用户名: 密码: 验证码:
压力条件下生命科学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要由两部分组成,分别是:超高压水热条件下生命起源的化学进化过程中前生物有机小分子化合物的合成和压力诱导种子植物基因遗传变异的研究。
     第一部分:为了研究地球生命起源的水热起源理论,实验模拟了原始地球海洋的热液体系,通过适当地调节温度和压力等参数,成功地将简单的无机小分子化合物直接合成出前生物有机小分子化合物,其中第一章介绍了生命起源的研究背景及研究进展;第二章叙述了模拟研究早期地球化学进化过程的实验方法;第三章设计了NH3-CO2-H2O体系和CO2-H2O体系,在过渡金属的作用下,高压水热合成了乙醇、乙酸、丙酸、异丁酸和乙酰胺,并对部分重要产物进行了动力学分析,同时对该反应机理做了详细讨论;第四章论述了在水热条件下,前生命重要前驱体化合物邻苯二甲酰亚胺的化学合成,并对该反应机理进行了讨论;第五章叙述了水热条件下,Fe/Fe3O4催化氨水和二氧化碳合成甘氨酸和外消旋D,L-丙氨酸的过程,并通过分步实验证实了乙酸和丙酸可以和氨水直接水热合成氨基酸。
     第二部分:通过高静水压对黄瓜种子(津优S9925-3)进行诱变,从而产生了形态上明显变化的可遗传的稳定变异品系,并通过对其进行AFLP分子标记分析,找到了变异品系的分子指纹标记,其中第七章介绍了高压生物学的研究背景及研究进展,第八章阐述了高压处理黄瓜种子方法,高压对黄瓜生理特征的影响并对突变基因DNA进行了分子检测。
This thesis contains two parts. The first part is about abiotic formation of organic molecules under super high-pressure hydrothermal system, which simulates the chemical evolution of origin of life, and the second is the research on the genetic variation of spermatophyte by induced of high hydrostatic pressure.
     Part I: Synthesis of prebiotic molecules at the chemical evolution of origin of life.
     From ancient times, origin of life on earth is a fascinating and elusive topic, and there has been several hypotheses including creationism theory, autogenetic theory, biogenesis theory, and cosmogony theory. Up to now, the theory of chemical evolution is generally accepted by majority of scientists. On original earth, inorganic compounds can be transformed into organic matter, and organic matter can be developed into biological macromolecules and multi-cellular system, until the primitive life forms. After the discovery of deep-sea hydrothermal vents, scientists have considered the origin of life may be related to hydrothermal vent ecosystems. John Corliss was the first one who originated the hydrothermal origin of life model; he thought life matter could be obtained under high pressure and high temperature environment of hot spring.
     In order to study submarine hydrothermal theory of the origin of life, a high pressure hydrothermal system was established to simulate the environment of hot spring, which includes wide range of temperature (room temperature-350℃), pressure (0.1-10MPa). Inorganic compounds(such as CO2, NH3 and H2O)were used to synthesize organic molecules with transition metal catalyst. The experimental result could provide clues to verify the submarine hydrothermal theory.
     First of all, two inorganic systems (NH3-CO2-H2O & CO2-H2O) were used to generate ethanol, acetic acid, propionic acid, isobutyric acid and acetamide, which were identified by GC-MS. According to our experimental results,we propose a possible reaction mechanism based on Fischer–Tropsch Type synthesis, which includes the surface carbide mechanism, oxygenate mechanism, and CO inserting mechanism. The thermodynamic analysis and the effect of catalyst were investigated to understand the mechanism of the organic reaction. The abiotic synthesis of propionic acid and isobutyric acid are rarely reported.
     (1) The isobutyric acid was obtained under the super high pressure hydrothermal conditions of 7.64-7.69MPa and 350℃. The yield of isobutyric acid was 2.40% (mole percentage), which was very low compare to that of other organic synthesis, but it was reasonable to simulate the original earth hydrothermal environments. It cannot only provide a prehistoric clue of CO2 activation, but also provides strong scientific evidence for the origin of life. The branched-chain compounds play a key role in the origin of life, but it is very difficult to synthesize from inorganic compounds due to its complex formation mechanism. Take nature amino acid as example,α-amino acid is the main type, so the position of branch is very essential. The origin of chiral molecules in the biochemical is related to the structure of branched-chain compounds. Therefore, the synthesis of isobutyric acid can help us to explain the chirality origin of life, and provide the foundation for understanding the complex process of origins of life.
     (2) The propionic acid was obtained under the super high pressure hydrothermal conditions of 8.84-9.45MPa and 300℃. The yield of propionic acid was 0.48%. The prebiotic synthesis organic acids, which contain more than three carbons, are rarely reported. In order to study the carbon-chain growth mechanism, long-chain carboxylic acid even carboxylate should be synthesized. Then the research may be go into a biological macromolecules stage on the origin of life, because carboxylate is the main component of cell membrane.
