用户名: 密码: 验证码:
纳米比亚欢乐谷地区花岗岩地球化学特征及成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对欢乐谷地区花岗岩的野外地质特征和岩石学特征的详细研究,欢乐谷地区的花岗岩石主要有:基底中的片麻状花岗岩、斑状花岗岩、黑云母花岗岩和白岗岩;其中,白岗岩又可划分为A、B、C、D、E、F六种类型,并且从A类至F类白岗岩,其形成时间由早至晚;白岗岩矿物组成显示了较大的变化范围,并不是传统意义上的“白岗岩”,也不是典型的花岗伟晶岩。
     运用锆石LA-ICP-MS测年方法,建立了该区花岗岩的成岩年代学框架。斑状花岗岩的形成年龄为552.5±2.2Ma;黑云母花岗岩的形成年龄为540.2±3.9Ma;A类白岗岩的形成年龄为547.4±3.6Ma;B类白岗岩形成于537.8±4.3Ma;C类白岗岩形成于525.4±2.6Ma;D类白岗岩的形成年龄为497±5.5Ma。
     主量、微量元素和Sr-Nd-Pb同位素综合研究成果表明,欢乐谷地区花岗岩均来源于地壳物质的熔融,都属于S型花岗岩。Abbabis片麻状黑云母花岗岩主要来源于贫粘土源区岩石的重熔;斑状花岗岩主要来源于古老基底地壳贫粘土碎屑岩的重熔;黑云母花岗岩由少量幔源玄武质岩浆和硅铝质岩浆混合形成,主要来源于古老基底地壳贫粘土碎屑岩的重熔;白岗岩主要来源于古老基底物质的熔融,但其微量元素及Sr-Nd同位素特征反映了物源区成分的复杂性或物源区成分存在某种程度的不均一性;白岗岩并不是同一源区岩石批式熔融或同源岩浆经分离结晶作用的产物,它们拥有各自独立的岩浆房。
     通过综合研究,建立了欢乐谷地区花岗岩的侵位模式。斑状花岗岩和A类白岗岩形成于主碰撞阶段,由于Kalahari克拉通和Congo克拉通碰撞,引起地壳的缩短增厚,由古老基底地壳物质部分熔融而形成;黑云母花岗岩形成于随后的“软碰撞”造山阶段,同碰撞期地壳变厚作用不明显,在该碰撞阶段岩石圈发生拆沉作用与热软流圈的上涌,形成少量玄武质岩浆,幔源岩浆和壳源岩浆混合,并沿深断裂随机地上升、同化围岩、侵位冷凝;随着造山带的垮塌、上涌的热软流圈下沉、造山带内微板块运动方向的改变、造山带内构造的活化、扭动构造和地块的横向挤压或逃逸,或沿巨大剪切带的水平方向块体运动,使部分地区应力松弛,挥发性组分的释放,使深埋在地壳深部岩石由于脱水产生大量含水流体,流体沿逆冲剪切带运移,并促使已被俯冲流体交代的前达马拉基底岩石大范围熔融作用的发生,从而B、C、D、E和F类白岗岩侵位。
     同位素年代学研究表明,欢乐谷地区白岗岩成岩作用与铀成矿作用同时进行;白岗岩源区的物质组成及形成时的构造背景共同控制了白岗岩是否成矿。
According to the research on field geological and petrologic characteristics ofgranite from the Gaudeanmus area, the main types of granite in the Gaudeanmus areaare basement-hosted gneissic granite, porphyritic granite, biotite granite and alaskite.The alaskite have been divided into six types, those are A, B, C, D, E and F typealaskite, based wholly on observable field characteristics of colour, grain size, texture,radiometric measurements by scintillometer and macro-scale mineralogy. Cross-cutting and structural relationships have been used to create a chronological sequencefrom type A which is the oldest to type F which is the youngest. The mineralcomposition for alaskite shows a larger range, and neither alaskite in the traditionalspeaking, nor typical granitic pegmatite.
     Using zircon LA-ICP-MS dating methods, we have been established petrogeneticchronology frame for granite in the area. The results show as follow. The age ofporphyritic granite formed at552.5±2.2Ma, biotite granite formed at540.2±3.9Ma,A type alaskite fromed at547.4±3.6Ma, B type alaskite formed at537.8±4.3Ma, Ctype alaskite formed at525.4±2.6Ma and D type alaskite formed at497±5.5Ma.
     Major, trace element and Sr-Nd-Pb isotopes studies show that granite from theGaudeanmus area is derived from melting of crust, and all belong to S-type granites.Abbabis biotite granite gneiss is mainly derived from remelting of rock from poorclay source. The porphyritic granite mainly is derived from remelting of poor clayclastic rock from ancient basement. The alaskite is mainly derived from remelting ofancient basement, however, its trace elements and Sr-Nd isotopic compositionindicate that the complexity of the source or the component of source area existheterogeneity in some extent. The alaskite is not the product of the same source bybatch melting or fractional crystallization, but they have their own separate magmachamber.
     The porphyritic granite and A type alaskite were formed in the main collisionstage, due to partial melting of ancient basement by crust rustal shortening andthickening, which caused by collsion of the Kalahari craton and Congo craton. Thebiotite granite is formed in the subsequent "soft collision" orogenic stage, and crustalthickening effect is not obvious in syn-collisional stage. There are a small amount ofbasaltic magma formed in the stage, which is caused by lithospheric delamination andasthenosphere upwelling, and then mantle-derived magmas and crustal-derived magma mixed, and ascended along deep faults and assimilated wall-rock andemplacement condensation. The deep-seated crustal rock generated amount of water-bearing fluids by dehydration with collapse of orogenic belt, sink of upwellingasthenosphere, direction change of micoroplate movement the change of micro-platedirection within orogenic tectonic activation, tectonic activate in orogenic belt andcrustal extrusion in crosswise. The fluids ascend by thrust shear zone, and madeextensive melt of the heterogeneous Pre-Damara basement rock, thus theemplacement of B, C, D, E and F type alaskite accomplished.
     The research on geochronological shows that diagenesis of alaskite and uraniummineralization occurred at the same time in the Gaudeanmus area. The source materialcomposition for alaskite and tectonic setting share controlled the mineralization ofalaskite.
引文
[1] Abdel-Rahman A. Nature of biotites from alkaline, calc-alkaline and peraluminous magmas.Petrol,1994,35(2):525~541.
    [2] Altherr R, Holl A, Hegner E, et al., High-potassium, calc-alka-line I-type plutonism in theEuropean Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos,2000,50(1-3):51-73.
    [3] Andersen D L. Hotspots, basalts and evolution of the mantal. Science,1985,213:82~89.
    [4] Anderson, H. and Nash, C. Integrated lithostructural mapping of the R ssing area, Namibiausing high resolution aeromagnetic, radiometric Landsat data and aerial photographs.Exploration Geophysics,1997,28,185~191.
