口近百年来富营养化加剧的沉积记录.第四纪研究,, 22(2): 158-165.
    赵其渊, 1989.海洋地球化学.地质出版社,北京.
    钱君龙,王苏民,薛滨, 1997.湖泊沉积研究中一种定量估算陆源有机碳的方法.科学通报, 42(15): 1655-1657.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700