用户名: 密码: 验证码:
祁雨沟角砾岩型金矿蚀变类型及其形成的动力学过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对豫西熊耳山地区祁雨沟金矿床区几个主要含金角砾岩筒开展了角砾岩岩相学、结构构造和含矿性研究,将含矿角砾岩分为三类:1)锯齿状—网脉状构造角砾岩,角砾可拼贴性强,角砾之间没有很大的位移;2)角砾和基质支撑构造的角砾岩,角砾之间基质由岩粉、小角砾和热液蚀变物组成的,角砾之间有一定程度的位移;3)流体化构造的角砾岩,角砾呈圆状、半圆状,成分混杂,角砾位移大。这些角砾岩构造的形成与流体化作用具有—致性。祁雨沟含金角砾岩的形成经历了膨胀、气泡聚集、节涌、沟流和喷涌等流体化作用过程。膨胀和气泡聚集、节涌等流体化作用分别形成了锯齿状网脉状角砾岩和角砾支撑角砾岩。
     通过野外地质、岩相学、拉曼光谱和电子探针分析,在祁雨沟2号和4号含金角砾岩筒中首次发现了冰长石—方解石蚀变矿物组合。含金角砾岩筒成矿作用分为两期,面状矿化和脉状矿化。面状矿化的蚀变早期为阳起石、绿色黑云母、绿帘石和绿泥石化和少量的绢云母化,晚期为冰长石、碳酸盐化。脉状矿化蚀变为硅化、绢云母化和少量的碳酸盐化。对角砾岩筒的蚀变与成矿作用关系研究,认为冰长石—方解石蚀变与含金角砾岩金成矿作用是同期,从而确定祁雨沟含金角砾岩筒是一个典型的低硫型浅成低温热液型金矿床。同时这一蚀变组合也代表了祁雨沟含金角砾岩筒形成温度低于320℃,深度小于1500米的沸腾带。
     在空间上,冰长石—方解石蚀变通常发育于流体化节涌作用形成的减压振动角砾岩、角砾支撑角砾岩等上方附近的空隙中,并与细脉浸染状、网脉状矿化伴生。绿色黑云母化+绿帘石化+绿泥石化蚀变通常位于上述角砾岩的下部,或穿切角砾岩的裂隙中,或发育于流体化构造的角砾岩中,与浸染状矿化伴生。冰长石—方解石组合形成于近中性流体沸腾条件下。减压振动角砾岩则是代表了流体化中流体聚集与膨胀、到节涌过程中流体突然减压的过程。突然减压是触发流体沸腾有效机制。这种蚀变、减压振动角砾岩空间分布特征,反映了冰长石—方解石蚀变组合是流体化的膨胀到节涌过程的必然产物。
     最后,根据同位素年龄数据、本区构造和花岗质岩石演化特征、斑岩型Mo矿和角砾岩型金矿床等特征,建立了本区136Ma—105Ma期间的斑岩型Mo矿—角砾岩型金矿的岩浆热液系统的演化模式。
Field, petrographic work, microscope observations carried out on samples from the Qiyugou Au-bearing breccia pipes. Evidences from macro- and micro-textures suggest that the style of breccias in the area can be grouped into three types: 1) Type 1 with jigsaw fit - stockwork texture, in which the interval between clasts is marked by fractures or filled with calcite or quartz vein;in this type a little movement is observed between the clasts;2) Type 2 with that the larger breccias are supported by smaller breccias, rock flour and alteration materials;in this type clasts moved for a distinguishable distance, creating open spaces;3) Type 3 with fluidized texture: here the clasts are of different lithologies have rounded shapes and lesser domino texture. The large distant movement is observed between clasts. Gold mineralization occurs as disseminations, in stockwork veins, openspace infills. The ore zones form subparallel sheets that are nearly perpendicular to the walls of the pipes. These observations are consistent with those resulting from experiments on fluidization processes reported in the literature. These results strongly suggest that fluidization is an important geological process in formation of the Qiyugou Au-bearing breccia pipes and gold mineralization. Processes of expandion, bubbling, slugging, channeling and spouting of fluidization must have contributed to the formation in Qiyugou breccia pipes and were conducive to the development of gold mineralization.Based on results obtained from field observations, petrographic analysis, laser Raman microspectroscopy and microprobe analysis carried out on samples from the Au-bearing Qiyugou breccia pipes, new discovery of an adularia-calcite assemblage is recognized in the breccia gold deposit. Two stages of gold mineralization in the breccia pipes, pervasive and vein, are distinguished. The pervasive alteration of actionlite, green biote, epidote, chlorite and minor sericite in early replace the breccias and rock flour, and follow sequence of adularia and calcite filling the openspace. Vein ores associated with quartz, sericite, and minor calcite alteration occurs in NE-trending fault that cut pervasive ores. These results suggest that adularia-calcite alteration is paragenetic with gold mineralization. And New discovery of
    adularia-calcite assemblage in the area suggest that the Qiyugou pipes are of low-sulphidation epithermal in nature This assemblage of adularia-calcite is also indicative of boiling zone within the level of lower temperature than 320°C, <1500m in depth for the formation of Qiyugou Au-bearing breccia pipes.The adularia-calcite assemblage is commonly located above the decompressive shock and clast - surpport breccias in spatial. The biotite + epidote alteration is predominated below the decopressive shock and clast - surpport breccias. The adularia-calcite with chlorite alteration forms in boiling condition of near-neutral hydrothermal. The decompressive shock breccia is representative of the hydrostatic process of abruptly lowing pressure during fluidization from expanding, bubbling to slugging. The abruptly lowing pressure is an effective mechanism for boiling. Therefore, this characteristics reflect the assemblage of adularia-calcite is an inevitable product of the fluidization process from expanding, bubbling to slugging.Lastly, a historic and genetic model of the Qiyugou Au-bearing breccia pipes and link with the porphyry Leimengou Mo deposit are proposed on the basis of the age data of granitoid, breccia pipe and mineralization events in the area.