    [5] Atherton M P, Ghani A A. Slab breakoff: A model for Caledonian, Late granite syn-collisionalmagmatism in the orthotectonic(metamorphic)zone of Scotland and Donegal, Ireland.Lithos,2002,62(1):65~85.
    [6] Badenhorst, F P. The Lithostratigraphy of area2115B and D in the Central Zone oftheDamara rogen in Namibia: with emphasis on facies changes and correlation.1992,unpublished MSc thesis. University of Port Elizabeth.
    [7] Barbarin. A review of the relationships between granitoid types, their origins and theirgeodynamic environments. Lithos,1999,46:605~626.
    [8] Barnes, S J. Sawyer, E.W. An alternative model for the Damaramobile belt: ocean crustsubduction and continental convergence. Precambrian Research.1980,13,297~336.
    [9] Barth M G, McDonough W F and Rudnick R L. Tracking the budget of Nb and Ta in thecontinental crust. Chemical Geolocy,2000.165:197~213.
    [10] Basson, I J. and Greenway, G. R ssing Uranium Mine: Genesis during late tectonism of thecentral zone of the Damara Orogen, Namibia. Journal of African Earth Sciences,2003,1~15.
    [11] Basson, I J. and Greenway, G. The R ssing Uranium Deposit: A product of late-kinematiclocation of uraniferous granites in the Central Zone of the Damara Orogen, Namibia. Journalof African Earth Sciences,2004.38,413~435.
    [12] Batchelor R A and Bowden P. Petrogenetic interpretation of granitoid rock series usingmulticationic parameters. Chem. Geol.1985,48:43~55.
    [13] Beane R E. Biotite Stability in the Porphyry Copper Environment. Economic Geology,1974,69:241~256.
    [14] Belousova E A,Griffin W,Suzanne Y et al.Igneous zircon:trace element compositionas an indicator of source rock type.Contributions to Mineralogy and Petrology,2002,143(5):602~622.
    [15] Bergantz G W. Underplating and Partial Melting: Implications for Melt Generation andExtraction. Science,1989,245(4922):1093-1095.
    [16] Berning, J. Cooke, R., Heimstra, S.a.,Hoffman,U. The R ssing Uranium Deposit, South WestAfrica. Economic Geology.1976,71:351~368.
    [17] Blaine, J.L. Tectonic evolution of the Waldau Ridge structure and the OkahandjaLineament,South West Africa. Precambrian Research Unit Bulletin,1997,21.
    [18] Blundy J D and Sparks R S J. Petrogenesis of Mafic Inclusions in Granitoids of the AdamelloMassif, Italy. Journal of Petrology,1992,33(5):1039~1104.
    [19] Brandt. Granitic magmatism in the Damaran orogenic belt, Namibia. Rev. Bras. Geosci,1987,17,459~463.
    [20] Briqueu, L., Lancelot, J.R., Valois, J.P. and Walgenwitz, F. Geochronologie U–Pb et genesed’un type de mineralisation uranifere: les alaskite de Goanikontes(Namibia)et leurencaissant. Bulletin Centrale De Recherche Exploration Production, Elf Aquitaine,1980,4,759~811.
    [21] Buhn B, Haussinger H, Kramm U, Kukla K, Kukla P A, and Stanistreet L G.Tectonometamorphic patterns developed during Pan African continental collision in theDamara inland belt, Namibia. Chem. Erde,1994,54,329~354.
    [22] Buhn B, Okrusch M,Woermann E, Lehnert K, and Hoernes S. Metamorphic evolution ofNeoproterozoic manganese formations and their country rocks at Otjosondu, Namibia. Petrol,1995,36,463~496.
    [23] Castro A and Femandez C. Origin of peraluminous granites and granodiorites, Iberian massif,Spain: an experimental test of granite petrogenesis, Contrib. Mineral. Petrol.1999,3.
    [24] Castro A. De la Rosa J D and Moreno-Ventas. Unstable flow, magma mixing and magmarock dedormation in a deep-seated conduit. The Gi-Mquez complex, Southwest Spain.Geologische Rundschau,1995,84:359~374.
    [25] Castro A. H-type(Hybrid)granitoids: a proposed revision of the granite type classificationand nomenclature. Earth Scicence Review,1991,31:237~253.
    [26] Chappell B W and White A J R. Two contrasting granite types. Pacific Geo,1974,8:173~174.
    [27] Chappell B W, White A J R. Two contrasting granite types:25years later. Australian Journalof Earth Sciences,2001,48:489~499.
    [28] Chappell B W. Aluminium saturation in I-and S-type granites and the characterization offractionated haplogranites. Lithos,1999,46,535~551.
    [29] Chappell B W. Magma mixing and the production of compositional variation within granitesuites: evidence from the granites of southeaster Australia. J. Petrology,1996,37:449~470.
    [30] Chappell BW and White A J R. I-and S-type granites in the Lachlan Fold Belt. Transactionsof the Royal Society of Edinburgh. Earth Sci,1992,83:1~26.
    [31] Chen B,Jahn B M,Wilde S and Xu. Two contrasting Paleozoic magmatic belts in northernInner Mongolia. China:Petrogenesis and tectonic implications,2000,328:157~182.
    [32] Chung S L, Chu M F,Zhang Y et al. Tibetan tectonic evolution inferred from spatial andtemporal variations in post-collisional magmatism. Earth Sci Reviews,2005,68:173~196.
    [33] Collins W J,Beams S D,White A J R,et al. Nature and origin of A-type granites withparticular reference to south-eastern Australia. Contributions to Mineralogy and Petrology,1982,80:189~200.
    [34] Collins W J. Evolution of petrogenetic models for Lachlan Fold Belt granitoids: implicationsfor crustal architecture and tectonic models. Australian Journal of Earth Science,1998,45:483~500.
    [35] Collins W J. S and I type granitoids of eastern Lachlan fold belt: Products of three-component mixing. Transations of the Royal Society of Edinburgh, Earth Sciences,1996,88:171~179.
    [36] Compston W,Williams I S,Kirschvink J L,et al.Zircon U-Pb ages for the Earlyambriantime~scale. Geol.Soc,1992,149:171~184.
    [37] Corner, B., Henthorn, D.I. Results of a palaeomagnetic survey undertaken in the Damaramobile belt, South West Africa, with special reference to the magnetisation of the uraniferouspegmatitic granites. Report PEL-260Pelindaba, Atomic Energy Board South Africa.1978.
    [38] Coward, M.P. The tectonic history of the Damara Belt, pp.409-421. In: Miller, R. McG.(ed.), Evolution of the Damara Orogen of South West Africa/Namibia: Geological Societyof South Africa, Special Publication,1983.11,515.