     Second, phthalimide, which is the precursor compounds of amino acid and is important at evolutionary stage of the chemical origin of life, was obtained under the super high pressure hydrothermal conditions of 7.82-9.32MPa and 300℃, which simulated submarine hydrothermal environments. The simple inorganic molecules (NH3, CO2, H2O) were used as starting materials. The reaction mechanism is very complicated, which contains carbide mechanism of Fischer-Tropsch synthesis, rearrangement and chemical adsorption, desorption process. Because phthalimide is the important intermediate compound of fine chemicals and the raw material for synthesis of amino acid, the synthesis of phthalimide brought us another way to the study of the origin of life.
     At last, NH3-CO2-H2O system was adopted to synthesize amino acid. In the presence of NH3, it is easier to synthesize amino acid using two different temperature steps because amino acid decomposed at the temperature higher than 200℃. At last, glycine and D, L-alanine was synthesized from inorganic compound NH4HCO3 in the presence of iron powder and magnetite assemblage catalyst under hydrothermal conditions. And our result provides a new route for synthesis of amino acid under the hydrothermal condition.
     Thus, the conversion of simple inorganic compounds to the important prebiotic organic molecules was successful under the super high pressure hydrothermal conditions which simulated submarine environment, and provided strong evidence to verify the hydrothermal theory of the origin of life.
     Part II: Research on the genetic variation of spermatophyte induced by high hydrostatic pressure.
     High pressure biology is to study the biological effects under the pressure, which can reveal the impact of pressure on the general rules and disciplines of biological systems. Under the pressure, many results were obtained from the research on the protein structure and function, gene expression, metabolism and other biological processes. Therefore, the high-pressure biology can help us to understand the phenomena of life better.
     Plant mutagenesis was commonly used in crop breeding in order to obtain superior varieties in recent years. Development of high pressure bioscience allows people to use hydrostatic pressurization as a novel approach to breed new plant varieties. To our knowledge, this is the first time to show at molecular level that high hydrostatic pressure mutagenesis could result in stable genomic mutations in cucumber cultivar. The results obtained from this study provide potential molecular mechanisms that cause morphological variation after mutagenesis with hydrostatic pressure.
     Two mutant cucumber lines were obtained from the Tianjin cucumber cultivar S9925-3 after treatment with high hydrostatic pressure. DNA fingerprint analysis was performed for the two mutant and their parental wild-type cucumber cultivars by amplified fragments length polymorphism (AFLP) analysis. A total of 30 randomly selected primer pairs were used for AFLP. Six specific different bands between the mutant and the wild-type cucumber cultivars were excised from the polyacrylamide gel for DNA sequencing. Alignment of the obtained DNA sequences with NCBI database identified the mutation sites in cucumber genome, which may be the reason of phenotypic changes of the mutant cucumbers.
     This is the first time we showed at molecular level that treatment with high hydrostatic pressure resulted in stable mutations in cucumber cultivar. Our results indicated that high hydrostatic pressure-induced mutational breeding can be used as an effective approach for the crop improvement.
引文
[1]阎佐鹏,胡成一.地球化学与生命起源[J].地质地球化学, 1978, 5: 1-7.
    [2]冯子道.生命元素地球化学与生命起源和进化[J].地球与环境, 1980, 7: 1-14.
    [3] OI WENTONG. Neoteric stratigraphv principles and Method [M]. Beijing: Beijing Peking University Press.1995.
    [4] CANFIELD D E, HABICHT K S, THAMDRUP B. The Archean sulfur cycle and the early history of atmospheric oxygen [J]. Science, 2000, 288: 658.
    [5] ADINA PAYTAN. Sulfate clues for the early history of atmospheric oxygen [J]. Science, 2000, 288: 626.
    [6] FARQUHAR J, BAO H M, THIEMENS M H. Atmospheric influence of Earth’s earliest sulfur cycle [J]. Science, 2000, 289: 75.
    [7] RASOOL S I. Primitive atmospheres of the earth [J]. Nature, 1966, 212, 1255–1276.
    [8]齐文同,柯叶艳.早期地球的环境变化和生命的化学进化[J].古生物学报, 2002, 41(2): 295–301.
    [9] FENG Z D. The biogeochemical background of the evolution of earliest shelly metazoans in the Phanerozoic eon [J]. Minerals and Rocks, 1985, 1, 47-52.
    [10]陈福.海水、大气化学演化对沉积矿床形成、演化的制约[J].地质地球化学, 2000, 20(2): 67-75.
    [11] REDI F. Experiments on the Generation of Insects [M]. U.S.A.: The Open Court Publishing Company.1668.
    [12] HOOKE R. Micrographia [M]. London: J. Martyn and J. Allestry, 1665.
    [13] ARIATTI A, MANDRIOLI P. Lazzaro spallanzani: A blow against spontaneous generation [J]. Aerobiologia, 1993, 9: 101–107.
    [14] PASTEUR L. Germ Theory and Its Applications to Medicine and Surgery [C], New York, P. F. Collier & son. The Harvard classics, 1878, v38.