引文
[1] Allman-Ward P, Halls C, Rankin A, and Bristow CM, An intrusive hydrothermal breccia at Wheat Remfry in the western part of the St. Austell Granite Pluton, Cornwall, England. In Evans AM (ed): Metallisation associated with acid magmatasm. Wiley & Sons, New York, 1982, 1-28.
    [2] Bailey JC, Fluoine in granitic rocks and melts: areview. Chemical Geology, 1977, 19: 1-42.
    [3] Baker EM, Kirwin DJ and Taylor RG, Hydrothermal breccia pipes. EGRU Contribution, James Cook University of North Queensland. 1986, 1-45.
    [4] Bodnar RJ, Fluid-inclusion evidence for a magmatac source for metals in porphyry copper deposits. In magmas,fluids,and ore deposits. Vol. 23 of Short Course Series, Thompson JFH, Ed, Mineralogyical Association of Canada, Ottawa, Canada, 1995, 139-I52.
    [5] Bonham HF, Jr., Models for volcanic-hosted, epithermal precious-metal deposits-a review. International Volcanological Congress, Hamilton, New Zealand, Feb. 1986, Syposium V Proc.: 13-17.
    [6] Boorman SL, McGuire JB, Boudreau AE, et al., Fluid overpressure in layered intrusions: formation of a breccia pipe in the Eastern Bushveld Complex, Republic of South Africa. Mineralium Deposita, 2003, 38: 356-369.
    [7] Boyer S E, Elliott D, Thrust system. Am. Petrol. Geol., 1982.66 (9): 1196-1230.
    [8] Bryant DG, Intrusive breccias associated with ore, Warren (Bisbee) mining distict, Arizona: Economic Geology, 1968, 63: 1-12.
    [9] Burnham CW and Ohmoto H, Late stage processes of felsic magmatasm. Mining Geological Special Issue 8, 1980, 1-11.
    [10] Burnham CW, Magmas and hydrothermal fluids. In: Barnes LH ed. Geochemistry of hydrothermal ore deposits,2nd. John Wiley and Sons, New York, 1979, 71-136
    [11] Burnham CW, Energy release in subvolcanic environments: Implications for breccia formation: Economic Geology, 1985, 80, 1515-1522.
    [12] Burnham WD, Magmas and hydrothermal fluids. In Barnes HL (ed): Geochemistry of hydrothermal ore deposits. Wiley & Sons, New York, 1979, 71-136.
    [13] Candela PA, Piccoli PM, Model ore-metal partitioning from melts into vapor and vapor/brine mixtures. In magmas, fluids and ore deposits. Vol. 23 of Short Course Series, Thompson JFH, Ed, Mineralogyical Association of Canada, Ottawa, Canada, 1995, 101-127.
    [14] Casamitjana, X, Colomerl, J and Fernando, HJS, Fluidization of sediments in a conical basin by subterranean springs: relevance to Lake Banyoles: Aquatic Sciences, 2000, 62 , 79-90.
    [15] Chappell BW, White AJR, Two contrasting granite type. Pacific Geology, 1974, 8: 173 -174.
    [16] Chen YJ, Pirajno F, Sui YH, Isotope geochemistry of the Tieluping silver-lead deposit, Henan, China: A case study of orogenic silver-dominated deposits and related tectonic setting. Mineralium Deposita, 2004,39(5-6): 560-575.
    [17] Cline JS, Can economic porphyry copper mineralization be generated by a typicall of calc-alkaline melt? Journal of Geophysical Research, 1991,96: 8113-8126.
    [18] Colvine AC, An empirical model for the formation of Archean gold deposits: products of final cratonization of the Superior Province, Canada. Economic Geology, Monograph 6, 1989,37-53.
    [19] Cooke DR and Davies AGS, Breccias in epithermal and porphyry deposits: The birth and death of magmatic hydrothermal system. 8th SGA Meeting, Beijing. 2005.