    [39] Defant M J and Drummond M S. Derivation of some morden arc magmas by of youngsubducted lithosphere. Nature,1990,347:662~665.
    [40] Defant M J and Drummond M S. Mount St Helens: potential example of the partial meltingof subducted lithosphere in a volcanic arc. Geology,1993,21:547~550.
    [41] Diehl, M. Rare metal pegmatites of the Cape Cross–Uis pegmatite belt, Namibia: geology,mineralisation, rubidium–stron-tium characteristics and petrogenesis. Journal of AfricanEarthSciences,1992,17,167~181.
    [42] Downing, K.N. Coward, M. P. The Okahandja Lineament and its significance for DamaraTectonics in Namibia. Geologisch Rundschau,1981,70,972~1000.
    [43] Downing, K.N. Evolution of the Okahandja lineament and its significance in DamaranTectonics (Nambia).1982, unpublished Ph.D. thesis. University of Leeds.
    [44] Eby G N.Chemical subdivision of the A-type granitoids:Petrogenetic and tectonicimplications.Geology,1992,20(7):641~644.
    [45] Edgar A D. The genesis of alkaline magmas with emphasis on their source regions:inferences from experimental stusies. In: Fitton J G, Upoton BGJ (eds) Alkaline igneousrocks. Geological Society, London, Geological Society Spacial Publication,(30):29~52.
    [46] Finch A, Parsons I, Mingard S. Biotites as indicators of fluo-rine fugacities in fluidsassociated with alkaline magmatism,South Greenland. Petrol,1995,36:1701~1728.
    [47] Foley S F and Peccerillo A. Potassic and ultrapotassicmagmas and their origin. L ithos.1992,28:181~185.
    [48] Fost er M D. Interpretat ion of th e composition of trioct ahedral m icas. U. S. Geol. SurveyProf. Paper,1960,354.
    [49] Frimmel et E H, Basei C, Gaucher C. Neoproterozoic geodynamic evolution of SW-Gondwana:a southern African perspective. Earth Sci,2011,100:323-354.
    [50] Frimmel, H.E. Configuration of Pan-African Orogenic Belts in Southwestern Africa. In:Gaucher, A.N., Sial, A.N., Halverson, G.P., and Frimmel, H.E, Neoproterozoic-Cambriantectonics, global change and evolution: A focus on Southwestern Gondwana.Developmentsin Precambrian Geology,2009,16,145~151.
    [51] Goscombe B, Gray D, Armstrong R A, et al. Event geochronology of the Pan-African KaokaBelt, Namibia. Precambrian Research Unit.2005,140,103~131.
    [52] Goscombeet, B.D., Gray, D. and Hand, M. Variation in Metamorphic Style along theNorthern Margin of the Damara Orogen, Namibia. Journal of Petrology.2004,45(6):1261~1295.
    [53] Gray D R, Foster D A, Goscombe B, et al.40Ar/39Ar thermochronology of the Pan-AfricanDamara Orogen, Namibia, with implications for tectonothermal and geodynamic evolution.Precambrian Research Unit,2006,150,49~72.
    [54] Griffin WL, Wang X, Jackson SE, et al. Zircon chemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos,2002,61:237~269.
    [55] Haack, U., Hoefs, J. and Gohn, E. Constraints on the origin of Damaran granites by Rb/Srand delta18O data. Contributions to Mineralogy and Petrology,1982,79,279~289.
    [56] Han B F,Wang S G,Jahn B M,Hong D W,Kagami H and Sun Y L. Depleted-mantlesource for Ulungur River A-type granites from North Xinjiang. China:Geochemistry andNd-Sr isotopic evidence and implications for Phanerozoic crustal growth. Chem. Geol.,1997,138:135~159.
    [57] Harris N B W., et a1. Geochemical characteristics of collision-zone magmatim. CollisionTectonics. Geol Soc Lond Spec Publ,1986,19:67~81.
    [58] Harris, C. The Oxygen Isotope Geochemistry of the Karoo and Etendeka Volcanic Provincesof Southern Africa. South African Journal of Geology.1995,98,126~139.
    [59] Hawkesworth C. J. and Marlow, A.G. Isotopic Evolution of the Damara Orogenic Belt. In:Miller, R. McG.(ed.), Evolution of the Damara Orogen of South West Africa/Namibia.Geological Society of South Africa, Special Publications,1983,11:397~408.
    [60] Henry, G. The sedimentary evolution of the Damara Sequence in the lower Khan River valley,Namibia.1992, PhD thesis, University of the Witwatersrand, Johannesburg, South Africa.
    [61] Henry, G., Clendenin, C.W., Stannistreet, I.G., Maiden, K.J. Multiple detachment model forthe early rifting stage of the Late Proterozoic Damara orogen in Namibia. Geology.1990,18,67~71.
    [62] Hoffmann, K. H. Lithostratigraphy and Facies of the Swakop Group of theSouthern DamaraBelt, Namibia. Special Publication of the Geological Society of SouthAfrica,1983,11,43~64.
    [63] Hoffmann, K. H., Hawkins, D. P., Isachsen, C. E.&Bowring, S. A. Precise U Pbzircon agesfor early Damaran magmatism in the Summas Mountains and Welwitschiainlier, northernDamara belt, Namibia. Communications Geological Survey of Namibia,1996,11,47~52.
    [64] Hoffmann, K.H., Condon, D.J., Bowring, S.A. and Crowley, J.L. U-Pb zircon date from theNeoproterzoic Ghaub Formation, Namibia: Constraints on Marinoan glaciations. Geology,2004,32,817~820.
    [65] Hoskin P W O and Schaltegger U. The compositions of zircon and igneous and metamorphicpetrogenesis. Reviews in Mineralogy and Geochemistry,2003,53:27~55.
    [66] Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization ofprotolith igneous zircon. J Metamorphic Geol,2000,18:423~439.
    [67] Hou Z Q, Gao Y F, Qu X M, Rui Z Y, Mo X X. Origin of adakitic intrusives generated duringmid-Miocene east-west extension in southern Tibet. Earth Planet,2004,220:139~155.
    [68] Hupper E,Stephen R and Sparks J. The Generation of Granitic Magmas by Intrusion ofBasalt into Continental Crust.1988,29(3):599~624.
    [69] Huppert E, Stephen R and Sparks J. The Generation of Granitic Magmas by Intrusion ofBasalt into Continental Crust.1998,29(3):599~624.
    [70] Jackson S E, Pearson N J, Griffin W L and Belousova E A. The application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to in suit U-Pb zircongeochronology. Chemical Geology,2004,211:47~69.
    [71] Jacob R E. Granite genesis and associated mineralisation in part of the Central Damara Belt.Verwoerd, W J. Mineralisation in Metamorphic Terranes. Geological Society of South AfricaSpecial Publication,1978,4:417~432.