    [15]奥巴林著.徐叔云等译.地球上生命的起源[M].北京:科学出版社, 1960.
    [16] OPARIN A I. The Origin of Life [M]. Moscow: Moscow Worker publisher, 1924.
    [17] HALDANE J B S. The Causes of Evolution [M]. University of Chicago Press, 1932.
    [18]王文清.生命的化学进化[M].北京:原子能出版社, 1994.
    [19] KOBAYASHI K, MASUDA H, USHIO K. Formation of bioorganic compounds in simulated planetary atmospheres by high energy particles or photons [J]. Advances in Space Research, 2001, 27(2): 207–215.
    [20]王文清.生命科学[M].北京:北京工业大学出版社, 1998.
    [21]彭奕欣.生命起源问题的新争论[J].生物学通报, 1997, 32(5): 7–9.
    [22] MILLER S L. Production of amino acids under possible primitive Earth conditions [J]. Science, 1953, 117: 528.
    [23] PAECHT-HOROWITZ M, BERGER J, Katchalsky A. Prebiotic synthesis of polypeptides by heterogeneous polycondensation of amino-acid adenylates [J]. Nature, 1970, 228: 636–639.
    [24]赤崛四郎.酵素研究法[M].东京:朝仓书店, 1955.
    [25] FERRIS J P, HILL A R, LIU R H, et al. Synthesis of long prebiotic oligomers on mineral surfaces [J]. Nature, 1996, 381: 59.
    [26] HUBER C, W?CHTERSH?USER G. Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: Implications for the origin of life [J]. Science, 1999, 281: 670.
    [27] HUBER C, EISENREICH W, HECHT S, W?CHTERSH?USER G. A possible primordial peptide cycle [J]. Science, 2003, 301: 939.
    [28] KELLER M, BL?CHL E, W?CHTERSH?USER G, STETTER K O. Formation of amide bonds without a condensation agent and implications for origin of life [J]. Nature, 1994, 368: 836.
    [29] LEMAN L, ORGEL L, GHADIRI M R. Carbonyl sulfide-mediated prebiotic formation of peptides [J]. Science, 2004, 306: 283.
    [30] IMAI E, HONDA H, HATORI K, et al. Elongation of oligopeptides in a simulated submarine hydrothermal system [J]. Science, 1999, 283: 831.
    [31] NAIR C K K. DNA repair and evolutionary conservation of heat shock response gene HSP7O in halophilic archaebacteria: Mitsuhiko Akaboshi [C]. KYOTO JAPAN: Yoshida Honmachi, 2000, 261–277.
    [32] YAMAMOTO K. The role of radiation in the origin and evolution of life [C]. KYOTO JAPAN: Yoshida Honmachi, 2000, 277–291.
    [33] SCHLESINGER G, MILLER S L. Prebiotic synthesis in atmospheres containing CH4, CO and CO2 [J]. Journal of Molecular Evolution, 1983, 19: 376.
    [34] GRASSLE J F. A plethora of unexpected life [J]. Oceanus, 1988/89, 27(4): 41–46.
    [35] CARL R. WOESE,GEORGE E. Fox.Phylogenetic structure of the prokaryotic domain: The primary kingdoms [J].Proc. Natl. Acad. Sci.1977,74,5088–5090.
    [36] STANLEY S.M. Rates of Evolution [J].Paleobiology. 1985, 1199, 1:13–26.
    [37]李江海,牛向龙,冯军.海底黑烟囱的识别研究及其科学意义[J].地球科学进展,19(1): 17–25.
    [38] RONA P.A.,KLINKHAMMER G.,NELSEN T.A. et al. Massive sulphides and vent biota at the mid-Atlantic Ridge [J].Nature, 1986, 321: 33–37.
    [39] KELLEY D.S., KARSON J.A., BLACKMAN D.K. An off-axis hydrothermal vent field near the mid-Atlantic Ridge at 30℃[J]. Nature, 2001, 412: 145–148
    [40] REYSENBACH A L, CADY S L. Microbiology of Ancient and Modern Hydrothermal Systems [J].Trends in Microbiology, 2001, 9: 79–86.
    [41]蒋春跃,沈燕方.海底热液系统氨基酸合成的探索[J].海洋科学, 2008, 32.
    [42] RONA P.A. Hydrothermal mineralization at oceanic ridges [J]. Jour. of Mineralogical Association of Canada, 1988, 26, 431–465.
    [43]付伟,周永章.现代海底热水活动的系统性研究及其科学意义[J].地球科学进展,2005,20,81–88.
    [44] CORLISS J B, BAROSS J A, HOFFMAN S E. A hypothesis concerning the relationship between submarine hot springs and the origin of life on earth [J]. Oceanol Acta, 1981, 4(suppl): 59-69.
    [45]王孔江.生命起源问题[J].中国科学基金, 2006, 4.
    [46] Jannasch H.W., Mottle M.J. Geomicrobiology of Deep-Sea Hydrothermal Vents [J]. Science, 1985, 229, 717-725.