    [20] Cooke DR, Simmons SF, Characteristics and geneseis of epithermal gold deposits. Reviews in Economic Geology of Society of Economic Geologists, 2000,13: 221-244,
    [21] Cooke DR., McPhail DC & Bloom MS, Epithermal gold mineralization, Acupan, Baguio district, Philippines: Geology, mineralization, alternation, and the thermochemical environment of ore deposition: Economic Geology, 1996,91,p.243-272.
    [22] Corbett GJ, Leach TM, S.W. Pacific Rim Au/Cu system: Structure, alteration and mineralization. Short Course No.17, MRDU, University of British Columbia, Vancouver, 1995, 150 p.
    [23] Diles JH, Petrology of the Yington batholith, Nevada: Evidence for evolution of porphyry copper ore fluids. Economic Geology, 1987, 82,1750-1789.
    [24] Dong G, Morrison GW, Adularia in epithermal veins, Queensland: morphology, structural state and origin. Mineralium Deposita, 1995,30: 11-19.
    [25] Druitt TH, Settling behaviour of concentrated dispersions and some volcanological applications. J. Volcano, and Geotherm. Res. 1995,65:27-39
    [26] Duncan RA, Physical and chem.ical zonation in the Emerald Lake pluton, Yukon Territory. MSc Thesis, University of British Columbia, 1999.
    [27] Elliott D, Johnson MRW, Structural evolution in the northern part of the Moine thrust belt, NW Scotland: Trans. R. Soc. Edinb. Earth Sci., 1980,71: 69—96.
    [28] Faure G, Principles of isotope geology. 2nd ed. New York: Wiley. 1986.
    [29] Fowler MB, Henney PJ, Darbyshire DPF, et al. Petrogenesis of high Ba-Sr granites: the Rogart pluton, Surtherland. Journal of the Geological Society, London, 2001, 158: 521-534.
    [30] Fyfe W, Price NJ, and Thompson AB, Fluids in the Earth's crust. Elsevier, Amsterdam, 1978.
    [31] Fyfe WS, Tectonics, fluids and ore deposits: mobilisation and remobilization. Ore Geol. Rev. 1987, 2: 21-36
    [32] Fyfe WS, Kerrich R, Fluids and thrusting. Chem. Geol. 1985, 49:353-362
    [33] Gates O, Breccia pipes in the Shoshone Range, Nevada: Economic Geology, 1959, 54: 790-815
    [34] Giggenbach WF, Isotopic shifts in waters from geothermal and volcanic steam along convergent plate boundaries and their origin. Earth and Planetary Sciences, 1992, 113: 495-510.
    [35] Giggenbach WF, The origin and evolution of fluids in magmatic-hydrothermal systems. In Barnes HL et al., Geochemistry of hydrothermal ore deposits,3rd ed., New York, Wiley, 1997,737-796.
    [36] Goldfarb RH, Hart C, Miller M, et al, The Tintina gold belt: A global perspective. British Clumbia and Yukon Chamber of Mine Special Volume 2,2000, 5-34
    [37] Groves DI, Goldfarb RJ, Gebre-Mariam M, et al, Orogenic gold deposits:A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev., 1998,13: 7-27
    [38] Guillou-Frottier, L Burov E, The development and fracturing of plutonic apexes: implications for porphyry ore deposits. Earth and Planetary Science Letters, 2003, 214 341-356.
    [39] Harris AC, Kamenetsky VS, White NC, et al., Melt inclusions in veins: Linking magmas and porphyry Cu deposits. Scienc. 2003, 302: 2109-2111.
    [40] Harris AC, Cooke DR, White NC, et al., Timing of volatile and magma ascent in the formation of the Bajo de la Alumbrera porphyry Cu-Au deposit. In Jingwen Mao and F.P. Bierlein (ed): Mineral Deposit Research: Meeting the Global Challenge. 2005, 2: 393 - 396.
    [41] Heald P, Foley NK & Hayba DO, Comparative anatomy of volcanic-hosted epithermal deposits: Acid-sulfate and adularia-sericite types: Economic Geology, 1987,82(1): 1-26.
    [42] Hedenquist JW, Arribas A, Gonzalez-Urien E, Exploration for epithermal gold deposits. Society of Economic Geologists Reviews, 2000,13:245-277.
    [43] Hedenquist JW & Lowenstern JB, The role of magmas in the formation of hydrothermal ore deposits: Nature, 1994,370: 519-527.
    [44] Hedenquist JW & Arribas A Jr., Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Econ. Geol. 1998,93:373-404
    [45] Hedenquist JW, Henley RW, Hydrothermal eruptions in the Waiotapu geothermal system,New Zealand: Their origin, associated breccias, and relation to precious metal mineralisation. Econ. Geol. 1985, 80: 1640-1668
    [46] Hedenquist JW, Matsuhisa Y., Izawa E, et al., Geology, geochemistry, and origin of high sulfidation Cu-Au mineralization in the Nansatsu District, Japan: Economic Geology, 1994, 89(1): p.1-30.
    [47] Henley RW, The geothermal framework of epithermal deposits. In: Berger BR, Bethke PM,(eds): Geology and geochemistry of epithermal systems. Review of Economic Geology, 1985,2:1-24.