    [72] Jacob, R. E. The radioactive mineralisation in part of the central Damara Belt, South WestAfrica, and its possible origin.1974b. Report PIN-234(BR), Pelindaba, Atomic Energy Board,South Africa.
    [73] Jacob, R.E. Geology and metamorphic petrology of part of the Damara orogen along thelower Swakop river, South West Africa.1974a. Bulletin17Chamber of Mines, PrecambrianResearch Unit, University of Cape Town.
    [74] Jacob, R.E. Granite genesis and associated mineralisation in part of the Central Damara Belt.In: Verwoerd, W.J.(Ed.), Mineralisation in Metamorphic Terranes. Geological Society ofSouth Africa Special Publication,1978,4,417~432.
    [75] Jacob, R.E., Snowden, P.A. and Bunting, F.J.L. Geology and structural development of theTumas basement dome and its cover rocks. In: Miller, R. McG,(ed.), Evolution of theDamara Orogen of South West Africa/Namibia: Geological Society of South Africa, SpecialPublication,1983,11,157~172.
    [76] Jahn BM,Wu FY,Lo CH,et al. Crust-mantle interaction induced by deep subduction of thecontinental crust:Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex,central China. Chemical Geology,1999,157:119~146.
    [77] Jung, S. and Mezger, K. Petrology of basement-dominated terranes: I regional metamorphicP-T-t path from U-Pb monazite and Sm-Nd garnet geochronology (Central Damara Orogen,Namibia). Chemical Geology,2003,198,223~247.
    [78] Jung, S. Isotope equilibrium/disequilibrium in granites, metasedimentary rocks andmigmatites(Damara Orogen, Namibia)a consequence of polymetamorphism and melting.Science Direct,2005,84,168~184.
    [79] Jung, S. Mezger, K and Hoernes, S. Petrology and geochemistry of syn-to post-collisionalmeataluminous A-type granites-a major and trace element and Nd-Sr-Pb-O isotope studyfrom the Proterozoic Damara Belt, Namibia. Lithos,1998,45,147~175.
    [80] Jung, S., Hoffer, E. and Hoernes, S. Neo-proterozoic rift-related syneites (Northern DamaraBelt, Namibia): Geochemical and Nd-Sr-Pb-O isotope constraints for mantle sources andpetrogenesis. Lithos,2007,96,415~435.
    [81] Kasch, K.W. Continental collision, suture progradation and thermal relaxation: A platetectonic model for the Damara Orogen in central Namibia. In: Miller, R. McG.(Ed.),Evolution of the Damara Orogen of South West Africa/Namibia. Geol. Soc. S. Afr. SpecialPublication,1983b,11,423~429.
    [82] Kasch, K.W. Folding and thrust tectonics in the south-eastern portion of the Damara Orogenaround Omitara, Namibia. In: Miller, R. McG.(Ed.), Evolution of the Damara Orogen ofSouth West Africa/Namibia. Geol. Soc. S. Afr. Special Publication,1983a,11,175~184.
    [83] Keay S, Collins W J and McCulloch M T. A three-component mixing model for granitoidgenesis: Lachlan Fold Belt, eastern Australia. Geology,1997,25:307~310.
    [84] Kinnaird J A, Nex P A M. A review of geological controls on uranium mineralization insheeted leucogranites within the Damaran Orogen, Namibia. Applied Earth Science,2007,116(2):68~85.
    [85] Kisters, A.F.M., Jordaan, L.S., and Neumaier, K. Thrust-related dome structures in theKaribib district and the origin of orthogonal fabric domains in the south Central Zone of thePan-African Damara belt, Namibia. Precambrian Research,2004,133,283~303.
    [86] K rner A, Stern R J. Pan-African Orogeny. In Encyclopedia of Geology. Elsevier,2004,1,1~12.
    [87] Koschek G. Origin and significance of the SEM cathodoluminescence from zircon. Journalof Microscopy.1993,171:223~232.
    [88] Kr ner, A. Dome structures and basement reactivation in the Pan African Damarabelt ofNamibia/South West Africa. In: Kr ner, A.&Greiling, R. O.(Eds.) PrecambrianTectonicsIllustrated. Stuttgart, Germany: Naegele and Obermiller,1984,191~206.
    [89] Kr ner, A., Retief, E.A., Compston, W., Jacob, R.E., Burger, A.J. Single-age andconventional zircon dating of remobilised basement gneisses in the central Damara belt ofNamibia. South African Journal of Geology,1991,94,379~387.
    [90] Kukla, C. Kramm, U. Kukla P. A. and Okrusch, M. U-Pb monazite data relating tometamorphism and granite intrusion in the northwestern Khomas Trough, Damara Orogen,central Namibia, Commun. Geol. Surv. Namibia,1991,7,49~54.
    [91] Kusky TM, Abdelsalam M, Stern RJ, and Tucker RD(eds). Evolution of the East Africanand related orogens, and the assembly of Gondwana. Precambrian Res.2003,123:82~85.
    [92] Lalonde A, Bernard P. Composition and color of biotite from granites; two useful propertiesin characterization of plutonic suites from the Hepburn internal zone of Wopmay Orogen,Northwest Territories. Canadian Mineralogist,1993,31(1):203~217.
    [93] Li X H, McCulloch M T. Secular variation in the Nd isotopic composition ofNeoproterozoic sediments from the southern margin of Yangze Block: Evidence for aProterozoic continental collision in southease China. Precambrian Research,1996,76:67~76.
    [94] Liegeois J P. Some words on the post-collisional magmatism. Lithos,1998,45,15~17.
    [95] Liu Y.S., Hu Z.C., Gao S., Günther D., Xu J., Gao C.G. and Chen H.H. In situ analysis ofmajor and trace elements of anhydrous minerals by LA-ICP-MS without applying an internalstandard. Chem. Geol,2008,257(1-2):34~43.
    [96] Loiselle M C and Wones D R. Characteristics and origin of anorogenic granites. Geol. Soc.Am., Abstr. Prog.1979,11(7),468.
    [97] London, D. The application of experimental petrology to thegenesis and crystallisation ofgranitic pegmatites. Canadian Min-eralogist,1992,30,499~540.
    [98] Longridge, L., Gibson, R. L., Kinnaird J. A. and Armstrong R. A. Timing of deformation andgranite emplacement in the Central Zone of the Damara Orogen, Namibia.2008, School ofGeosciences, University of the Witwatersrand Johannesburg(Unpublished report).
    [99] Ludwig K R. User's Manual for Isoplot3.0: A Geochronological Tolkit for Microsoft Excel.Berkeley Geochronology Center. Special pubication,2003,4:1~71.
    [100] Maitre, R. W. A Classification of Igneous Rocks and Glossary of Terms: Recommendationsof the International Union of Geological Sciences, Subcommission on the Systematics ofIgneous Rocks. Oxford: Blackwell,1998,193.
