用户名: 密码: 验证码:
高效液相色谱固定相单分散氧化镁微球的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
色谱柱是色谱分离分析的核心,而色谱固定相的研究则是各种高效液相色谱赖以建立和发展的基础,因此研制、开发新型色谱固定相便成为色谱技术中一个长久不衰的研究课题。
     通过喷雾-干燥技术合成出了不同Mg/Al比的氧化物,利用线性溶剂化能关系考察了这些Mg/Al氧化物的色谱保留性质,发现相对于Al_2O_3、Mg/Al=0.1的氧化物,Mg/Al=5、10的氧化物和MgO有利于溶质保留值增加的贡献项不仅包括偶极/极化项、氢键供体酸性项和氢键受体碱度项,且包括分子体积项。经过对文献中不同色谱固定相线性溶剂化能回归常数的分析,建立了一种用来关联溶质在Mg/Al=5、10的氧化物及MgO上容量因子对数值与常用正相、反相柱上容量因子对数值间的新关系。
     系统考察了不同反应条件下,利用K_2CO_3和Mg(NO_3)_2溶液共沉淀反应制备氧化镁前驱体水合碳酸镁的变化规律。发现在较低的温度和pH值条件下,产物容易生成针状的MgCO_3·χH_2O,而在较高的温度和pH值条件下,产物容易生成片状或由片状颗粒自组装而成具有规则形状的Mg_5(CO_3)_4(OH)_2·4H_2O颗粒。同时深入研究了Mg_5(CO_3)_4(OH)_2·4H_2O微球的生成过程,发现当K_2CO_3和Mg(NO_3)_2溶液迅速混合后,所得产物容易生成由细小粒子组成的块状(MgCO_3)_(0.8)((Mg(OH)_2)_(0.2)·1.3H_2O颗粒;随着反应的进行,这些细小颗粒会逐步组装成针状的MgCO_3·χH_2O或其它形貌的颗粒,而后者会进一步地转变为类球形的Mg_5(CO_3)_4(OH)_2·4H_2O颗粒。
     在以上研究的基础上,发展了一种制备单分散氧化镁微球的新方法—晶种诱导共沉淀法,并发现氧化镁微球前驱体的形貌极大地依赖于Mg_5(CO_3)_4(OH)_2·4H_2O品种加入的顺序和量,磷酸盐加入的种类、量和顺序以及反应溶液的陈化时间。通过对氧化镁微球色谱性能的评价,发现相对于商品硅胶固定相,不同类型的碱性化合物和多环芳烃化合物在氧化镁微球上表现出较好的分离效果。
The core of chromatography for the separation and analysis is based on the chromatographic column, whereas the development of all kinds of high-performance liquid chromatography modes is dependent on the stationary phases. Therefore, the development and exploitation of new types of stationary phases is a never-gone research topic in the chromatographic field.
    The chromatographic retention behaviors of the Mg/Al oxides with various Mg/Al ratios obtained by spray dried techniques, have been investigated by linear solvation energy relationships. The results demonstrate that in comparison with the contribution of these characteristic interactions for the increase of solutes' retention on Al_2O_3 and the oxide of Mg/Al=0.1, the ones for the increase of solutes' retention on the oxides of Mg/Al=5、10 and MgO, include not only dipolarity/polarizability, the solute hydrogen bond donating and accepting abilities, but also the intrinsic molar volume. By analysis of the regression constants on various normal-phase (NP) and reversed-phase (RP) columns reported in the literature, a new model has been developed to correlate the solute logarithmic retention factors on Mg/Al = 5, 10 and MgO columns with the data of NP and RP columns.
    The changes of MgO precursors, magnesium carbonate hydrates, obtained via the precipitation of K_2CO_3 and Mg(NO_3)_2 solutions with the variation of reaction conditions, have been systemically investigated. The results indicate that at lower temperatures and lower pH values, magnesium carbonate hydrates are prone to display needlelike morphology; whereas at higher temperatures and higher pH values, the crystallites tend to assemble into sheetlike particles or the regular Mg_5(CO_3)_4(OH)_2·4H_2O particles assembled by sheetlike structures. The shape evolution of spherical Mg_5(CO_3)_4(OH)_2·4H_2O has also been deeply studied, and the results illustrate that the formation of spherical particles are via a complex process, in which the agglomerates (MgCO_3)_(0.8) (Mg(OH)_2)_(0.2)·1.3H_2O built by many fine grains are first produced after the "burst" mixture of K_2CO_3 and solutions. Then the fine grains tend to assemble into needlelike or other similar particles, and the latter will further transfer into spherical Mg_5(CO_3)_4(OH)_2·4H_2O particles.
    On the basis of above investigation, a new method, seed-induced precipitation, has been developed for synthesis of monodisperse MgO microspheres, and the reaction parameters, such as the sequence and amount of introduction of Mg_5(CO_3)_4(OH)_2·4H_2O seeds, the kinds, amount and sequence of introduction of phosphate salts, and aging time of reaction solution, have great effects on the morphologies of MgO precursors. The chromatographic properties of as-synthesized MgO microspheres have also been investigated, and the results demonstrate that in comparison with the commercial silica, as-synthesized MgO microspheres exhibit excellent properties on the separation of various basic compounds and polycyclic aromatic hydrocarbons.
引文
[1] Majors R E. Twenty-five years of HPLC column development-a commercial perspective. LC-GC 1994, 12: 508-518.
    [2] Majors R. E. Current trends in HPLC column usage. LC-GC 1997, 15: 1009-1015.
    [3] 邹汉法,张玉奎,卢佩章.《高效液相色谱法》,科学出版社,1998.
    [4] Knox J. H., Kaur B. In High Performance Liquid Chromatography (Brown P. R., Hartwich R. A., Eds.), John Wiley and Sons, New York, 1989.
    [5] Yamamoto B., Nakanishi K., Matsuo R. Ion Exchange Chromatograpy of Proteins, Marcel Dekker, Inc., New York and Basel, 1988.
    [6] Majors R E. Twenty-five years of HPLC column development-a commercial perspective. LC-GC 1994, 12: 508-518.
    [7] Nawrocki J. Silica surface controversites, strong adsorption sites, their blockage and removal. 1. Chromatographia 1991, 31: 177-192.
    [8] Nawrocki J. Silica surface controversites, strong adsorption sites, their blockage and removal. 2. Chromatographia 1991, 31: 193-205.
    [9] Nawrocki J. The silanol group and its role in liquid chromatography. J Chromatogr A 1997, 779: 29-71.
    [10] Stadalius M. A., Berus J. S., Snyde R. L. Reversed-phase HPLC of basic samples. LC-GC 1988, 6: 494-500.
    [11] Henry M. P. Design requirements of silica-based matrices for biopolymer chromatography. J Chromatogr. 1991, 544: 413-443.
    [12] Glajch J. L., Ghickman J. C, Charikofsky J. G, Minor J. M., Kirkland J. J. Simultaneous selectivity optimization of mobile and stationary phases in reversed-phased liquid chromatography for isocratic separations of phenylthiohydantoin amino acid derivatives. J Chromatogr 1985, 318: 23-39.