    [48] Henley RW, Ellis AJ, Geothermal systems ancient and modern: a geological review. Earth Sci. Rev. 1983, 19: 1-50
    [49] Hollister VF, Geology of the porphyry copper deposits of the western hemisphere: New York, Am. Inst. Mining Metall. Petroleum Engineers, 1978,219p
    [50] Jebrak M, Hydrothermal breccias in vein-type ore deposits:A review of mechanisms, morphology and size distribution. Ore Geology Reviews, 1997, 111-133
    [51] Johnston WP and Lowell JD, Geology and origin of mineralized breccia pipes in Copper Basin, Arizona: Economic Geology, 1961, 56:916-940
    [52] Keith JD, Christiansen EH, Maughan DT, et al., The role of marie alkaline magmas in felsic porphyry Cu and Mo systems. Mineralogical Association of Canada Short Course Series, 1998, 26:211-244
    [53] Kerrich R,Goldfarb R&Groves D,et al.,超大型金成矿省特征、成因及地球动力学背景,在陈衍景等主编:大陆动力学与成矿作用,地震出版社,2001,5-72.
    [54] Kirwin DJ, Tourmaline breccia pipes: MS of James Cook University of North Queensland. 1985, 1-156.
    [55] Kwauk M, Li JH, Liu, DJ, Review Particulate and aggregative fluidization—50 years in retrospect. Powder Technology, 2000, 11: 3-18
    [56] Landtwing, MR, Dillenback ED, Leake, MH, et al, Evolution of the breccia-hosted porphyry Cu-Mo-Au deposit at Agua Rica, Argentina: Progressive unroofing of a magmatac hydrothermal system. Economic Geology, 2002, 97:1273-1292.
    [57] Lang JR, Baker T. Intrusion-related gold system: the present level of understanding. Mineralium Deposita, 2001, 36: 477~489.
    [58] Laznicka P, Breccias and coarse fragmentities-petroIogy, environments, associations, ores, Elsevier Science Publishers B. V. 1988.
    [59] Lewis AJ, Palmer MR, Sturchio NC, et al., The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA. Geochemica et Cosmochimica Acta, 1997, 61: 695-706.
    [60] Li JH, Compromise and resolution—Exploring the multi-scale nature of gas-solid fluidization. Powder Technology 2000, 111: 50-59
    [61] Li YF, Mao JW, Guo BJ, et al., Re-Os istopic dating of molybdenites in the Nannihu Mo (W) orefield in the eastern Qinling and its geodynamic process. Acta Geoiogica Sinica, 74: 14-18.
    [62] Lorenz V, Formation of phreatomagmatic maar-diatreme volcanoes and its relevance to kimberlite diatremes. Physical Chemistry of the Earth, 1975, 9: 17-27.
    [63] Lowell JD, Guilbert JM, Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ. Geol. 1970, 65:373-408
    [64] Maher B, Geology, geochemistry and genesis of the Engineer Pass intrusive complex, San Juan Mountains, Colorado: Unpublished, MS thesis, Colorado State University, 1983, 226p
    [65] Mao JW, Goldfarb RJ, Zhang ZW, et al., Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling Mountains, central China. Mineralium Deposita, 2002, 37: 306-325.
    [66] Maughan DT, Keith JD, Christiansen EH, Contributions from mafic alkaline magmas to the Binham porphyry Cu-Au-Mo deposit, Utah, USA. Mineralium Deposita. 2002,37: 14-37
    [67] Mayo EB, Intrusive fragmental rocks directly or indirectly of igneous origin: Arizona Geological Society Digest, 1976, 10: 347-430
    [68] McCallum ME, Fluidization processes in breccia formation: Economic Geology, 1985, 80: 1523-1543.
    [69] McCoy DT, Newberry RJ, Layer PW, et al, Plutonic related gold deposits of interior Alaska. Econ. Geol. Mongr. 9, 1997,191-241.
    [70] Mcmillan WJ, Panteleyev A., Ore deposits models.1.Porphyry copper deposits. Geosci. Can. Mining Annual Review 1985 Bolivia.Mining J.London, 1980, 337-389
    [71] Michard A and Albarede E, The REE content of some hydrothermal fluids. Chemical Geology, 1986,55:51-60.
    [72] Michard A, Rare earth element sysmatics in hydrothermal fluids. Geochemica et Cosmochimica Acta, 1989,53: 745-750.
    [73] Miller C, Schuster R, Klotzli U, et al., Post-collisionai potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 1999,40(9): 1399-1424.
    [74] Mills, JW, Origin of copper-bearing breccia pipes: Economic Geology, 1972, 67: 533 - 535.
    [75] Mitchell AHG, Garson MS, Mineral Deposits and Global Tectonic Settings. Academic Press, London, 1981,405 pp.
    [76] Moyle AJ, Doyle BJ, Hoogvliet H, et al., Ladolam gold deposit,Lihir Island: In Hughes FE ed. Geology of the mineral deposits of Australia and Papua New Guinea, 1990, 2: 1793 -1805.