    [101] Maniar P D and Piccoli P M. Tectonic discrimination of granitoids. GSA Bull.,1989,101(5):635~643.
    [102] Marlow A G. Geology and Rb-Sr geochronology of mineralised and radioactive granites andalaskites, Namibia. Miller R M. Evolution of the Damara Orogen of South WestAfrica/Namibia. Geological Society of South Africa, Special Publication,1983,11:289~298.
    [103] Marlow, A.G. Geology and Rb-Sr geochronology of mineralised and radioactive granitesand alaskites, Namibia. In: Miller, R. McG., ed., Evolution of the Damara Orogen of SouthWest Africa/Namibia. Geological Society of South Africa, Special Publication.1981,11,289~515.
    [104] Martin, H. and Porada, H. The intracratonic branch of the Damaran Orogen in Namibia.Discussion of geodynamic models. Precambrian Research,1977,5,311~338.
    [105] Masberg, H. P., Hoffer, E. and Hoernes, S. Microfabrics indicating granulite-faciesmetamorphism in the low-pressure central Damara Orogen, Namibia. Precambrian Research,1992,55,243~257.
    [106] Masberg, H.P. Garnet growth in the medium pressure granulite-facies metapelites from thecentral Damara Orogen: igneous versus metamorphic history. Communications of theGeological Survey of Namibia,2000,12,115~124.
    [107] McDonough W. F. and Sun S. S. The composition of the Earth. Chemical Geology,1995.120:223~253.
    [108] Mestres-Ridge, D. An investigation into the controls on the distribution of betafite in the SHarea, R ssing Uranium Mine, Namibia.1992, M.Sc Dissertation, University of St. Andrews.
    [109] Mezger K, Krogstad EJ. Interpretation of discordant U-Pb zircon ages: An evaluation.Metamorphic Geol,1997,15:127~140.
    [110] Miller R M. The Geology of Namibia, Vols. I and II. Geological Survey of NamibiaSpecial Publication.2008.
    [111] Miller, R. McG. The Okahandja Lineament, a fundamental tectonic boundary in the DamaraOrogen of South West Africa/Namibia. Transactions of the Geological Society of SouthAfrica,1983a.82,349~361.
    [112] Miller, R. McG. The Pan-African Damara Orogen of South West Africa/Namibia. In: Miller,R. McG.(ed.), Evolution of the Damara Orogen of South West Africa/Namibia. GeologicalSociety of South Africa, Special Publications,1983b.11,431~515.
    [113] Miller, R.M., Frimmel, H.E. and Will, T.M. Geodynamic synthesis of the Damara OrogenSensu Lato. In: Gaucher, C., Sial, A.N., Halverson, G.P. and Frimmel, H.E.(Eds.),Neoproterozoic-cambrian tectonics, global ghange and evolution: a focus on southwesternGondwana,2009,16,231~235.
    [114] Mouillac, J.L., Valois, J-P. and Walgenwitz, F. The Goanikontes Uranium Occurence4inSouth West Africa/Namibia. In Anhaeusser, C.R. and Maske, S.(Eds.)(1986). MineralDeposits of Southern Africa. Volume II.1833~1843.
    [115] Muir R J, Weaver S D, Bradshaw J D, Eby G N and Evans J A. The Cretaceous separationpoint batholith, NewZealand granitiod magmas formed by melting of mafic lithosphere.Journal of Geological Society,1995,152:689~705.
    [116] Nabelek PL,Bartlett CD.Petrologic and geochemical links between the post-collisionalProterozoic Harney Peak leucogranite,South Dakota,USA,and its source rocks. Lithos,1998,45:71~85.
    [117] Nash, C.R. Metamorphic petrology of the SJ area, Swakopmund District, South West Africa.Bulletin of the Precambrian Research,1971,9:77.
    [118] Nelson D R, M cCulloch M T and Sun S S. The origins ofultrapotassic rocks as inferredfrom Sr, Nd and Pb isotopes. Geoch im Cosm och in Acta,1989,50:231~245.
    [119] Nex, P. A. M, Kinnaird, J. A. and Oliver, G. J. H. Petrology, geochemistry andmineralisation of post-collisional magmatism around Goanikontes, southern Central Zone,Damara Orogen, Namibia. Journal of African Earth Sciences,2001a,33:481~502.
    [120] Nex, P. A. M., Oliver, G. J. H. and Kinnaird, J. A. Spinel-bearing assemblages and P–T–tevolution of the Central Zone of the Damara Orogen, Namibia. Journal of African EarthSciences,2001b,32,471~489.
    [121] Nex, P.A.M and Kinnaird, J.A. An investigation of the proportions of betafite, urnainite andsecondary uranium minerals in SJ pit samples(Unpublished),2005,1~35.
    [122] Nex, P.A.M. Tectono-metamorphic setting and evolution of granitic sheets in theGoanikontes area, Namibia.1997, Ph.D. Thesis(Unpublished), National University ofIreland.
    [123] Nex, P.A.M., Kinnaird J.A., Herd D. A. The occurrence, mineralogy and chemistry ofbetafite and pyrochlore from sheeted leucogranites of the R ssing area, Namibia:implications for the composition of Ceramics for radioactive waste disposal. EconomicGeology Research Institute, School of Geosciences University of the Witwatersrand,2003,374,1~24.
    [124] Norrish K, Hutton J T. An accurate X-ray spectrographic method for the analysis of a rangeof geological samples. Geochimica et Cosmochimica Acta,1969,33(4):431~453.
    [125] Oliver, G. J. H. Mid-crustal detachment and domes in the central zone of the DamaranOrogen, Namibia. Journal of African Earth Sciences,1994,19,331~344.
    [126] Oliver, G. J.H. and Kinnaird, J. A. The R ssing SJ Dome, Central Zone, Damara Belt,Namibia: an example of mid-crustal extensional ramping, Communications of theGeological Survey of Namibia,1996,11,53~64.
    [127] Oliver, G.J.H. The Central Zone of the Damara Orogen,Namibia, as a deep metamorphiccore complex. Communicationsof the Geological Survey of Namibi,1995,10,33~41.
    [128] Osterhus, L. and Jung, S. Anatexis of mafic and felsic lower crust; geochemistry and Nd, Srand Pb isotopes of late-orogenic granodiorites and leucogranites (Damara Orogen, Namibia).in European Geosciences Union general assembly2010, Anonymous, Geophysical ResearchAbstracts,12.
    [129] Owen, G. Geology of the Kranzberg Syncline and emplacement controls of the Usakospegmatite fluid, Damara Belt, central Namibia.2010, unpublished MSc thesis. University ofStellenbosch.
    [130] Patino Douce A E, Johnson A D. Phase equilibria and melting productivity in the politicsystem: Implication for the origin of peraluminous granitoids and aluminous guanulites.Contributions to Mineralogy and petrology,1991,107:20~218.