    [13] Wehrli A., Hildenbrand J. C, Keller H. P., Stampfli R., Frei R. W. Influence of organic bases on the stability and separation properties of reversed-phase chemically bonded silica gels. J. Chromatogr. 1978, 149: 199-210.
    [14] Patring J. D. M., Lanina S. A., Jastrebova J. A. Applicability of alkyl-bonded ultra-pure silica stationary phases for gradient reversed-phase HPLC of folates with conventional and volatile buffers under highly aqueous conditions. J. Sep. Sci. 2006, 29: 889-904.
    [15] Hanson M., Kurganov A., Unger K. K., Davankov V. A. Polymer-coated reversed-phase packings in high-performance liquid chromatography. J. Chromatogr. A 1993, 656: 369-380.
    [16] Schomburg G. Polymer coating of surfaces in column liquid-chromatography and capillary electrophoresis. Trends Anal. Chem. 1991, 10: 163-169.
    [17] Kirkland J. J., Adams J. B., van Straten M. A., Claessens H. A. Bidentate silane stationary phases for reversed phase high-performance liquid chromatography. Anal. Chem. 1998, 70: 4344-4352.
    [18] Kirkland J. J., van Straten M. A., Claessens H. A. Reversed-phase high-performance liquid chromatography of basic compounds at pH 11 with silica-based column packings. J. Chromatogr. A 1998, 797: 111-120.
    [19] O'Gara J. E., Alden B. A., Walter T. H., Petersen J. S. Niederlander C. L., Neue U. D. Simple preparation of a C_8 HPLC stationary-phase with an internal polar functionarl-group. Anal. Chem. 1995, 67: 3809-3813.
    [20] Kaneko S., Mitsuzawa T., Ohmori S., Nakamura M., Nobuhara K., Masatani M. Separation behavior of silica-containing mixed oxides as column packing materials for liquid-chromatography. J. Chromatogr. A 1994, 669: 1-7.
    [21] Kaliszan R., Osmiabowski K., Bassler B. J., Hartwick R. A. Mechanism of retention in high-performance liquid chromatography on porous graphitic carbon as revealed by principal component analysis of structural descriptors of solutes. J. Chromatogr. 1990, 499: 333-344.
    [22] Gu G., Lim C. K. Separation of anionic and cationic compounds of biomedical interest by high-performance liquid chromatography on porous graphitic carbon. J. Chromatogr. 1990, 515: 183-192.
    [23] Chiantore O., Novak I., Berek D. Characterization of porous carbons for liquid chromatography. Anal. Chem. 1988, 60: 638-642.
    [24] Belliardo F., Chiantore O., Berek D., Novak I., Lucarelli C. Development and use of carbon adsorbents in the liquid chromatographic separation of isomers. J. Chromatogr. 1990, 506: 371-377.
    [25] Unger K. K. Porous Carbon Packings for Liquid Chromatography. Anal.Chem. 1983, 55: 361A-375A.
    [26] Knox J. H., Unger K. K., Mueller H. Prospects for carbon as packing material in high-performance liquid chromatography. J. Liq. Chromatogr. 1983, 6: 1-36.
    [27] 张昌鸣.新型高效液相色谱固定相多孔石墨化碳.色谱 1992,10(2):78-81.
    [28] Pietrzyk D. J., Cahill W. J., Stodola J. D. Preparative liquid chromatographic separation of amino acids and peptides on amberlite XAD-4. J. Liq. Chromatogr. 1982, 5: 443-461.
    [29] Iskandarani Z., Pletrzyk D. J. Liquid chromatographic separation of amino acids, peptides, and derivatives on a porous polystyrene-divinylbenzene copolymer. Anal. Chem. 1981, 53: 489-495.
    [30] Kimura Y., Kitamura H., Araki T., Noguchi K., Baba M. Analytical and preparative methods for polymyxin antibiotics using high-performance liquid chromatography with a porous styrene-divinyllbenzene copolymer packing. J. Chromatogr. 1981, 206: 563-572.
    [31] Tweeten K. A., Tweenten T. N. Reversed-phase chromatography of proteins on resin-based wide-pore packings. J. Chromatogr. 1986, 359: 111-119.
    [32] 刘国诠,余兆楼.《色谱柱技术》,化学工业出版社,2001.
    [33] Stella C., Rudaz S., Veuthey J. -L., Tchapla A. Silica and other materials as supports in liquid chromatography, chromatographic tests and their importance for evaluating these supports. Part Ⅰ. Chromatographia (Supplement) 2001, 53: S113-S131.
    [34] Nawrocki J., Dunlap C., McCormick A., Carr P. W. Part Ⅰ. Chromatography using ultra-stable metal oxide-based stationary phases for HPLC. J. Chromatogr. A 2004, 1028: 1-30.
    [35] Nawrocki J., Dunlap C., Li J., McNeff C. V., McCormick A., Carr P. W. Part Ⅱ. Chromatography using ultra-stable metal oxide-based stationary phases for HPLC. J. Chromatogr. A 2004, 1028: 31-62.
    [36] Jaroniec C. P., Jaroniec M., Kruk M. Comparison studies of structural and surface properties of porous inorganic oxides used in liquid chromatography. J. Chromatogr. A 1998, 797: 93-102.
    [37] Kurganov A., Trudinger T., Isaeva T., Unger K. Native and modified alumina, titania and zirconia in normal and reversed-phase high-performance liquid chromatography. Chromatographia 1996, 42: 217-222.
    [38] Grun M., Kurganov A. A., Schacht S., Schuth F., Unger K. K. Comparison of an ordered mesoporous aluminosilicate, silica, alumina, titania and zirconia in normal-phase high-performance liquid chromatography. J. Chromatogr. A 1996, 740: 1-9.
    [39] 刘勇,陈晓银.氧化铝热稳定性的研究进展.化学通报 2001,2:65-70.
    [40] 鞠云甫,孙小林,马秀莲,程晓静,孔江芳.氧化铝微球色谱固定相的研究Ⅲ.氧化铝微球结构和表面性质对气相色谱分离性能的影响.燃料化学学报1984,12(1):69-76.
    [41] Little L. H., Klauser, H. E., Amberg, C. H. An infrared study of the adsorption of butanes on surface of porous vycor glass. Can. J. Chem. 1961, 39: 42-60.
    [42] Peri J. B. Infrared and gravimetric study of the surface hydration of γ-alumina. JPhys. Chem. 1965, 69: 211-219.
    [43] Kreis W. K. Unger K. K. Adsorption at the gas-solid and liquid -solid interface. Amdterdam: Elsevier, 1982, p373.
    [44] Synder L. R., Kirkland J. J. Introduction to modern liquid chromatography, 2nd Ed. New York: John Wiley & Sans, 1979, Chapters l&9.
    [45] Buelna G., Lin Y. S. Preparation of spherical alumina and copper oxide coated alumina sorbents by improved sol-gel granulation process. Micropor. Mesopor. Mater. 2001, 42: 67-76.
    [46] Chatterjee M, Naskar M. K., Siladitya B., Ganguli D. Role of organic solvents and surface-active agents in the sol-emulsion-gel synthesis of spherical alumina powders. J. Mater. Rese. 2000, 15: 176-185.