    [47] BRANDES, J A, BOCTOR N Z, Cody G D, et al. Abiotic nitrogen reduction on the early Earth [J]. Nature, 1998, 395: 365.
    [48] HORITA J, BERNDT M E. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions [J]. Science, 1999, 285: 1055.
    [49] FOUSTOUKOS D I, Seyfried W E Jr. Hydrocarbons in hydrothermal vent fluids: The role of chromium-bearing catalysts [J]. Science, 2004, 304: 1002.
    [50] SCOTT H P, HEMLEY R J, MAO H K, et al. Generation of methane in the Earth's mantle: In situ high pressure-temperature measurements of carbonate reduction [J]. PNAS, 2004, 39, 14023.
    [51] PROSKUROWSKI G, LILLEY M D, SEEWALD J S, et al. Abiogenic hydrocarbon production at lost city hydrothermal field [J]. Science, 2008, 319: 604.
    [52] JI F W, ZHOU H Y, YANG Q H. The abiotic formation of hydrocarbons from dissolved CO2 under hydrothermal conditions with cobalt-bearing magnetite [J]. Origins of Life and Evolution of Biospheres, 2008, 38: 117–125
    [53] CLAUDIA H, WAECHTERSHAEUSER G.α-Hydroxy andα-amino acids under possible hadean, volcanic origin-of-life conditions [J]. Science, 2006, 314: 630.
    [54] L?WE C J, REES M W, MARKHAM R M. Synthesis of complex organic compounds from simple precursors: Formation of amino-acids, amino-acid polymers, fatty acids and purines from ammonium cyanide [J]. Nature, 1963, 199: 219.
    [55] FERRIS J P, DONNER D B, LOBO A P. Possible role of hydrogen cyanide in chemical evolution: Investigation of the proposed direct synthesis of peptides from hydrogen cyanide [J]. Journal of Molecular Biology, 1973, 74: 499.
    [56] FERRIS J P, EDELSON E H, AUYEUNG J M, et al. Structural studies on HCN oligomers [J]. Journal of Molecular Evolution, 1981, 17: 69–77.
    [57] ALARGOV D K, DEGUCHI S, TSUJII K, et al. Reaction behaviors of glycine under super-and subcritical waterconditions [J]. Origins of Life and Evolution of the Biosphere, 2002, 32(1): 1–12.
    [58] NAZRUL I, TALEO K, KENSEI K. Reaction of amino acids in a supercritical water-flow reactor simulating submarine hydrothermal ystems [J]. Bulletin of the Chemical Society of Japan, 2003, 76(6): 1171–1178.
    [59] PULLMAN B, PONNAMPERUNA C. ELECTRONIC Factors in biochemical evolution.In: Exobiology [C]. Amsterdam London: North Holland Publishing Company, 1972, 140.
    [60] SANCHEZ R A, FERRIS J P, ORGEL L E. Conditions for purine synthesis: Did prebiotic synthesis occur at low temperatures? [J]. Science, 1966, 153: 72.
    [61] SANCHEZ R A, FERRIS J P, ORGEL L E. Studies in prebiotic synthesis: II. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide [J]. Journal of Molecular Biology, 1967, 30: 223.
    [62] SANCHEZ R A, FERRIS J P, ORGEL L E. Studies in prebiotic synthesis: IV. Conversion of 4-aminoimidazole-5-carbonitrile derivatives to purines [J]. Journal of Molecular Biology, 1968, 38: 121.
    [63] CLEAVES II H J, NELSON K E, MILLER S L. The prebiotic synthesis of pyrimidines in frozen solution [J]. Naturwissenschaften, 2006, 93: 228.
    [64] GABEL N W, PONNAMPERUMA C. Model for origin of monosaccharides [J]. Nature, 1967, 216: 453.
    [65] MüLLER D, PITSH S, KITTAKA A, et al. Chemie von a-Aminonitrilen. Aldomerisierung von Glycolaldehyd-phosphat zu racemischen Hexose-2,4, 6-triphosphaten und (in Gegenwart von Formaldehyd) racemischen Pentose-2, 4-diphosphaten: rac-Allose-2,4,6-triphosphat und rac-Ribose-2,4-diphosphat sind die Reaktionshauptprodukte [J]. Helv Chim Acta, 1990, 73: 1410.
    [66] WEBER A L. The sugar model: Autocatalytic activity of the triose–ammonia reaction [J]. Orig Life Evol Biosphere, 2007, 37: 105.
    [1] RONA P A. Hydrothermal mineralization at oceanic ridges. Journal of Mineralogical Association of Canada [J], 1988, 26: 431–465.
    [2]付伟,周永章.现代海底热水活动的系统性研究及其科学意义[J].地球科学进展, 2005, 20: 81-88.
    [3] CORLISS J B, BAROSS J A, HOFFMAN S E. A hypothesis concerning the relationship between submarine hot springs and the origin of life on earth [J]. Oceanol Acta, 1981, 4(suppl): 59-69.
    [4] YUN ZHANG. The life evolution and fossil records in the Precambrian [M]. Beijing: Peking University Press, 1989.