    [131] Pearce J A, N B W Harris, A G Tindle. Trace element discrimination diagrams for thetectonic interpretation of granitic rocks. Petrology,1984,54(4):956~983.
    [132] Peccerillo R, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from theKastamonu area, Northern Turkey. Contrib. Mineral Petrol.,1976,58:63~81.
    [133] Petford N, Cruden A R McCaffrey K J W and Vigneresse J L. Granite magma formation,transport and emplacement in the Earth's crust. Nature,2000,408:669~673.
    [134] Phinney R. A., et al.(eds). A National Program for research in continental dynamics. theIRIS Consortium,Arlington,USA,1989
    [135] Pitcher W S and Bussell M A. Structural control of batholithic emplacement in Peru: areview. Journal of the Geological Society,1977,133(3):249~255.
    [136] Pitcher W S. Granite type and tectonic environment. In: Hsu K ed. Mountain buildingprocesses. New York: Academic Press,1983,19~40.
    [137] Pitcher W S. Granites and yet more granites forty years on. Geology Rund,1987,76(1):51~79.
    [138] Pitcher.WS. The nature and origin of granite. Chapman&Hall, London:1997,280~298.
    [139] Poli, L. C.&Oliver, G. J. H. Constrictional deformation in the Central Zone of theDamaraOrogen Namibia. Journal of African Earth Sciences,2001,33,303~312.
    [140] Porada, H. Pan-African rifting and orogenesis in southern to equatorial Africa and easternBrazil. Precambrian Research Unit,1989,44,103~136.
    [141] Prave, A.R. Tale of three cratons: Tectonostratigraphic anatomy of the Damara Orogen innorthwestern Namibia and the assembly of Gondwana. Geology,1996,24,1115~1118.
    [142] Qu X M, Hou Z Q, Li Y G. Melt components derived from a subducted slab in late orogenicore-bearing porphyries in the Gangdese copper belt, southern Tibetan Plateau. Lithos,2004,74:131~148.
    [143] Ramsay J G. Shear zone geometry: A review. Struct. Geol.1980,2:83~99.
    [144] Rapp R P,Watson EB. Dehydration melting of metabasalt at8-32kpar: implications forcontinental growth and crust mantle recycling. Journal of Petrology,1995,36:891~931.
    [145] Read H H.Granites and granites. Gel. Soc. Am. Mem.1948,28:1~19.
    [146] Rickwood P C. Boundary lines within petrologic diagrams which use oxides of minorelements. lithos,1989,22:247~263.
    [147] Roesener, H., Schreuder, C.P. Uranium In: The Mineral Resources of Namibia. Ministry ofMines and Energy, Geological Survey Namibia,1992,7.1-1~7.1-62.
    [148] Rogers J, Santosh M. Configuration of Columbia, a Mesoproterozoic Supercontinent.Gondwana Res,2002,5:5~22
    [149] Rogers N W, James D and Kelley S P. The generation ofpotassic lavas from the eastern Virunga Province. Petrol,1998,39:1223~1247.
    [150] Sawyer, E.W. Damaran structural and metamorphic geology of an area south-east of WalvisBay, South West Africa/Namibia. Geological Survey of South West Africa/Namibia,1981,7:94.
    [151] Sibson R H. Fault rccks and fault mechanism. Geol Soc Londoa,1977,133:191~213.
    [152] Slama J,Kosler J, Condon D J, Crowley J L er al. Plesovice zircon-Anew naturalreference material for U-Pb and Hf isotopic microanalysis. Chemical Geology,2008,249:1~35.
    [153] Smith D A M. The geology of the area around the Khan and Swakop rivers in South WestAfrica. Mem geol Surv S Afr, SW Afr Ser,1965,3:113.
    [154] Smith J V. Feldspar Minerals. Springer Verlag,1974,1:318.
    [155] Sparks R S J and Marshall L A. Thermal and mechanical constraints on mixing betweenmafic and silicic magmas. J.Volcanol. Geotherm. Res,1986,29:99~124.
    [156] Stanistreet, I. G., Kukla, P. A.&Henry, G. Sedimentary basinal responses to aLatePrecambrian Wilson Cycle: the Damara Orogen and Nama Foreland, Namibia.Journal ofAfrican Earth Sciences,1991,13,141~156.
    [157] Stephens W E, Sial A N, Ferreira V P. Granites and associated mineralization. Lithos,1999,46(1):326~346.
    [158] Steven, N. M. A study of epigenetic mineralization in the Central Zone of the DamaraOrogen, Namibia, with special reference to gold, tungsten, tin and rare earth elements.Memoirs of the Geological Survey of Namibia,1993,16:166.
    [159] Streckeisen, A. And Le Maitre, R.W. A chemical approximation to the modal QAPFclassification of the igneous rocks. Neues Jahrbuch fur Mineralogie Abhandlung,1979,136,169~206.
    [160] Sun S S, McDonough W F. Chemical and isotopic systematic of oceanic basalts:Implications for mantle composition and processes. Saunders A D and Norry M J.Magmatism in Oceanic Basins. Geological Society London Special Publications,1989,42(1):313~345.
    [161] Sylvester P J. Post-collisional strongly peraluminous granites. Lithos,1998,45:29~44.
    [162] Tack, L. and Bowden, P. Post-collisional granite magmatism in the central Damaran (Pan-African). African Earth Sciences,1999,28,653~674.
    [163] Takagi, T. and Tsukimura, K. Genesis of oxidized and reduced-type granites. EconomicGeology,1997,92,81~86.
    [164] Taylor S. R., Mclenann S. M. The Continetal Crust: Its Composition and Evolution. Oxford:Blackwell Scientific Publication,1985.1~32.
    [165] Tayor RP.Strong DF eds.Recent Advances in the Geology og Granite of Granite-RelatedMineral Deposits.1988.
    [166] Thiéblemont D,Tegyey M.Une discrimination géochimique desroches différenciéestémoin de la diversité d’origine et de situation tectonique des magmas calco-alcalins[J].Comptes Rendusde l’Académiedes Sciences Paris,1994,319:87~94.
    [167] Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis ofamphibole to granulite facies zircon: Geochronology of the Ivren Zone (Southern Alps).Contrib Mineral Petrol,1999,134:380~404.
    [168] Vila M,Yin C,Enriaue Y et al. Telescoping of three distinct magmatic suites in anorogenic setting: Generation of Hercvnian igneous rocks of the Albera Massif(Easternpyrenees). Lithos,2005,83:97~127
    [169] Ward, R.G., Stevens, G. and Kisters, A.F.M. Fluid and deformation induced partialmeltingand melt volumes in low-temperature granulite-facies metasediments, Damara Belt,Namibia.Lithos,2008,105,253~271.