    [47] Siladitya. B, Chatterjee M., Ganguli D. Role of a surface active agent in the sol-emulsion-gel synthesis of spherical alumina powders. J. Sol-Gel Sci. Technol. 1999, 15: 271-277.
    [48] Ogihara T., Nakajima H., Yanagawa T., Ogata N., Yoshida K., Matsushita N. Preparation of monodisperse, spherical alumina powders from alkoxides. J. Am. Cer. Soc. 1991, 74: 2263-2269.
    [49] Ponthieu E., Payen E., Grimblot J. Ultrafine alumina powders via a sol-emulsion-gel method. J. Non-Crystalline Solids 1992, 147/148: 598-605.
    [50] Murugavel P., Kalaiselvam M., Renganathan M. K., Raju A. R. Preparation and characterization of sub-micron spherical particles of Al_2O_3, SiO_2 and mullite. Mater. Chem. Phys. 1998, 53: 247-251.
    [51] Catone D. L., Matijevic E. Aluminum hydrous oxide sols. Ⅱ. Preparation of uniform spherical particles by hydrolysis of Al sec-butoxide. J. Colloid Interface Sci. 1974, 48: 291-301.
    [52] Matijevic E. Preparation and properties of monodispersed colloidal metal hydrous oxides. Pure & Appl. Chem. 1978, 30: 1193-1210.
    [53] Bharti A., Goel D. B., Sivakumar R. Spherical alumina powder by laser atomization. Laser. Eng. 1999, 8(3): 215-227.
    [54] Knox J. H., Pryde A. Performance and selected applications of a new range of chemically bonded packing materials in HPLC. J. Chromatogr. 1975, 112: 171-188.
    [55] Pesek J. J., Lin H. -D. Evaluation of synthetic procedures for the chemical modification of alumina for HPLC. Chromatographia 1989, 28: 565-568.
    [56] Haky J. E., Vemulapalli S., Wieserman L. F. Comparison of octadecyl-bonded alumina and silica for reversed-phase high-performance liquid chromatography. J. Chromatogr. 1990, 505: 307-318.
    [57] Haky J. E., Vemulapalli S. Comparison of octadecyl-bonded alumina and other stationary phases for lipophilicity estimation by high-performance liquid- chromatography. J. Liq. Chromatogr. 1990, 13: 3111-3131.
    [58] Haky J. E., Raghani A. R., Dunn B. M., Wieserman L. F. Comparison of alkyl-bonded alumina stationary phases for peptide separations by high-performance liquid-chromatography. J. Liq. Chromatogr. 1992, 15: 1831-1852.
    [59] Haky J. E., Blauvelt T. M., Wieserman L. F. Perfluorooctyl and perfluorobutyl bonded alumina stationary phases for high performance liquid chromatography. J. Liq. Chromatogr. Rel. Technol. 1996, 19: 307-332.
    [60] Pesek J. J., Matyska M. T., Sandoval J. E., Williamsen E. R. Synthesis, characterization and applications of hydride-based surface materials for HPLC, HPCE and electrochromatography. J. Liq. Chromatogr. Rel. Technol. 1996, 19: 2843-2865.
    [61] Bien-Vogelsang U., Degee A., Figge H., Kohler J., Schomberg G. Syntheses of stationary phases for reversed-phase LC using silanization and polymer coating. Chromatographia 1984, 19: 170-179.
    [62] Arenas R. V., Foley J. P. solvent strength, selectivity, and retention mechanism studies of polybutadiene-coated alumina columns in reversed-phase liquid chromatography. Anal. Chim. Acta 1991, 246: 113-130.
    [63] Holland K. B., Washington J. M., Moe D. C., Conroy C. M. Alumina-based stationary phases for HPLC applications. Am. Lab. 1992, 24: 51-62.
    [64] Hadjiivanov K. I., Klissurski D. G. Surface chemistry of titania (anatase) and titania-supported catalysts. Chem. Soc. Rev. 1996, 61-69.
    [65] Tani K., Miyamoto E. Investigation of chromatographic properties of titania. Ⅱ. Influence of calcination temperature. J. Liq. Chromatogr. Rel. Technol. 1999, 22: 857-871.
    [66] Primet M., Pichat P., Mathieu M. -V. Infrared study of the surface of titanium dioxides. I. Hydroxyl groups. J. Phys. Chem. 1971, 75: 1216-1220.
    [67] Trudinger U., Muller G., Unger K. K. Porous zirconia and titania as packing materials for high-performance liquid chromatography. J. Chromatogr. 1990, 535: 111-125.
    [68] Tani K., Suzuki Y. Synthesis of spherical silica an titania from alkoxides on a laboratory-scale. Chromatographia 1994, 38: 291-294.
    [69] Jiang Z.-T., Zuo Y. -M. Synthesis of porous titania microspheres for HPLC packings by polymerization-induced colloid aggregation (PICA). Anal. Chem. 2001, 73: 686-688.
    [70] Kurganov A., Trudinger U., Isaeva T., Unger K. K. Native and modified alumina, titania and zirconia in normal- and reversed-phase high performance liquid chromatography. Chromatographia 1996, 42: 217-222.
    [71] Grun M., Kuranov A. A., Schachi S., Schuth R, Unger K. K. Comparison of an ordered mesoporous aluminosilicate, silica, alumina, titania and zirconia in normal-phase high-performance liquid chromatography. J. Chromatogr. A 1996, 740: 1-9.
    [72] Kawahara M., Nakamura T., Nakajima T. Titania and zirconia: possible new ceramic microparticulates for high-performance liquid chromatography. J. Chromatogr. 1990,515: 149-158.
    [73] Zhao J. H., Carr P. W. Comparison of the retention characteristics of aromatic and aliphatic reversed phases for HPLC using linear solvation energy relationships. Anal. Chem. 1998, 70: 3619-3628.
    [74] Zhao J. H., Carr P. W. Synthesis and evaluation of an aromatic polymer-coated zirconia for reversed-phase liquid chromatography. Anal. Chem. 1999, 71: 5217-5224.
    [75] Zhao J. H., Carr P. W. A comparative study of the chromatographic selectivity of polystyrene-coated zirconia and related reversed-phase materials. Anal. Chem. 2000, 72: 302-309.
    [76] Tani K., Suzuki Y. Influence of titania matrix on retention behaviour in reversed-phase liquid chromatography. J. Chromatogr. A 1996, 722: 129-134.
    [77] Tani K., Suzuki Y. Effect of octadecyl-modification on retention when using titania as a support. J. Liq. Chromatogr. & Rel. Technol. 1996, 19: 3037-3048.
    [78] Ellwanger A., Matyska M. T., Albert K., Pesek J. J. Comparison of octadecyl bonded titania phases. Chromatographia 1999, 49: 424-430.
    [79] Murayama K., Nakamura H., Nakajima T., Takahashi K., Yoshida A. Preparation and evaluation of octadecyl titania as column-packing material for high-performance liquid-chromatography. Microchem. J. 1994, 49: 362-367.
    [80] Pesek J. J., Matyska M. T., Ramakrishnan J. Synthesis and characterization of titania based stationary phases using the silanization/hydrosilation method. Chromatographia 1997, 44: 538-544.
    [81] Ghaemi Y., Wall R. A. Hydrophobic chromatography with dynamically coated stationary phases. J. Chromatogr. 1979, 174: 51-59.