    [77] Murphy DC, Geology of the McQuesten River region, northern McQuensten and Mayo map area, Yukon Territory: Exploration and geological services division, Yukon Region, Indian and Northern Affairs Canada, Bulletin 6, 1997,95p
    [78] Nielsen RL, Recent developments in the study of porphyry copper geology: a review. In Sutherland BA (ed). Porphyry deposits of the Canadian Cordillera. Can Inst Min Metall Spec 1976,15: 487-500
    [79] Nordyke MD, Nuclear craters and preliminary theory for the mechanism of explosive crater formation. Journal of Geophysics Research, 1961, 66:3439-3459.
    [80] Norton DL and Cathles LM, Breccia pipes - products of exsolves vapour from magmas. Economic Geology, 1973, 68: 540-546.
    [81] Peng, P, Zhai, MG, Zhang, H-F., et al., Geochronological constraints on the Paleoproterozoic evolution of the North China Craton: SHRIMP zircon ages of different types of mafic dikes. International Geology Review, 2005,47: 492-508.
    [82] Pirajno F, Hydrothermal mineral deposits: Principles and fundamental concepts for the exploration geologist: Springer-Verlag, Berlin, 1992,709pp.
    [83] Reynolds DL, Fluidization as a geological processs, and its bearing on the problem of intrusive granites: Am.Jour.Sci., 1954,252: 557-613
    [84] Rhodes M, What is turbulent fluidization. Powder Technology, 1996, 88: 3-14.
    [85] Richard JP, Tectono-Magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 2003,98:151-1533.
    [86] Richards JP & Kerrich R, The Porgera gold mine,Papua New guinea: Magmatic hydrothermal to epithermal evolution of an alkalic-type precious metal deposit: Economic Geology, 1993, 88: 1017-1052.
    [87] Richards JP, Alkalic-type epithermal gold deposits - A review. Mineralogical Association of Canada Short Course, 1995,23:367-400.
    [88] Ross, PS, Jebrak M, Walker BM, Discharge of hydrothermal fluids from a magma chamber and Concomitant Formation of a stratifyied breccia zone at the Questa porphyry molybdenum deposit, New Mexico. Economic Geology, 2002, 97: 1679-1699.
    [89] Sawkins FJ, Sulfide ore deposits in relation to plate tectonics. J. Geol. 1972, 80: 377-397.
    [90] Simmons SF and Chritenson BW, Origins of calcite in a boiling geothermal system. American Journal of Sciences, 1994,294: 361-400.
    [91] Shannon JR, Walker BM, Carten RB et al., Undirectional solidification textures and their significance in determining relative ages of intrusions at the Henderson mine. Colorado Geology, 1982, 10: 293-297.
    [92] Sibson RH, Fault rocks and Faults mechanisms, Journal of Geological Society, London, 1977, 133(1): 191-213.
    [93] Sibson RH, Fluid involvement in normal faulting. Journal of Geodynamics, 2000, 29: 469-499
    [94] Sillitoe RH., Erosion and collapse of volcanoes: Causes of telescoping in intrusion - centered ore deposits: Geology, 1994, 22: 945-948.
    [95] Sillitoe RH., Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region: Australian Journal of Earth Sciences, 1997,44:373-388.
    [96] Sillitoe RH, Hannington MD.& Thompson JFH, High sulfidation deposits in the volcanogenic massive sulfide environment. Economic Geology, 1996, 91:204-212.
    [97] Sillitoe RH and Sawkins FJ, Geologic, mineralogyic and fluid inclusion studies relating to the origin of copper-bearing tourmaline breccia pipes, Chile: Economic Geology, 1971, 66: 1028-1041
    [98] Sillitoe RH, Halls C and Grant JN, Porphyry tin deposits in Bolivia: Economic Geology, 1975,70: 913-927
    [99] Sillitoe RH. Ore-related breccias in volcanoplutonic arcs. Economic Geology. 80(6): 1985, 1467-1514.
    [100] Silltoe RH & Hedenquist JW, Linkage between volcanotectonic settings, ore fluid compositions, and epithermal precious metal deposits. Society of Econ. Geol. Spec. Publication 10,2003,315-343.
    [101] Silltoe RH, Gold deposits in western Pacific island arcs: The magmatic connection. Econ. Geol. Mongr. 6,1989,274-291.
    [102] Silltoe RH, Some metallogenic features of gold and copper deposits related to alkaline rocks and consequences for exploration. Mineralium Deposita. 2002, 37:4-13.
    [103] Silltoe RH, Bonham HF, Volcanic landforms and ore deposits. Econ. Geol., 1984, 79: 1286-1298.
    [104] Sutherland BA, Morphorlogy and classification. In: Sutherland BA (ed). Porphyry deposits of the Canadian Cordillera. Can. J. Earth. Sci. Spec. 1976,15: 44-51
    [105] Sparks RSJ, Grain size varations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentology, 1976,23:147-188
    [106] Sylvester A G Strike-slip faults. Geological Society of American Bulletin. 1988. 100 (11): 1666-1703.