    [170] Whalen JB, Currie KL, Chappell BW. A-type granites: Geochemical characteristics,discrimination and petrogenesis. Contributions to Mineralogy and Petrology,1987,95:407~419.
    [171] Wones D R, and Eugster H P. Stability of biolite: Experiment, Theory, and Application.Amer. Minr.1996,50.1228
    [172] Wulff, K., Dziggel, A., Kolb, J., Vennemann, T., B ttcher, M.E. and Meyer, F.M. Origin ofmineralizing fluids of the sediment-hosted Navachab Gold Mine, Namibia: constraints fromstable (O, H, C, S) isotopes. Economic Geology,2010,105,285~302.
    [173] Yang J H, Chung S L, Wilde S A, et al. Petrogenesis of post-orogenic syenites in theSuluOrogenic Belt, East China: Geochronology, geochemical and Nd-Sr isotopic evidence.Chemical Geology,2005,214:99~125.
    [174] Zartman R E, and Doe B R. Plumbotectonics-the model. Tectonophysics,1981,75:135~162.
    [175] Zhai, M.G., Yang, J.H. and Liu, W.J. Large clusters of gold deposits and large-scalemetallogenesis in the Jiaodong Peninsula, Eastern China. Science in China Series D-EarthSciences,2001,44(8):758~768.
    [176] Zhang, Y.B., Wu, F.Y., Li, H.M. et al. Single grain zircon U-Pb ages of the Huangnilinggranite in Jilin province. Acta Petrologica Sinica,2002,18(4):475~481.
    [177] Zhao G C, Sun M, Wilde, S. Archean to Paleoproterozoic evolution of the North ChinaCraton:key issues revisited. Journal of Asian Earth Sciences,2005,24:177~202.
    [178]陈道公,李彬贤,夏群科,等.变质岩中锆石U-Pb计时问题评述―兼论大别造山带锆石定年.岩石学报,2001,17(1):129~138.
    [179]陈金勇,范洪海,陈东欢等.纳米比亚欢乐谷地区白岗岩型铀矿床中铀矿物特征研究.2013,矿物岩石地球化学通报(待刊)
    [180]陈衍景, PIRAJNO, F.,赖勇,李超.胶东矿集区大规模成矿时间和构造环境.岩石学报,2004c,20(4):907~922.
    [181]陈衍景,肖文交,张进江.成矿系统:地球动力学的有效探针.中国地质,2008,35(6):1059~1073.
    [182]陈衍景.造山型矿床、成矿模式及找矿潜力.中国地质,2006,33(6):1181~1196.
    [183]陈衍景.中国西北地区中亚型造山成矿作用的研究意义和进展.高校地质学报,6(1):17~22.
    [184]邓晋福,赵海玲,莫宣学,等.中国大陆根-柱构造—大陆动力学的钥匙.地质出版社,1996.
    [185]董申保.近代花岗岩的研究回顾.高校地质学报.1995,1(2):1~12.
    [186]付建明,马昌前,谢才富,等.湖南金鸡岭铝质A型花岗岩的厘定及其构造分析.地球化学,2005,34(3):215~226.
    [187]高山,骆庭川,张本仁,等.中国东部地壳的结构和组成.中国科学(D辑),1999,29(3):204~213
    [188]龚日祥,卢成忠.浙西晚中生代富碱高钾花岗岩类的岩石地球化学特征及构造意义.岩石学报,2008,24(10):2343~2351.
    [189]韩宝福.后碰撞花岗岩类的多样性及其构造环境判别的复杂性.地学前缘.2007,14(3):64~72.
    [190]韩振哲.小兴安岭东南段早中生代花岗岩类时空演化特征与多金属成矿.中国地质大学(北京),2011.
    [191]洪大卫,王式光,谢锡林.兴蒙造山带εNd(t)值花岗岩的成因和大陆地壳生长.地学前缘,2000,7(2):441~456.
    [192]洪大卫,王式光.花岗岩地球动力学.见肖庆辉等主编.当前地学研究的前沿领域和发展动向.地质矿产部信息研究院,1993,321~326.
    [193]洪大卫,王式洸,韩宝福,靳满元.碱性花岗岩的构造环境分类及其鉴别标志.中国科学(B辑),1995,25:418~426.
    [194]洪大卫,王涛,童英.中国花岗岩概述.地质评论,2007,53(增刊):9~16.
    [195]洪大卫.花岗岩类型和成矿作用”国际讨论会简介.矿床地质,1998,17(4):377~378.
    [196]洪大卫.花岗岩研究的最新进展及发展趋势.地学前缘,1994,1(1-2):79~85
    [197]洪大卫.花岗岩研究的最新进展及发展趋势.地学前缘,1994,1(1/2):79~85.
    [198]侯增谦,高永丰,孟祥金,等.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报,2004,20(2):239~248.
    [199]赖绍聪,张国伟,裴先治,等.南秦岭康县一琵琶寺一南坪构造混杂带蛇绿岩与洋岛火山岩地球化学及其大地构造意义.中国科学D辑,2003,33(1):10~19.
    [200]雷敏.秦岭造山带东部花岗岩成因及其与造山带构造演化的关系.北京:中国地质科学院,2010.
    [201]李昌年.火成岩微量元素岩石学.1992,武汉:中国地质大学出版社.
    [202]李鸿莉,毕献武,胡瑞忠,等.芙蓉锡矿骑田岭花岗岩黑云母矿物化学组成及其对锡成矿的指示意义.岩石学报,2007,23(10):2605~2614.
    [203]李献华. Sm-Nd模式年龄和等时线年龄的适用性与局限性.地质科学,1996,31(1):97~103.
    [204]林文蔚,彭丽君.电子探针分析数据计算角闪石、黑云母中的Fe3+、Fe2+.长春地质学院学报,1994,24(2):155~162.
    [205]刘宝山,马永强,吕军,等.伊春地区上游新村晚三叠世二长花岗岩体成因及就位机制.地质与资源,2005,14(3):170~191.
    [206]刘昌实,贺伯处.赣东南含黄玉岩浆岩成因雏议.南京大学学报(地球科学),(3):220~230.
    [207]刘红杰,陈衍景,毛世东,等.西秦岭阳山金矿带花岗斑岩元素及Sr-Nd-Pb同位素地球化学.岩石学报,2008,24(05):1101~1111.
    [208]刘建峰.小兴安岭东部早古生代花岗岩地球化学特征及其构造意义.吉林大学,2006.
    [209]刘振声,王洁明.青藏高原南部花岗岩地质地球化学特征.1994,成都:四川科技出版社.
    [210]陆松年,杨春亮,李怀坤等.华北古大陆和哥伦比亚超大陆.地学前缘,2002,9(4):225~233.