    [82] Kawahara M., Nakamara H., Nakajima T. Evaluation of new ceramics as column packing material for high performance liquid chromatography. Anal. Sci. 1988, 4: 671-674.
    [83] Nawrocki J., Rigney M. P., McCormick A., Cart P. W. Chemistry of zirconia and its use in chromatography. J. Chromatogr. A 1993, 657: 229-282.
    [84] Jaroniec C. P., Jaroniec M., Kruk M. Comparative studies of structural and surface properties of porous inorganic oxides used in liquid chromatography. J. Chromatogr. A 1998, 797: 93-102.
    [85] Tanabe K. Surface and catalytic properties of zirconia. Mater. Chem. Phys. 1985, 13: 347-364.
    [86] Auroux A. G. Mocrocalorimetric study of the acidity and basicity of metal oxide surfaces. J. Phys. Chem. 1990, 94: 6371-6379.
    [87] Yu J., Rassi Z. E. Reversed-phase liquid chromatography with microspherical octadecyl-zirconia bonded stationary phases. J. Chromatogr. 1993, 631: 91-106.
    [88] Shalliker R. A., Rintoul L., Douglas G. K., Russel S. C. A sol-gel preparation of silica coated zirconia microspheres as chromatographic support materials. J. Mater. Sci. 1997, 32: 2949-2955.
    [89] Sun L., Annen M. J., Lorenzano-Porras C. F., Carr P. W., McCormick A. V. Synthesis of porous zirconia spheres for HPLC by polymerization-induced colloid aggregation (PICA). J. Colloid Interface Sci. 1994, 163: 464-473.
    [90] Lorenzano-Porras C. F., Carr P. W., McCormick A. V. Relationship between pore structure and diffusion tortuosity of ZrO_2 colloidal aggregates. J. Colloid Interface Sci. 1994, 164: 1-8.
    [91] Lorenzano-Porras C. R, Flickinger M. C, Carr P. W., McCormick A. V. Pore structure and diffusion tortuosity of porous ZrO_2 synthesized by two different colloid-aggregation processes. J. Colloid Interface Sci. 1995, 170: 299-307.
    [92] Reeder D. H., Clausan M. J., Annen M. J., Flickinger M. C, Carr P. W., McCormick A. V. An approach to hierarchically structured porous zirconia aggregates. J. Colloid Interface Sci. 1996, 184: 328-330.
    [93] Lorenzano-Porras C. R, Reeder D. H., Annen M. J., Carr P. W., McCormick A. V. Unusal Sintering Behavior of porous Chromatographic Zirconia Produced by Polymerization-Induced Colloid Aggregation. Ind. Eng. Chem. Res. 1995, 34: 2719-2727.
    [94] Sun L., Carr P. W. Mixed-mode retention of peptides on phosphate-modified polybutadiene-coated zirconia. Anal. Chem. 1995, 67: 2517-2523.
    [95] Wirth H.-J., Hear M. T. W. High-performance liquid chromatography of amino acids, peptides and proteins CXXX. modified porous zirconia as sorbents in affinity chromatography. J. Chromatogr. 1993,646: 143-151.
    [96] Blackwell J. A., Carr P. W. Fluoride-modified zirconium oxide as a biocompatible stationary phase for high-performance liquid chromatography. J. Chromatogr. 1992, 549: 549-575.
    [97] Nawrocki J., Christopher J. D., Carr P. W. New materials for biotechnology: chromatographic stationary phases based on zirconia. Biotechnol. Prog. 1994, 10: 561-573.
    [98] Zhao J., Carr P. W. Comparison of the retention characteristics of aromatic and aliphatic reversed phases for HPLC using linear solvation energy relationships. Anal. Chem. 1998, 70: 3619-3628.
    [99] Kephart T. S., Dasgupta P. K. Hot eluent capillary liquid chromatography using zirconia and titania based stationary phases. Anal. Chim. Acta 2000, 414: 71-78.
    [100] Xiang Y., Yan B., McNeff C. V., Carr P. W., Lee M. L. Synthesis of micron diameter polybutadiene-encapsulated non-porous zirconia particals for ultrahigh pressure liquid chromatography. J. Chromatogr. A 2003, 1002: 71-78.
    [101] 李新会,刘国诠.多孔性氧化锆及其在色谱填料中的应用.化学通报1994.4:17-21.
    [102] Nawrocki J., Dunlap C. L., Carr P. W. New materials for biotechnology: chromatographic stationary phases based on zirconia. Biotechnol. Prog. 1994, 10: 561-573.
    [103] Jackson P. T., Carr P. W. Improving reversed-phase liquid chromatography. CHEMTECH 1998, 28(10): 29-37.
    [104] McNeff C., Zigan L., Johnson K., Carr P. W., Wang A. S., Weber-Main A. M. Analytical advantages of highly stable stationary phases for reversed-phase LC. LC-GC 2000, 18(5): 514-529.
    [105] Dunlap C. J., McNeff C. V., Stoll D., Carr P. W. Zirconia stationary phases for extreme separations. Anal. Chem. 2001, 73: 598A-607A.
    [106] Unger K. K., Trudinger U. Oxide Stationary Phases in Brown Ph. R., Hartwick R. A.: High Performance Liquid Chromatography John Wiley & Sons, New York, 1989, 145-188.
    [107] Gran M., Kurganov A. A., Schacht S., Schacht F., Unger K. K. Comparison of an ordered mesoporous aluminosilicate, silica, alumina, titania and zirconia in normal-phase high-performance liquid chromatography. J. Chromatogr. 1996,740: 1-9.
    [108] Yu J., Rassi Z. E. Reversed-phase liquid chromatography with microspherical octadecyl-zirconia bonded stationary phases. J. Chromatogr. 1993, 631: 91-106.
    [109] Blackwell J. A., Carr P. W. A chromatographic study of the Lewis acid-base chemistry of zirconia surface. J. Liq. Chromatogr. 1991, 14: 2875-2898.
    [110] Wang D., Tang L. Y., Blackwell J. A. Evaluation of the stability and selectivity for various adjustable stationary phases using zirconium oxide supports in high-performance liquid chromatography. J. Chromatogr. A 2002, 953: 67-77.
    [111] Clausen A. M., Carr P. W. Chromatographic characterization of phosphonate analog EDTA-modified zirconia support for biochromatographic applications. Anal. Chem. 1998, 70: 378-385.
    [112] Hu Y. L., Feng Y. Q., Wan J. D., Da S. -L. Native and stearic acid modified ceria-zirconia supports in normal and reversed-phase HPLC. Talanta 2001, 54: 79-88.
    [113] Rigney M. P., Weber T. P., Carr P. W. Preparation and evaluation of a polymer-coated zirconia reversed-phase chromatographic support. J. Chromatogr. 1989, 484: 273-291.
    [114] Zhao J. Carr P. W. Comparison of the retention characteristics of aromatic and aliphatic reversed phases for HPLC using linear solvation energy relationships. Anal. Chem. 1998, 70: 3619-3628.
    [115] McNeff Q., Zhao Q., Carr P. W. High-performance anion exchange of small anions with polyethyleneimine-coated porous zirconia. J. Chromatogr. A 1994, 684: 201-211.