    [107] Taylor S R, McLennan S M. The continental crust: its composition and evolution. Blackwell, Oxford, 1985.
    [108] Thompson JFH, Silltoe RH, Baker T, et al, Intrusion-related gold deposits associated with tungsten-tin province. Mineralium Deposita. 1999,34: 323-334
    [109] Thompson TB, Mineral deposits of the Cripple Creek district, Colorado. Mining Engineering, 1992,44: 135-138.
    [110] van Middlesworth PE and Wood SA, The aqueous geochemistry of the rare earth elements associated with the Idaho batholith. Applied Geochemistry, 1998, 13: 861-864.
    [111] White NC, Leake MJ, McCaughey SN, et al., Epithermal gold deposits of the southwest Pacific. Journal of Geochemical Exploration. 1995,54: 87-136.
    [112] Williams CL, Thompson TB, Powell JL, et al., Gold-bearing breccias of the Rain Mine, Carlin Trend, Nevada Economic Geology, 2000,95: 391-404
    [113] Wilson CJN, The role of fluidization in the emplacement of pyroclastic flows: An experimental approach. J. Volcano. and Geotherm. Res., 1980, 8: 231-249
    [114] Wilson CJN, The role of fluidization in the emplacement of pyroclastic flows:2 Experimental results and their interpretation. J. Volcano. And Geotherm. Res., 1984, 20: 55 -84
    [115] Wood SA, The geochemistry of rare earth elements and Yttrium in geothermal waters. Special Publication 10 of Society of Economic Geologists, Chapter 8: 2003, 133-158.
    [116] Woolsey TS, McCallum ME, Schumm SA, Modeling of diatreme emplacement by fluidization: Physics Chemistry Earth, 1975,9: 29-42
    [117] Woolsey, TS, McCallum, ME, et al., Modelling of diatreme emplacement by fluidisation. Physics and Chemistry of the Earth, 1973,9: 29-42.
    [118] Wu F Y, Jahn B, Wilde S A, et al., Highly fractionated I-type granites in NE China ( I ): geochronology and petrogenesis. Lithos, 2003, 66:241-273.
    [119] Yang K, Bodnar RJ, Orthomagmatic origin for the Ilkwang Cu-W breccia pipe deposit, southeastern Kyongsang Basin, South Korea. Journal of Asian Earth Sciences. 2004, 24(2): 259~270.
    [120] Zhai MG, Precambrian tectonic evolution of the North China Craton. Geological Society, London, Special Publication 2004, 226: 57-72.
    [121] Zhang YH, Zhang SH, Han YG, et al., Low sulphidisation epithermal gold-bearing Qiyugou breccia pipes, Xiong'er Mountains, China. 2:p1111-1113. In Jingwen Mao and F. P. Bierlein (ed): Mineral Deposit Research: Meeting the Global Challenge. 2005, pp 1613.
    [122] Zhang YH, Zhang SH, Pirajno F, et al., in press, The Qiyugou auriferous breccia pipes: an adulada-serieite epithermal system, associated with porphyry Mo in the Xiong'ershan, Henan Province, China. Mineralium Deposita.
    [123] Zhao TP, Zhai MG, Xia B, et al., Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong'er Group: Constraints on the initial formation age of the cover of the North China Craton. Chinese Science Bulletin, 49(23): 2495-2502. Barnett, W, 2004, Subsidence breccias in kimberlite pipes—an application of fractal analysis: Lithos, 2004, 76, 299-316.
    [124] 毕献武,骆庭川,洛宁花山岩体地球化学特征及成因的探讨.矿物学报,1995,15(4):433~441.
    [125] 曹益富,李世华,爆破角砾岩体型金矿床成矿特点.黄金,1999,20(9):12-16.
    [126] 陈衍景,富士谷,豫西金矿成矿规律.北京:地震出版社,1992.
    [127] 陈衍景,李超,张静,等,秦岭钼矿带斑岩体锶氧同位素特征与岩石成因机制和类型.中国科学(D辑),2000,30(增刊):64-72.
    [128] 陈衍景,碰撞造山体制的流体作用及其成矿效应—东秦岭金矿床成矿流体研究的意义.见:陈衍景,张静,赖勇主编.大陆动力学与成矿作用.地震出版社,2001,133~147.
    [129] 程广国,河南熊耳山地区中生代花岗岩成因及构造环境与成矿关系:有色金属矿产与勘查,1994,3(1):15-21.
    [130] 范宏瑞,谢奕汉,王英兰,等.豫西花山花岗岩基岩石学和地球化学特征及其成因.岩石矿物学杂志,1994,13(1):19~32.
    [131] 范宏瑞,谢奕汉,郑学正,等,河南祁雨沟热液角砾岩体型金矿床成矿流体研究.岩石学报,2000,16(4):559-563
    [132] 高秉璋,火山作用—深成作用的相互联系.江西地质,1997,11(4):33—40.