    [211]吕志成,段国正,董广华.大兴安岭中南段燕山期三类不同成矿花岗岩中黑云母的化学成分特征及其成岩成矿意义.矿物学报,2003,23(2):177~184.
    [212]马昌前,杨坤光,唐仲华,等.花岗岩类岩浆动力学:理论方法及鄂东花岗岩类例析.1994,武汉:中国地质大学出版社.
    [213]莫宣学,董国臣,赵志丹,等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报,2006,11(3):281~290.
    [214]莫宣学,罗照华,肖庆辉.花岗岩类岩石中岩浆混合作用的识别与研究方法.见:肖庆辉,邓晋福,马大铨.花岗岩研究思维与方法.2002,北京:地质出版社.
    [215]濮巍,赵葵东,凌洪飞等.新一代高精度高灵敏度的表面热电离质谱仪(Trition TI)的Nd同位素测定.地球学报,2004,25(2):271~274.
    [216]濮巍,高剑峰,赵葵东等.利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd的方法.南京大学学报(自然科学版),2005,41(4):445~450.
    [217]曲晓明,王鹤年.郭家岭岩体壳慢岩浆混合作用与侵位机制的动力学研究.地质科学,1997,32(4):445~453.
    [218]沈渭洲,凌洪飞,李武显,等.中国东南部花岗岩类Nd-Sr同位素研究.高校地质学报,1999,5(1):22~32.
    [219]宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,2002,48(增刊):6~30..
    [220]童英.阿尔泰造山带晚古生代花岗岩年代学、成因及其地质意义.中国地质科学院;2006.
    [221]汪雄武,王晓地.花岗岩成矿的几个判别标志.岩石矿物学杂志,2002,21(2):119~130.
    [222]王德滋,董良树.花岗岩构造岩浆组合.高校地质学报,2007,13(3):362~370.
    [223]王德滋,周金成.我国花岗岩研究的回顾与展望.岩石学报,1999,15(2):161~169.
    [224]王德滋,周新民,徐夕生,等.微粒花岗岩类包体的成因.桂林冶金地质学院学报,1992,12(3):235~241.
    [225]王德滋.壳慢作用与花岗岩成因—以中国东南沿海为例.高校地质学报,1999,5(3):241~250.
    [226]王强,赵振华,熊小林,等.底侵玄武质下地壳的熔融:来自安徽沙溪埃达克质富钠石英闪长玢岩的证据.地球化学,2001,30:353~361.
    [227]王涛.花岗岩混合成因研究及大陆动力学意义.岩石学报,2000,16(2):161~168.
    [228]王涛.花岗岩研究与大陆动力学.地学前缘,2000,7(增):137~146.
    [229]王涛.秦岭造山带核部花岗岩体形成、改造作用及构造动力学.1998,西安:西北大学.
    [230]王元龙,王焰,张旗,等.铜陵地区中生代中酸性侵入岩的地球化学特征及其成矿地球动力学意义.岩石学报,2004,20(2):325~338.
    [231]魏菊英,王关玉.同位素地球化学.1998,北京:地质出版社.
    [232]吴福元,江博明,林强.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义.科学通报,1997,42(20):2188~2192.
    [233]吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题.岩石学报,2007,23(6):1217~1238.
    [234]吴福元,孙德有,等.东北地区显生宙花岗岩的成因与地壳增生.岩石学报,1999,15(02):181~187.
    [235]吴锁平.柴北缘古生代花岗岩类成因及其造山响应.中国地质科学院;2008.
    [236]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,2004,49(16):1589~1604.
    [237]肖成东,张忠良,赵利青.东蒙地区燕山期花岗岩Nd、Sr、Pb同位素及其岩石成因.中国地质,2004,31(1):57~63.
    [238]肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法.北京:地质出版社.2002.
    [239]肖庆辉,邱瑞照,邢作云,等.花岗岩成因研究前沿认识.地质论评,2007,53:17~26.
    [240]熊小林,石满金,陈繁荣.浅成-次火山岩黑云母Cu,Au成矿示踪意义.矿床地质,2001,21(2):107~111.
    [241]徐克勤,胡受奚,孙明志,等.论花岗岩的成因系列—以华南中生代花岗岩为例.地质学报,1983,(3):107~118.
    [242]杨学明,杨晓勇,陈双喜.岩石地球化学.2000,合肥:中国科学技术大学出版社.
    [243]袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析.科学通报,2003,48(14):1511~1520.
    [244]张国伟,董云鹏,姚安平.关于中国大陆动力学与造山带研究的几点思考.中国地质2002,29(1):7~13.
    [245]张宏飞,Harris N,Parrish R,张利等.北喜马拉雅淡色花岗岩地球化学:区域对比、岩石成因及其构造意义.地球科学—中国地质大学学报,2005,30(3):275~288.
    [246]张旗,潘国强,李承东,等.花岗岩构造环境问题-关于花岗岩研究的思考之三.岩石学报,2007c,23(11):2683~2698.
    [247]张旗,潘国强,李承东,等.花岗岩混合问题:与玄武岩对比的启示-关于花岗岩研究的思考之一.岩石学报,2007a,23(5):1141~1152.
    [248]张旗,潘国强,李承东,等.花岗岩结晶分离作用问题-关于花岗岩研究的思考之二.岩石学报,2007b,23(6):1239~1251.
    [249]张旗,王焰,钱青,杨进辉,等.中国东部燕山期埃达克岩的特征及其构造成矿意义.岩石学报,2001,17(2):236~224.
    [250]张旗,王元龙,金惟俊,等.造山前、造山和造山后花岗岩的识别.地质通报,2008,27(1):1~18.
    [251]张遵忠,顾连兴,吴昌志,等.东天山尾亚杂岩体:同源还是异源?—来自黑云母的证据.地球化学,2005,34(4):328~338.
    [252]赵国春,孙敏,Wilde S A,早中元古代Columbia超大陆研究进展.科学通报,2002,47(18):1361~1364.
    [253]赵振华,白正华,熊小林,等.中国新疆北部富碱火成岩及其成矿作用.2006,地质出版社.
    [254]中国地质调查局发展研究中心.应对全球化:全球矿产资源信息系统数据库建设(之七)利比里亚、莫桑比克、纳米比亚卷,2007.
    [255]周殉若,吴克隆.漳州I-A型花岗岩.1994,北京:科学出版社.
    [256]周作侠,赵瑞,范宏瑞.河南省洛宁县金家湾金矿简介.地质科学,1999,1(1):69~75.
    [257]朱炳泉.地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化.1998,北京:科学出版社.
    [258]朱茂旭,张庭川,张宏飞.南秦岭东江口岩体闪长质包体地球化学特征及成因探讨.矿物岩石,1997,17(2):28~34.
    [259]凌洪飞.论花岗岩型铀矿床热液来源—来自氧逸度条件的制约.地质论评,2011,57(2):193~206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700