    [116] Castells C. B., Cart P. W. Cellulose tris(3, 5-dimethylphenylcarbamate) -coated zirconia as a chiral stationary phase for HPLC. Anal. Chem. 1999, 71: 3013-3021.
    [117] Weber T. R, Carr P. W., Funkenbusch E. F. Evaluation of a zirconia-based carbon-polymer composite reversed-phase chromatographic support. J. Chromatogr. 1990, 519: 31-52.
    [118] Melo L. F. C., Collins C. H., Collins K. E., Jardim I. C. S. F. Stability of high-performance liquid chromatography columns packed with poly (methyloctylsiloxane) sorbed and radiation-immobilized onto porous silica and zirconized silica. J. Chromatogr. A 2000, 869: 129-135.
    [119] Shi Z. -G., Xu L., Da S. -L., Feng Y. -Q. Study of the magnesia additive on the characterization of zirconia-magnesia composite sphere. Micropor. Mesopor. Mater. 2006, 94: 34-39.
    [120] Schindler F., Schmidbaur H. Siloxanverbindungen der ubergangsmetalle. Angew. Chem. 1967, 79: 697-708; Siloxane compounds of the transition metals. Angew. Chem. Int. Ed. 1967, 6: 683-694.
    [121] Ragazzi E., Veronese G., Giacobazzi C. in Mrini-Beitolo G. B. (Editor). Thin- Layer Chromatography. Elsevier, Amesterdam, 1996, p149.
    [122] Strain H. H. Molecular structure and adsorption sequences of carotenoid pigments. J. Am. Chem. Soc. 1948, 70: 588-591.
    [123] Nicholas R. E. H. Chromatographic methods for the separation and identification of porphyrins. Biochem. J. 1951, 48: 309-313.
    [124] Schwartz D. P., Parks O. W. Thin-layer chromatography of carbonyl compounds separation of aliphatic carbonyl 2, 4-dinitrophenylhydrazones into classes. Microchem. J. 1963, 7: 403-406.
    [125] Schwartz D. P., Keeney M., Parks O. W. Thin-layer chromatography of carbonyl compounds Separation of dicarbonyl bis(2, 4-dinitrophenyl hydrazones) into classes. Microchem. J. 1964, 8: 176-179.
    [126] Sabacky M. J., Jones L. B., Frame H. D., Strain Jr. H. H. Elution capacity of organic substances in solution-adsorption chromatography. Anal. Chem. 1962, 34:306-311.
    [127] Synder L. R. Water deactivated magnesia as a chromatographic adsorbent. J. Chromatogr. 1967, 28: 300-316.
    [128] Kaneko S., Mitsuzawa T., Ohmori S., Nakamura M., Nobuhara K., Masatani M. Separation behavior of silica-containing mixed oxides as column packing materials for liquid-chromatography. J. Chromatogr. A 1994, 669: 1-7.
    [129] Nobuhara K., Kato M., Nakamura M., Takami M., Kaneko S. Preparation and evaluation of magnesia-coated silica as column packing material for high-performance liquid chromatography. J. Chromatogr. A 1995, 704: 45-53.
    [130] WaksmundzkaHajnos M., Wronska B. Retention behaviour of model solutes on mixed silica-magnesia adsorbents by TLC. Comparison with the adsorption properties of florisil. Chromatographia 1996, 43: 405-412.
    [131] Hu Y. L., Feng Y. Q., Wan J. D., Da S. L. Comparison of chromatographic properties of Lewis base-modified mixed oxides as stationary phases for HPLC. J. Liq. Chromatogr. & Rel. Technol. 2002, 25: 83-99.
    [132] Zhang Q. H., Feng Y. Q., Da S. L. Preparation and characterization of zirconia-silica and zirconia-magnesia supports for normal-phase liquid chromatography. Anal. Sci. 1999, 15: 767-772.
    [133] Zhang Q. H., Feng Y. Q., Da S. L. Characterization and evaluation of magnesia- zirconia supports for normal-phase liquid chromatography. Chromatographia 1999, 50: 654-660.
    [134] He H. B., Feng Y. Q., Qu-Li, Da S. L., Hu Z. X. Preparation and evaluation of n-octadecylphosphonic acid-modified magnesia-zirconia stationary phases for reversed-phase liquid chromatography. Anal. Chim. Acta 2005, 542: 268-279.
    [135] Feng Y. Q., Fu H. J., Zhang Q. H., Da S. L., Zhang Y. J. Retention behavior of basic compounds on alkylphosphonate-modified magnesia-zirconia composite stationary phase in RPHPLC. Chromatographia 2000, 52: 165-168.
    [136] He H. B., Yu Q. W., Qu L., Feng Y. Q., Da S. L. High performance liquid chromatography of some alkaloids on n-octadecylphosphonic acid modified magnesia-zirconia stationary phase. Chin. J. Anal. Chem. 2006, 34: 754-758.
    [137] Shi Z. Q., Xu L., Da S. L., Feng Y. Q. Study of the magnesia additive on the characterization of zirconia-magnesia composite sphere. Micropor.Mesopor. Mater. 2006, 94: 34-39.
    [138] Takanori W., Kazumi N., Akio K. Preparation of submicron magnesium oxide powdem by vapor-phase reaction of magnesium and oxygen. J. Chem. Soc. Jap. 1984, 6: 1075-1076.
    [139] Knozinger E., Diwald O., Sterrer M. Chemical vapour deposition—a new approach to reactive surface defects of uniform geometry on high surface area magnesium oxide. J. Mol. Catal. A: Chem. 2000, 162: 83-95.
    [140] Cui Z., Meng G. W., Huang W. D., Wang G. Z., Zhang L. D. Preparation and characterization of MgO nanorods. Mater. Rese. Bull. 2000, 35: 1653-1659.
    [141] Fu X., Wu G., Song S., Song Z., Duo X., Lin C. Preparation and characterization of MgO thin films by a simple nebulized spray pyrolysis technique. Appl. Surf. Sci. 1999, 148: 223-228.
    [142] Kang E. S., Takahashi M., Tokuda Y., Yoko T. Template-free magnesium oxide hollow sphere inclusion in organic-inorganic hybrid films via sol-gel reaction. Langmuir 2006, 22: 5220-5223.
    [143] Lopez T., Goeze G. Evidence for Lewis and Brφnsted acid sites on MgO obtained by sol-gel. J. Sol-Gel Sci. Technol. 1998, 13: 1043-1047.
    [144] Gulkova D., Solcova O., Zdrazil M. Preparation of MgO catalytic support in shaped mesoporous high surface area form. Micropor. Mesopor. Mater. 2004, 76: 137-149.
    [145] Wei Z., Qi H., Ma P., Bao J. A new route to prepare magnesium oxide whisker. Inorg. Chem. Commun. 2002, 5: 147-149.
    [146] Niu H. -X., Yang Q., Yu F., Tang K. -B., Zhou W. Simple synthesis of single-crystalline nanoplates of magnesium oxide. Chin. J. Chem. Phys. 2006, 19: 438-442.