    [133] 韩以贵,张世红,白志达,等豫西地区熊耳群火山岩钠长石化研究及其意义.矿物岩石, 26(1),待刊.2006.
    [134] 河南省地质矿产局,河南省区域地质志.地质出版社,1989.
    [135] 胡庆元,景山,王金福,等,粗颗粒在锥形床中的流化特性.高校化学工程学报,2000,14(1):12-18.
    [136] 胡受奚,赵懿英,徐金方等,华北地台金成矿地质—以南、东和东北缘为例探讨金成矿规律:科学出版社,1997.
    [137] 胡受奚,赵懿英,徐金方,等,华北地台金成矿地质—以南、东和东北缘为例,探讨金成矿规律:科学出版社,1997。
    [138] 胡正国,钱壮志,小秦岭西段拆离—变质杂岩核构造.地质找矿论丛,1994.9(2):58-66.
    [139] 华彬,胡黎明,李春忠等,超细颗粒流化过程中床层的坍落与膨胀.华东理工大学学报,1994a,20(3):290—294.
    [140] 华彬,李春忠,胡黎明,等,超细颗粒流化特性及团聚机理.化工冶金,1994b,15(4):348—354.
    [141] 瞿伦全,东秦岭花岗岩Rb-Sr同位素年龄研究的一些新认识.豫西地质,1988,(1):20-34.
    [142] 李本海等,新疆阿希金矿Ⅰ号矿床矿石特征及其成因意义.新疆地质,1994,12(2):146—156.
    [143] 李莉,卿敏和陈祥,河南外方山地区金矿同位素地球化学特征:黄金地质,1999,5(2):55-59.
    [144] 李世华,韩军,柴春新.河南祁雨沟金矿四号含金角砾岩筒地质地球化学特征及成因.黄金,1998,19(7):9~12.
    [145] 李维明,河南卢氏北部地区爆发碎屑岩及其找矿意义的初步认识.地质工作者参考资料(第8辑):矿化角砾岩体的地质特征及成因问题.1975.
    [146] 李先梓,严阵,卢欣祥.1993.秦岭-大别山花岗岩.北京:地质出版社.
    [147] 刘红涛,翟明国,刘建明,等,华北克拉通北缘中生代花岗岩:从碰撞后到非造山.岩石学报,2002,18(4):433-448.
    [148] 刘建明,治岭头金银矿床成因讨论,成都地质学院学报,1990,17(2):1-7.
    [149] 刘耀文,庙岭金矿床地质特征及找矿方向:黄金,2003,24(4):19-21.
    [150] 刘振宏,王世炎,张良,等,华北陆块南缘燕山期陆内造山岩浆活动特征.地质调查与研究,2004,27(1):35-42.
    [151] 卢欣祥,董有,常秋岭,等,秦岭印支期沙河湾奥长环斑花岗岩及其动力学意义.中国科学(D辑),1996,26(3):244-248.
    [152] 卢欣祥,于在平,冯有利,等,东秦岭深远虔诚型花岗岩的成矿作用及地质构造背景.矿床地质,2002,21(2):168-178.
    [153] 栾世伟,陈尚迪,曹殿春等,小秦岭地区深部金矿化特征及评价,成都科技大学出版社,1991.
    [154] 栾文楼,殷克忠,祁雨沟金矿自然金的标型特征及其找矿意义.岩石矿物学杂志,1995,14(1):65—70.
    [155] 罗铭玖,黎世美,卢欣祥等.2000.河南省主要矿产的成矿作用及矿床成矿系列.地质出版社.
    [156] 罗铭玖,王亨治等.1991.河南金矿概论.河南地质矿产厅.
    [157] 罗铭玖,张辅民,董群英等,1991,中国钼矿床,河南科学技术出版社
    [158] 罗镇宽,苗来成,关康,角砾岩型金矿床——一种值得重视的金矿床类型.地质找矿论丛,1999,14(4):15—23.
    [159] 马昌前,杨坤光,明厚利,等,大别山中生代地壳从挤压转向伸展的时间:花岗岩的证据.中国科学(D辑),2003.,33(9):817-827.
    [160] 毛景文,谢桂青,张作衡,等,中国北方中生代大规模成矿作用的期次及其地球动力学背景.岩石学报,2005,21(1):169-188.
    [161] 毛景文等,浅议大规模成矿作用与大型矿集区,矿床地质.1999,18(4):291-299.
    [162] 裴放,河南南召地区韧性剪切带及构造变形相.中国区域地质.1995.14(4):323-333.
    [163] 任福根,殷艳杰,李双保和赵家农,2001,熊耳裂陷音支期同位素地质年龄耦合性:矿物岩石地球化学通报,20(4):286-288.
    [164] 任富根,李惠民,殷艳杰,等,熊耳群火山岩系的上限年龄及其地质意义.前寒武纪研究进展,2000,23(3):140-146.
    [165] 任富根,李维明,李增慧,等,熊耳山-崤山地区金矿成矿地质条件和找矿综合评价.地质出版社,1996.