    [5] BAROSS J A, HOFFMAN S. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life [J]. Origins Life, 1985, 15: 327-345.
    [6]范振刚.海底热液口与生命起源[J].生命世界, 2007, 06: 88-95.
    [7]冯军,李江海,陈征,等.“海底黑烟囱”与生命起源述评[J].北京大学学报(自然科学版), 2004, 02: 318~325.
    [8] RUSSELL M J.. The Alkaline Solution to the Emergence of Life: Energy, Entropy and Early Evolution [J]. Acta Biotheor, 2007, 55: 133-179.
    [9] FISCHER F, TROPSCH H., Ber. Dtsch. Chem. Ges. A. 1926, 59, 830.
    [10] ANDERSON R B. The Fisher-Tropsch systhesis [M]. New York: Academic Press, 1984: 176.
    [11] Pichler H, Schulz H. Neuere Erkenntnisse auf dem Gebiet der Synthese von Kohlenwasserstoffen aus CO und H2 [J]. Chemie Ingenieur Technik, 1970, 42: 1162.
    [1] PLANKENSTEINER K, REINER H, RODE B M. Prebiotic formation of amino acids in a neutral atmosphere by electric discharge [J]. Angewandte Chemie, 2004, 43: 1886–1888.
    [2] MOJZSIS S J, ARRHENIUS G, MCKEEGAN K D, et al. Evidence for life on Earth before 3,800 million years ago [J]. Nature, 1996, 384: 55–59.
    [3] MCCOLLOM T M, SEEWALD J S. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine [J]. Geochimica et Cosmochimica Acta, 2001, 65: 3769-3778.
    [4] HORITA J, BERNDT M E. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions [J]. Science, 1999, 285: 1055–1057.
    [5] HUBER C, GUENTER W.α-Hydroxy andα-amino acids under possible hadean volcanic origin-of-life conditions [J]. Science, 2006, 314: 630.
    [6] RUSSELL M J. The alkaline solution to the emergence of life: Energy, entropy and early evolution [J]. Acta Biotheor, 2007, 55: 133–179.
    [7] FISCHER F, TROPSCH H, Ber. Dtsch. Chem. Ges. A. 1926, 59, 830.
    [8] TIAN G, YUAN H M, MU Y. Hydrothermal reactions from sodium hydrogen carbonate to phenol [J]. Org. Lett., 2007, 9.
    [9]章思规.实用精细化学品手册(有机卷上、下) [M].北京:化学工业版社, 1996: 1974–1975.
    [10]王学强.邻苯二甲酰亚胺的制备及应用前景[J].化工时刊, 1997, 11 (2): 122141.
    [11] MURRAY A, WILLIAMS D L. Orangic syntheses with isotopes [M]. Interscience Publishers Inc, 1958,1731.
    [12] GOTT D. Syntheses with stable isotopes of carbon, nitrogen and oxygen [C]. Wiley interscience publication, 1981, 111–113.
    [13] JONANN S. Phthalimide [P]. Austrian 300770, 1972-08-10.
    [14] KILPPER G, GRIMMER J. Continuous preparation of phthalimide [P].Ger.Offen 2911245 ,1980-08-23.
    [15] OVCHINNIKOV A A, DUDIN V P, KONOV V V, et al. Phthalimide [P].USS. R.SU1077233, 1986-11-07.
    [16]田平,田忠江.邻苯二甲酰亚胺合成新工艺的研究[J].广西化工, 1998, 27(4): 13–15.
    [17]董永军,袁国峰,庞立营.合成邻苯二甲酰亚胺的工艺改进[J].辽宁化工, 2006, 35, 10.
    [18] SATO N, QUITAIN A T, KANG K, et al. Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water [J]. Ind Eng Chem. Res, 2004, 43: 3217–3222.
    [1] MILLER S L. Production of amino acids under possible primitive Earth conditions [J]. Science, 1953, 117: 528.
    [2]蒋春跃,沈燕方.海底热液系统氨基酸合成的探索[J].海洋科学, 2008, 32.
    [3] ALARGOV D K, DEGUCHI S, TSUJII K,et al. Reaction behaviors of glycine under super and subcritical water conditions [J]. Origin of Life And Evolution of the Biosphere, 2002, 32(1): 1–22.
    [4] HENNET R J, HOLM N G, ENGEL M H. Abiotic synthesis of amino acids under hydrothermal conditions and the origin of life: a perpetual phenomenon? [J]. Naturwissenschrrfierl, 1992, 79(8): 361–365.
    [5] ISLAM M N, KANEKO T, KOBAYASHI K. Determination of amino acids formed in a supercritical water flow reactor simulating submarine hydrothermal systems [J]. Analytical Sciences, 2001, 17(suppl.): i1631–i1634.
    [6] STRECKER A. Ueber die künstliche Bildung der Milchs?ure und einen neuen, dem Glycocoll homologen K?rper [J]. Annalen der Chemie und Pharmazie 1850, 75(1): 27–45.