    [147] Ding Y, Zhang G. T., Wu H., Hai B., Wang L. B., Qian Y. T. Nanoscale magnesium hydroxide and magnesium oxide powders: Control over size, shape, and structure via hydrothermal synthesis. Chem. Mater. 2001, 13: 435-440.
    [148] Yan L., Zhuang J., Sun X. M., Deng Z. X., Li Y. D. Formation of rod-like Mg(OH)_2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration. Mater. Chem. Phys. 2002, 76: 119-122.
    [149] Yu J. C., Xu A. W., Zhang L. Z., Song R. Q., Wu L. Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates. J. Phys. Chem. 2004, 108: 64-70.
    [150] Choudhary V. R., Pataskar S. G., Gunjikar V. G., Zope G. B. Influence of preparation of basic magnesium carbonate on its thermal analysis. Thermochim. Acta 1994, 232: 95-110.
    [151] Choudhary V. R., Pataskar S. G., Zope G. B., Chaudhari P. N. Surface-properties of magnesium-oxide obtained from basic magnesium carbonate-influence of preparation conditions of magnesium carbonate. J. Chem. Tech. Biotechnol. 1995, 64: 407-413.
    [152] Choudhary V. R., Pataskar S. G., Pandit M. Y., Gunjikar V. G. Influence of preparation conditions of magnesium hydroxide on ite thermal-decomposition in the preparation of active MgO. Thermochim. Acta 1992, 194: 361-373.
    [153] Choudhary V. R., Pandit M. Y. Surface-properties of magnesium-oxide obtained from magnesium-hydroxide-influence on preparation and calcinations conditions of magnesium-hydroxide. Appl. Catal. 1991, 71: 265-274.
    [154] Wang X. L., Xue D. F. Direct observation of the shape evolution of MgO whiskers in a solution system. Mater. Lett. 2006, 60: 3160-3164.
    [155] 张近.超细粉体氧化镁的合成.化学工程1999,27(2):34-36.
    [156] 吴山,郑兴芳,陈继新,曾海生,关乃佳.用乙二醇为介质制备纳米氧化镁.南开大学学报(自然科学版).2004,37(3):73-76.
    [157] 汪国忠,程素芳,何国良,田兴友,张立德.纳米级氧化镁的合成.合成化学 1996,4(4):300-302.
    [158] 张近.均匀沉淀法制备纳米氧化镁的研究.功能材料 1999,30(2):193-194.
    [159] 朱亚先,曾人杰,刘新锦,章慧,潘蕊,周学亮,张勇.MgO 纳米粉制备及表征.夏门大学学报(自然科学版),2001,40(6):1256-1259.
    [160] Yan C., Xue D., Zou L. F abrication of hexagonal MgO and its precursors by a homogeneous precipitation method. Mater. Res. Bull. 2006, 41: 2341-2348.
    [161] Choudhary V. R., Rane V. H., Gadre R. V. Influence of precursors used in preparation of MgO on its surface properties and catalytic activity in oxidative coupling of methane. J. Catal. 1994, 145: 300-311.
    [162] Shastri A. G., Chae H. B., Schwank J. Morphology and surface uniformity growth in MgO dehydration. J. Phys. Chem. 1985, 89: 3761-3766.
    [163] Ardizzone S., Bianchi C. L., Vercelli B. Acid/base and surface features of pure phase magnesia powders. Colloids Surf. A 1998, 144: 9-17.
    [164] Ardizzone S., Bianchi C. L., Vercelli B. MgO powders: interplay between adsorbed species and localisation of basic sites. Appl. Surf. Sci. 1998, 126: 169-175.
    [165] Alvarado E., Torres-Martinez L. M., Fuentes A. F., Quintana P. Preparation and characterization of MgO powders obtained from different magnesium salts and the mineral dolomite. Polyhedron 2000, 19: 2345-2351.
    [1] Nawrocki J., Rigney M. P., McCormick A., Carr P. W. Chemistry of zirconia and its use in chromatography. J. Chromatogr. A 1993, 657: 229-282.
    [2] Trfidinger U., Muller G., Unger K. K. Porous zirconia and titania as packing materials for high-performance liquid chromatography. J. Chromatogr. 1990, 535: 111-125.
    [3] Grun M., Kurganov A. A., Schachi S., Schuth F., Unger K. K. Comparison of an ordered mesoporous aluminosilicate, silica, alumina, titania and zirconia in normal-phase high-performance liquid chromatography. J. Chromatogr. A 1996, 740: 1-9.
    [4] Nawrocki J., Dunlap C., McCormick A., Carr P. W. Part Ⅰ. Chromatography using ultra-stable metal oxide-based stationary phases for HPLC. J. Chromatogr. A 2004, 1028: 1-30.
    [5] Nawrocki J., Dunlap C., Li J., Zhao J., McNeff C. V., McCormick A., Carr P. W. Part Ⅱ. Chromatography using ultra-stable metal oxide-based stationary phases for HPLC. J. Chromatogr. A 2004, 1028: 31-62.
    [6] Xiang D., Tang L. Y., Blackwell J. A. Evaluation of the stability and selectivity for various adjustable stationary phases using zirconium oxide supports in high-performance liquid chromatography. J. Chromatogr. A 2002, 953: 67-77.
    [7] Jackson P. T., Schure M. R., Weber T. P., Carr P. W. Intermolecular interactions involved in solute retention on carbon media in reversed-phase high-performance liquid chromatography. Anal. Chem. 1997, 69: 416-425.
    [8] Wehn P. B., Lee J., Bios J. D. Stereochemical models for Rh-catalyzed amination reactions of chiral sulfamates. Org. Lett. 2003, 5: 4823-4826.
    [9] Kawaguchi Y. Luminescence spectra at bending fracture of single crystal MgO. Solid State Commun. 2000, 117: 17-20.
    [10] Bolognini M., Cavani F., Scagliarini D., Flego C, Perego C, Saba M. Heterogeneous basic catalysts as alternatives to homogeneous catalysts: reactivity of Mg/Al mixed oxides in the alkylation of m-cresol with methanol. Catal. Today 2002, 75: 103-111.
    
    [11] Bolognini M., Cavani F., Scagliarini D., Flego C, Perego C, Saba M. Mg/Al mixed oxides prepared by coprecipitation and sol-gel routes: a comparison of their physico-chemical features and performances in m-cresol methylation. Micropor. Mesopor. Mater. 2003, 66: 77-89.
    
    [12] Bhargava A., Alarco J. A., Machinnon I. D. R., Page D., Ilyushechkin A. Synthesis and characterisation of nanoscale magnesium oxide powders and their application in thick films of Bi_2Sr_2CaCu_2O_8. Mater. Lett. 1998, 34: 133-142.
    [13] Yuan Y. S., Wong M. S., Wang S. S. Solid-state processing and phase development of bulk (MgO)(w)/BPSCCO high-temperature superconducting composite. J. Mater. Res. 1996, 11: 8-11.
    [14] Yang P. D., Lieber C. M. Nanorod-superconductor composites: A pathway to materials with high critical current densities. Science 1996, 273: 1836-1840.
    
    [15] Copp A. N. Magnesia/magnesite. Am. Ceram. Soc. Bull. 1995, 74: 135-137.
    [16] Synder L. R. Water deactivated magnesia as a chromatographic adsorbent. J. Chromatogr. 1967, 28: 300-316.