    [166] 邵克忠,Bi-硫盐\Bi-硫化物-祁雨沟爆发坍塌角砾岩型金矿床成因及找矿标志,河北地质学院学报,1989,12(3):299-305.
    [167] 邵克忠,河南祁雨沟地区金矿床特征及找矿方向,见:秦巴金矿论文集,北京:地质出版社,1993,84-95.
    [168] 邵克忠,王宝德,吴新国,等,祁雨沟地区爆发角砾岩型金矿成矿地质条件及找矿方向研究.河北地质学院学报,1992,15(2):105—194.
    [169] 陕西省地质矿产局,陕西省区域地质志.地质出版社,北京.1989.
    [170] 邵世才,爆破角砾岩型金矿的成因及其定位机制—以河南祁雨沟金矿为例.矿物学报,1995,15(2):230-235.
    [171] 沈保丰,骆辉,华北陆台太古宙绿岩带金矿的成矿特征.华北地质矿产杂志,1994,9(1):87-96.
    [172] 沈保丰,毛德宝,李俊建,绿岩带金矿床,在张贻侠等主编:中国金矿床:进展与思考,地质出版社,1996,78-84.
    [173] 石准立等,与碱性碳酸岩有关的双王金矿床,见:秦巴金矿论文集,北京:地质出版社,1993,133—146.
    [174] 孙大中,胡维兴,中条山前寒武纪年代构造格架和年代地壳结构.北京:地质出版社,1993.,98-102.
    [175] 唐菊兴,含金热液隐爆角砾岩的特征及研究意义.成都理工学院学报,1995,22(3):59-64.
    [176] 王义天,毛景文,卢欣祥,嵩县祁雨沟金矿成矿时代的(40)Ar-~(39)Ar年代学证据.地质论评,2001,.47(5):551-555.
    [177] 王志光,崔亳,徐孟罗,等,华北地块南缘地质构造演化与成矿.冶金工业出版社,1997,80-83.150-154.
    [178] 吴迪胜,蒋家俊,皮耐安,等,化工基础,高等教育出版社,1999,p90-101.
    [179] 吴福元,葛文春,孙德有.埃达克岩的概念、识别标志及其地质意义.见:肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法.地质出版社,2002.172-189.
    [180] 谢奕汉,范宏瑞.2000.高盐变质流体对我国绿岩带金矿的制约.岩石学报.
    [181] 徐兴旺,蔡新平,秦大军,等,山东七宝山角砾岩筒流体温压双重致裂机制与金铜成矿.中国科学(D辑),2000,30(1):47-523.
    [182] 许志琴,卢一轮,汤耀庆等.东秦岭复合山链的形成—变形、演化及和板块动力学.北京:中国环境科学出版社,1988.
    [183] 许志琴,牛宝贵,刘志刚.秦岭大别“碰撞-陆内”型复合山链的构造体制及陆内板块动力学机制[A].叶连俊等主编.秦岭造山带学术讨论会论文集.西安:西北大学出版社.1991.139-147.
    [184] 许志琴,张建新,徐惠芬,等.中国主要大陆山链韧性剪切带及动力学[M].北京:地质出版社.1997.
    [185] 燕建设,王铭生,杨建朝,等,豫西马超营断裂带的构造演化及其与金等成矿的关系.中国区域地质,2000,19(2):166~171.
    [186] 杨竹森,高振敏,李红阳,等,祁雨沟金矿自然金晶体形态和微形貌的生长动力学研究.矿物学报,1999,19(4):475—482.
    [187] 姚凤良,刘连登,孔庆存,等,胶东西北部脉状金矿.吉林科学技术出版社,1990..
    [188] 叶伯丹,全国同位素汇编.地质出版社.1985.
    [189] 张国伟,孟庆任,于在平,等,1996.秦岭造山带的造山过程及其动力学特征.中国科学(D辑),26(3):193~200.
    [190] 张国伟,张本仁,袁学诚,等,秦岭造山带与大陆动力学.北京:科学出版社,2001.
    [191] 赵太平,金成伟,翟明国,等.华北陆块南部熊耳群火山岩的地球化学特征与成因.岩石学报,2002.,18(1):59~69.
    [192] 张元厚,张世红,韩以贵,等,祁雨沟含金角砾岩筒中的冰长石—方解石组合及其矿床地质意义.岩石矿物学杂志,2006,25(1):77—84.
    [193] 张元厚,张世红,韩以贵,等,华熊地块马超营断裂走滑特征及演化.吉林大学学报(地球科学版),2006.36(2):169-176.
    [194] 赵振华,某些常用稀土元素地球化学参数的计算方法及其地球化学意义.地质地球化学,1985,(139增刊):11-14.
    [195] 赵志丹,莫宣学,张双全,等,西藏中部乌郁盆地碰撞后岩浆作用.中国科学(D辑),2001,31(增刊):20-26.
    [196] 周玲棣,郭九皋,刘秉光,等,日本菱刈金矿冰长石结构态.科学通报,2001,46(4):338-341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700