    [7] STRECKER A. Ueber einen neuen aus Aldehyd - Ammoniak und Blaus?ure entstehenden K?rper [J]. Annalen der Chemie und Pharmazie, 1854, 91(3): 349–351.
    [8] VICKERY H B, PUCHER G W. Organic acids of plants [J]. Annual Review of Biochemistry, 1940, 9: 529-544.
    [9] GABRIEL S. Ueber eine Darstellung prim?rer amine aus den entsprechenden Halogenverbindungen [J]. Ber, 1887, 20: 2224
    [10] SHEEHAN J C, BOLHOFER W A. An improved procedure for the condensation of potassium phthalimide with organic halides [J]. Journal of the American Chemical Society, 1950,72: 2786.
    [11] ANDERSSON E, HOLM N G. The stability of some selected amino acids under attempted redox constrained hydrothermal conditions [J]. Origins of Life andEvolution of the Biosphere, 2000, 30: 9–23.
    [12] CORLISS J B, BAROSS J A, HOFFMAN S E. A hypothesis concerning the relationship between submarine hot springs and the origin of life on earth [J]. Oceanol Acta, 1981, 4(suppl): 59–69.
    [1] BRIDGMAN P W. The Physics of High Pressure [M]. New York: Dover Publications, 1970.
    [2] BRIDGMAN P W. Collected Experimental Papers [M].Cambridge, MA: Harvard University Press, 1964.
    [3] JOHNSON F H, EYRING H, POLISSAR M J. The Kinetic Basis of Molecular Biology [M]. New York: Wiley, 1954.
    [4] JOHNSON F H, EYRING H, STOVER B J. The Theory of Rate Processes in Biology and Medicine [M]. New York: Wiley, 1974.
    [5] ZIMMERMAN A M. High Pressure Effect on Cellular Processes [M]. Academic New York, 1970.
    [6] SLEIGH M A, MACDONALD A G. The Effect of Pressure on Organisms [M]. Cambridge: Cambridge University Press, 1972.
    [7] HORIKOSHI K, GRANT W D. Microbial Life in Extreme Environments [C]. Extremophiles. Wiley-Liss, New York, 1998.
    [8] BALNY C, HAYASHI R, HEREMANS K, et al. High Pressure and Biotechnology [C]. INSERM/Libbey, Paris, 1992.
    [9] HAYASHI R, BALNY C, et al. High Pressure Bioscience and Biotechnology [M]. Amsterdam: Elsevier, 1996.
    [10] MARKLEY J L, NORTHROP D B, ROYER C A, et al. High Pressure Effects in Molecular Biophysics [M]. New York: Oxford University Press, 1996.
    [11] HEREMANS K, et al. High Pressure Research in the Biosciences and Biotechnology [M], Louvain: Leuven University Press, 1997.
    [12] LUDWIG H. Advances in High Pressure Bioscience and Biotechnology [M]. Heidelberg: Springer, 1999.
    [13] WINTER R, JONAS J, et al. High Pressure Molecular Science [M]. Dordrecht: Kluwer Academic Publishers, 1999.
    [14] MANGHNANI M H, NELLIS W J, NICOL M F,et al. Science and Technology of High Pressure [C]. Hyderabad: India Universities Press, 2000.
    [15] BALNY C, MASSON P, HEREMANS K, et al. Frontiers in High Pressure Biochemistry and Biophysics [M]. Amsterdam: Elsevier, 2002.
    [16] LUDWING H. Advanced in high pressure bioscience and biotechnology: processing of the international conference on high pressure bioscience and biotechnology [M]. Berin: Springer-Verlag Berlin and Heidelberg Gmbh & Co KG, 1999, 23–29.
    [17] BRIDGMAN P W. The coagulation of albumen by pressure [J]. J Biol Chem, 1914, 19: 511.
    [18] HAYASHI R. In“High Pressure Bioseienee and Food Science”. Collogue INSERM [C], France: John Libbey Eurotext Ltd, 1992, 185-193.
    [19] CARRIER D, MANTSEH H H, WONG P T T. Pressure-induced reversible changes in secondary structure of poly(L-lysine): An ir spectroscopic study [J]. Biopolymers, 1990, 29: 837.
    [20] LI T M,HOOK J W,DRIEKAMER H G, et al. Plurality of pressure-denatured forms in chymotrypsinogen and lysozyme [J]. Biochemistry, 1976, 15: 5571.
    [21] WEBER G. In“High Pressure Chemistry and Bioehemistry”[C]. Dordreeht, 1987.
    [22] SUZUKI K. Studies on the kinetics of protein denaturation under high pressure [J]. Review Physical Chemistry Japan, 1960, 29: 91-98
    [23] BANLY C., MASSON P., TRAVERS F., Some recent aspects of the use of high-pressure for protein investigation in solution [J]. High Pressure Research, 1989, 2: 1-28.