    [17] Strain H. H. Molecular structure and adsorption sequences of carotenoid pigments. J. Am. Chem. Soc. 1948, 70: 588-591.
    [18] Sabacky M. J., Jones L. B., Frame H. D., Strain Jr. H. H. Elution capacity of organic substances in solution-adsorption chromatography. Anal. Chem. 1962, 34: 306-311.
    [19] Cavani F., Triffiro F., Vaccari A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11: 173-301.
    [20] Kamlet M. J., Doherty R. M., Abboud J. -L. M, Abraham M. H., Taft R. W. Solubility-A new look. Chemtech 1986, 16: 566-576.
    [21] Li J. W., Robison T. Application of linear solvation energy relationships to guide selection of polar modifiers in normal-phase liquid chromatographic separations. Anal. Chim. Acta 1999, 395: 85-99.
    [22] Szepesy L. Effect of molecular interactions on retention and selectivity in reversed-phase liquid chromatography. J. Chromatogr. A 2002, 960: 69-83.
    [23] Park J. H., Yoon M. H., Ryu Y. K., Kim B. E., Ryu J. W., Jang M. D. Characterization of some normal-phase liquid chromatographic stationary phases based on linear solvation energy relationships. J. Chromatogr. A 1998, 796: 249-258.
    [24] Park J. H., Chae J. J., Nah T. H., Jang M. D. Characterization of some silica-based reversed-phase liquid-chromatographic columns based on linear solvation energy relationships. J. Chromatogr. A 1994, 664: 149-158.
    [25] Pyo D., Li W., Lee M. L., Weckwerth J. D., Carr P. W. Addition of methanol to the mobile phase in packed capillary column supercritical fluid chromatography-Retention mechanisms from linear solvation energy relationships. J. Chromatogr. A 1996, 753: 291-298.
    [26] Abraham M. H. Scales of solutes hydrogen-bonding—their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 1993, 22: 73-83.
    [27] Abraham M. H. Application of solvation equation to chemical and biochemical processes. Pure & Appl. Chem. 1993, 65: 2503-2512.
    [28] Oumada F. Z., Roses M., Bosch E., Abraham M. H. Solute-solvent interactions in normal-phase liquid chromatography: a linear free-energy relationships study. Anal. Chim. Acta 1999, 382: 301-308.
    [29] Li W. C., Lu A. H., Weidenthaler C., Schuth F. Hard-templating pathway to create mesoporous magnesium oxide. Chem. Mater. 2004, 16: 5676-5681.
    [30] Gulkova D., Solcoca O., Zdrazil M. Preparation of MgO catalytic support in shaped mesoporous high surface area form. Micropor. Mesopor. Mater. 2004, 76: 137-149.
    [31] Sing K. S. W., Everett D. H., Haul R. A. W., Moscou L., Plerotti R. A., Rouquerol J., Siemieniewska T. Reporting physisorption data for gas-solid systems with special reference to the determination of surface area and porosity. Pure & Appl. Chem. 1985, 57: 603-619.
    [32] Kamlet M. J., Doherty R. M., Abraham M. H., Marcus Y., Taft R. W. Linear solvation energy relationship. 46. An improved equation for correlation and prediction of octanol/water partition coefficients of organic nonelectrolytes (including strong hydrogen bond donor solutes). J. Phys. Chem. 1988, 92: 5244-5255.
    [33] Kamlet M. J., Doherty R. M., Abraham M. H., Carr P. W., Doherty R. F. Linear solvation energy relationships. 41. Important differences between aqueous solubility relationships for aliphatic and aromatic solutes. J. Phys. Chem. 1987, 91: 1996-2004.
    [34] Cheong W. J., Choi J. D. Linear solvation energy relationships in normal phase liquid chromatography based on retention data on silica in 2-propanol/hexane eluents. Anal. Chim. Acta 1997, 342: 51-57.
    [35] Park J. H., Carr P. W. Interpretation of normal-phase solvent strength scales based on linear solvation energy relationships using the solvatochromic parameters π~*, α and β. J. Chromatogr. 1989, 465: 123-136.
    [36] Giamello E., Murphy D., M. Paganini C. Continuous wave electron paramagnetic resonance spectroscopy in the investigation of the surface properties and chemical reactivity of an ionic oxide(MgO). Colloids" Surf. A1996, 115: 157-170.
    [37] Xu Y. J., Li J. Q., Zhang Y. F. Conversion of N_2O to N_2 on MgO (001) surface with vacancy: A DFT study. Chinese J. Chem. 2003, 21: 1123-1129.
    [38] Xu Y. J., Li J. Q., Zhang Y. F. O_2 adsorption on MgO(001) surface with oxygen and magnesium vacancies. Acta Phys. -Chim. Sin. 2003, 19: 815-818.
    [39] Tench A. J., Holroyd P. The identification of O_2~- adsorbed on magnesium oxide. Chem. Commun. 1968, 471-473.
    [40] Ferrari A. M., Pacchioni G. Surface reactivity of MgO oxygen vacancies: electrostatic mechanisms in the formation of O_2~- and CO~- species. J. Chem. Phys. 1997, 107: 2066-2078.
    [41] Pacchioni G., Pescarmona P. Structure and stability of oxygen vacancies on sub-surface, terraces, and low-coordinated surface sites of MgO: an ab initio study. Surf. Sci. 1998, 412/413: 657-671.
    [42] Li J. W., Whitman D. A. Characterization and selectivity optimization on diol, amino, and cyano normal phase columns based on linear solvation energy relationships. Anal. Chim. Acta 1998, 368: 141-154.
    [43] Tan L. C., Carr P. W. Study of retention in reversed-phase liquid chromatography using linear solvation energy relationships-Ⅱ. The mobile phase. J. Chromatogr. A 1998, 799: 1-19.
    [44] Kiseleva M. G., Nesterenko P. N. Phenylaminopropyl silica-a new specific stationary phase for high-performance liquid chromatography of phenols. J. Chromatogr. A 2000, 898: 23-34.
    [45] Sandi A., Szepesy L. Characterization of various reversed-phase columns using the linear free energy relationship I. Evaluation based on retention factors. J. Chromatogr. A 1998, 818: 1-17.
    [46] Lopez L. A., Rutan S. C. Comparison of methods for characterization of reversed-phase liquid chromatographic selectivity. J. Chromatogr. A 2002, 965: 301-304.
    [47] Guo R. B., Liang X. M., Chen J. P., Zhang Q., Kettrup A. Prediction of soil adsorption coefficients from retention parameters on three reversed-phase liquid chromatographic columns. Anal. Chem. 2002, 74: 655-660.
    [48] Jiskra J., H. Claessens A., Cramers C. A., Kaliszan R. Quantitative structure-retention relationships in comparative studies of behavior of stationary phases under high-performance liquid chromatography and capillary electrochromatography conditions. J. Chromatogr. A 2002, 977: 193-206.
    [1] Jeevanandam P., Klabunde K. J. A study on adsorption of surfactant molecules on magnesium oxide nanocrystals prepared by an aerogel route. Langmuir 2002, 18: 5309-5313.