    [24] ZIPP A, KAUZMANN W Pressure denaturation of metmyoglobin [J] Bioehemistry, 1973, 12: 4217-4228
    [25] VAN CAMP J, HUYGHEBAERT A. High-pressure-induced gel formation of a whey protein and haemoglobin protein concentrate [J]. Lebensmittel-Wissenschaft und Technologie, 1995, 28: 111–117.
    [26] HAWLEY S A. Reversible Pressure-temperature Denaturation of Chymotrysinogen [J]. Biochemistry, 1971, 10: 2436–2442.
    [27] BRANDTS J F, OLIVEIRA R J, WESTORT C. Effect of pressure on the denaturation of ribonuclease A [J]. Biochemistry, 1970, 9: 1038-1047.
    [28] SMELLER L. Pressure-Temperature phase diagrams of biomolecules [J]. Biochimica et Biophysica Acta, 2002, 1595: 11-19.
    [29] PRIVALOV P L. Cold denaturation of proteins [J], Crit Rev Biochem Mol Biol, 1990, 25: 281–305.
    [30] DEGRAEVE P, DELORME P, LEMAY P. Pressure-induced Inactivation of E coliβ-galactosidase: Infiuence of pH and Temperature [J]. Biochim Biophys Acta, 1996, 1292: 61–68.
    [31] MANGHNANI M H, NELLIS W J, NICOL M F, et al. Science and Technology of High Pressure [C]. India: Universities Press, Hyderabad, 2000.
    [32] DZWOLAK W, KATO M, SHIMIZU A, TANIGUCHI Y. Fourier transform infrared spectroscopy study of the pressure-induced changes in the structure of the bovineα-lactalbumin: the stabilizing role of the calcium ion [J]. Biochim Biophys Acta, 1999, 1433: 45–55.
    [33] KLOTZ I M. Parallel Change with Temperature of Water Structure and Protein Behaviour [J]. J Phys Chem, 1999, 103: 5910–5916.
    [34] BERK Z, LESLIE R B, LILLFORD O J,et al Water Science for Food, Health, Agriculture and Environment[M], Lancaster: Technomic Publishing Co, 2001.
    [35] MUHR AH,WETTON RE,BLANSHARD JMV Effect of hydrostatic pressure on starch gelatination,as determined by DTA [J]. Carbohydr Polym, 1982, 2: 91–102.
    [36] HAYASHI R, HAYASHIDA A Increased amylase digestibility of pressure-treated starch [J]. Biol Chem, 1989, 53: 2543–2544.
    [37] RUBENS P, GOOSSENS K, HEREMANS, K High pressure research in biosciences and biotechnology [M]. Beigium: Leuven University Press, Leuven, 1997: 191–194.
    [38] STUTE R, HEILBRONN,KLINGLER RW. Effects of High PressuresTreatment on Starches [J]. Starch, 1996, 48: 399–408.
    [39] MASSON P, ARCIERO D, HOOPER A B, et al. Electrophoresis at Elevated Hydrostatic Pressure of the Multiheme Hydroxylamine Oxidoreductase [J]. Electrophoresis, 1990, 11: 128–133.
    [40] FUSI P, FOOSSENS K, CONSONNI R, et al. The exetremely heat-and pressure-resistant 7kDa protein P2 from the archaeon. Sulfolobus solfataricus is dramatically destabilized by a single aminoacid substitution [J], Proteins Struct Funct Genet, 1997, 29: 381–390.
    [41] MOMBELLI E, AFSHAR M, FUSI P, et al. The role of phenylalanine 31 in maintaining the conformational stability of ribonucleases P2 from Sulfolobus solfataricus under extreme conditions of temperature and pressure [J]. Biochemistry, 1997, 36: 8733–8742.
    [42] FIDY J, LABERGE M, KAPOSI AD, et al. Fluorescence line narrowing applied to the study of proteins [J]. Biochim Biophys Acta, 1998, 1386: 331–351.
    [43] MADIGAN M T, MARTINKO J M, PARKER J. Brock biology of microorganisms [M], Beijing: Science Press, 2001: 98–110.
    [44] DELONG E F, FRANKS D G. Evolutionary relationship of cultivated of psychrophilic and barophilic deep-sea bacteria [J]. App1 Environ Microbio1, 1997, 63: 2104–2105.
    [45] Kato C, Qureshi M H, Yamada M,et al. High Pressure Respiratory Proteins in Deep-sea Piezophilic Bacteria [C]. India: Universities Press, Hyderabad, 2000.
    [46] BURG B V D. Extremophiles as a source for novel enzymes [J]. Current Opinion in Microbiology, 2003, 6(3): 213–218.
    [47] NOGI Y, MASUI N, KATO C. Moderately barophilic bacterial species isolated from a deep-sea sediment [J]. Extremophiles: Life Under Extreme Conditions, 1998, 2(1): 1–7.
    [48]池振明.现代微生物生态学[M].科学出版社,北京, 2005, 44–174.
    [49] MARQUIS R E. Microbial barobiology [J]. Bioscience, 1982, 32: 267–271.
    [50] BENNET P B, MARQUIS R E. Basic and applied high pressure biology: highpressure microbiology [M]. Rochester: University of Rochester Press, 1994, 1–14.
    [51] MEGANATHAN R, Marquis R E. Loss of bacterial motility under pressure [J]. Nature, 1973, 246(5): 526–527.
    [52] ZOBELL C E, COBET A B. Growth reproduction and death rates of Esclutruhira coli at increased hydrostatic pressures [J]. J Bacteriol, 1962, 84(9): 1228–1236.
    [53] YAYANOS A A, POLLARD E C. A study of the effects of hydrostatic pressure on macromolecular synthesis in Escherichia coli [J]. Biophys J, 1969, 9(10): 1464–1482.
    [54] GROB M, KOSMOWSKY. Response of bacteria and fungi to high pressure stress [J]. Electrophoresis, 1994, 15(8): 1559–1565.
    [55] MANGHNANI M H, NELLIS W J, NICOL M F, et al. Science and Technology of High Pressure [C] India: Universities Press, Hyderabad, 2000.
    [56] ASADA S, SOTANI T, ARABAS J, KUBOTA H. Effect of High Pressure on Germination of Bacterial Spore [C]. India: Universities Press, Hyderabad, 2000.
    [57] YAMAGUCHI T, MATSUMOTO M, TERADA S. Effects of High Pressure on Cell Cycle in Murine Erythroleukemia Cells [C]. India: Universities Press, Hyderabad, 2000.
    [58] TAKE J I, YAMAGUCHI T, TERADA S. High Pressure Induced Apoptosis in Murine Erythroleukemia Cells [C]. India: Universities Press, Hyderabad, 2000.
    [59]贺竹梅.现代遗传学教程[M].广州:中山大学出版社, 2006.
    [60]王镜岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社, 2002.
    [61]赵寿元,乔守怡现代遗传学[M].北京:高等教育出版社, 2001.
    [62]王晓梅,杨秀荣DNA分子标记研究进展[J].天津农学院学报, 2000, 7 (1): 21-24.
    [63]邓俭英,刘忠,康德贤,等. RAPD分子标记技术在蔬菜研究中的应用[J].种子, 2005, 24(3): 39–42.
    [64]胡学军,邱正名,李金泉. RAPD分子标记技术及其在十字花科蔬菜研究中的应用[J].湖北农业科学, 2005, (3): 107–110.
    [65]孙琦,孟昭东,张发军,等. SSR标记在玉米遗传育种中的应用[J].玉米研究, 2006, 14(1): 37–39.
    [66]罗培高,任正隆,张怀渝,等. AFLP分子标记及其在作物遗传育种中的应用与前景[J].作物研究, 2001, 19(4): 406–410.
    [67]伍春莲,孙敏,王颖,等. AFLP分子标记及其在禾本科作物遗传改良中的应用[J].作物研究, 2001, 19(4): 48–51.
    [68]王军,谢皓,郭二虎,等. DNA分子标记及其在谷子遗传育种中的应用[J].北京农学院学报, 2005, 20(1): 76–80.
    [1] HILZ H, LILLE M, POUTANEN K, et al. Combined Enzymatic and High-Pressure Processing Affect Cell Wall Polysaccharides in Berries [J]. J Agric. Food Chem, 2006, 54: 1322–1328.
    [2] DE ROECK A, SILA D N, DUVETTER T, et al. Effect of high pressure/high temperature processing on cell wall pectic substances in relation to firmness of carrot tissue [J]. Food Chemistry, 2008, 107: 1225–1235.
    [3] ZECHMANN B, MULLER M, ZELLNIG G. Membrane associated qualitative differences in cell ultrastructure of chemically and high pressure cryofixed plant cells [J]. Journal of Structural Biology, 2007,158: 370–377.
    [4]王晓梅,杨秀荣. DNA分子标记研究进展[J].天津农学院学报, 2000, 7 (1): 21–24.
    [5]伍春莲,孙敏,王颖,等. AFLP分子标记及其在禾本科作物遗传改良中的应[J].作物研究, 2001, (4): 48–51.
    [6] TAKAHASHI H, YAMAGUCHI T, KOGA M, et al. DNA replication reaction in xenopus cell-free system is suppressed by high pressure [J], Cellular & Molecular Biology Letters, 2004, 9: 423–427.
    [7] MIURA T, MINEGISHI H, USAMI R, et al. Systematic analysis of HSP gene expression and effects on cell growth and survival at high hydrostatic pressure in Saccharomyces cerevisiae [J]. Extremophiles, 2006, 10: 279–284.
    [8] GANTCHEV T G, GIROUARD S, DODD D W, et al.γ-Radiation Induced Interstrand Cross-Links in PNA: DNA Heteroduplexes [J]. Biochemistry, 2009, 48: 7032–7044.
    [9] JENA N R, MISHRA P C, SUHAI S. Protection against Radiation-Induced DNA Damage by Amino Acids: A DFT Study [J]. J Phys Chem B, 2009, 113: 5633–5644.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700