    [2] Wang J. A., Novaro O., Bokhimi X., Lopez T., Gomez R., Navarrete J., Llanos M. E., Lopez-Salinas E. Structural defects and acidic and basic sites in sol-gel MgO. J. Phys. Chem. B 1997, 101: 7448-7451.
    [3] Portillo R., Lopez T., Gomez R., Morales B. A., Novaro O. Magnesia synthesis via sol-gel: structure and reactivity. Langmuir 1996, 12: 40-44.
    [4] Aramendia M. A., Borau V., Jimenez C, Marinas J. M., Ruiz J. R., Urbano F. J. Influence of the preparation method on the structural and surface properties of various magnesium oxides and their catalytic activity in the Meerwein-Ponndorf-Verley reaction. Appl. Catal. A 2003, 244: 207-215.
    [5] Choudhary V. R., Pataskar S. G, Zope G. B., Chaudhari P. N. Surface properties of magnesium oxide obtained from basic magnesium carbonate: influence of preparation conditions of magnesium carbonate. J. Chem. Tech. Biotechnol. 1995, 64: 407-413.
    [6] Choudhary V. R., Rane V. H., Gadre R. V. Influence of precursors used in preparation of MgO on its surface properties and catalytic activity in oxidative coupling of methane. J. Catal. 1994, 145: 300-311.
    [7] Choudhary V. R., Gunjikar V. G, Pataskar S. G, Zope G. B. Influence of preparation conditions of basic magnesium carbonate on its thermal analysis. Thermochim. Acta, 1994, 232: 95-110.
    [8] Choudhary V. R., Pataskar S. G, Pandit M. Y., Gunjikar V. G. Influence of preparation conditions of magnesium-hydroxide on its thermal-decomposition in the preparation of active MgO. Thermochim. Acta 1992, 194: 361-373.
    [9] Alvarado E., Torres-Martinez L. M., Fuentes A. F., Quintana P. Preparation and characterization of MgO powders obtained from different magnesium salts and the mineral dolomite. Polyhedron 2000, 19: 2345-2351.
    [10] Yu J. C, Xu A., Zhang L., Song R., Wu. L. Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates. J. Phys. Chem. B. 2004, 108: 64-70.
    [11] Freitag F., Kleinebudde P. How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Comparison of four magnesium carbonates. Euro. J. Pharm. Sci. 2003, 19: 281-289.
    [12] Botha A., Strydom C. A. Preparation of a magnesium hydroxy carbonate from magnesium hydroxide. Hydrometallurgy 2001, 62: 175-183.
    [13] Mitsuhashi K., Tagami N., Tanabe K., Ohkubo T., Sakai H., Koishi M., Abe M. Synthesis of microtubes with a surface of "house of cards" structure via needlelike particles and control of their pore size. Langmuir 2005, 21: 3659-3663.
    [14] Yan C. L., Xue D. F. Novel self-assembled MgO nanosheet and its precursors. J. Phys. Chem. B 2005, 109: 12358-12361.
    [15] Li Q., Ding Y., Yu G. H., Li C., Li F. Q., Qian Y. T. Fabrication of light-emitting porous hydromagnesite with rosette-like architecture. Solid State Commun. 2003, 125: 117-120.
    [16] Kloprogge J. T., Martens W. N., Nothdurft L., Duong L. V., Webb G. E. Low temperature synthesis and characterization of nesquehonite. J. Mater. Sci. Lett. 2003, 22: 825-829.
    [17] Davey R. J., Whiting M. J. L. Habit modification of succinic acid crystals grown from different solvents. J. Cryst. Growth 1982, 58: 304-312.
    [18] Boyle T. J., Coker E. N., Zechmann C. A., Voigt J. A., Rodriguez M. A., Kemp R. A. Precipitation of spherical magnesium(Ⅱ) cresolate particles. Chem. Mater. 2003, 15: 309-319.
    [19] Bai F., Yang X., Huang W. Synthesis of narrow or monodisperse poly(divinylbenzene) microspheres by distillation-precipitation polymerization. Macromolecules 2004, 37: 9746-9752.
    [20] Soler-Illia G. J. de A. A., Candal R. J., Regazzoni A. E., Blesa M. A. Synthesis of mixed copper-zinc basic carbonates and Zn-doped tenorite by homogeneous alkalinization. Chem. Mater. 1997, 9: 184-191.
    [21] Davies P. J., Bubela R. The transformation of nesquehonite into hydromagnesite. Chem. Geol. 1973, 12: 289-300.
    [22] Konigesberger K., Konigesberger L. -C., Gamsjager H. Low-temperature thermodynamic model for the system Na_2CO_3-MgCO_3-CaCO_3-H_2O. Geochim. Cosmochim. Acta 1999, 63: 3105-3119.
    [23] Lanas J. Alvarez A. I. Dolomitic lime: thermal decomposition of nesquehonite. Thermochim. Acta 2004, 421: 123-132.
    [24] Liang J., Ma Y., Zheng Y., Davis H. T. Solvent-induced crystal morphology transformation in a ternary soap system: sodium stearate crystalline fibers and platelets. Langmuir 2001, 17: 6447-6454.
    [25] Farmer, V. C. The Infrared Spectra of Minerals. Mineralogical Society: London, 1974.
    [26] Coleyshaw E. E., Crump G., Griffith W. P. Vibrational spectra of the hydrated carbonate minerals ikaite, monohydrocalcite, lansfordite and nesquehonite. Spectrochim. Acta Part A 2003, 59: 2231-2239.
    [27] White W. B. Infrared characterization of water and hydroxyl ion in the basic magnesium carbonate minerals. Am. Mineral. 1971, 56: 46-53.
    [28] Kelleher I. J., Redfern S. A. T. Hydrous calcium magnesium carbonate, a possible precursor to the formation of sedimentary dolomite. Mol. Simulat. 2002, 28: 557-572.
    [29] Miller F. A., Wilkins C. H. Infrared spectra and characteristic frequencies of inorganic ions. Anal. Chem. 1952, 24: 1253-1294.
    [30] Nakamoto K., Sarma Y. A., Ogoshi H. Normal coordinate analyses of hydrogen-bonded compounds. Ⅳ. The acid carbonate ion. J. Chem. Phy. 1965, 43: 1177-1181.
    [31] 郑亚君,党利琴,张智平,雷志斌,陈吉平.搅拌时间对水合碳酸镁形貌和组成的影响.精细化工2007,接受.
    [32] Schrader, B. Infrared and Raman spectroscopy: methods and applications. Wiley: London, 1989.
    [33] 洪瑞祥,剧鷁莲,陈素琴.三水碳酸镁及其水解物-碱式碳酸镁某些物理化学性质的研究.化工学报1983,34(2):156-160.
    [1] (a) Matijevic E. Uniform inorganic colloid dispersions. Achievements and challenges. Langmuir 1994, 10: 8-16;
    (b) Gallis K. W., Araujo J. T., Duff K. J., Moore J. G., Landry C. C. The use of mesoporous silica in liquid chromatography. Adv. Mater. 1999, 11: 1452-1455;
    (c) Boissiere C., Kummel M., Persin M., Larbot A., Prouzet E. Spherical MSU-1 mesoporous silica particles tuned for HPLC. Adv. Funct. Mater. 2001, 11: 129-135;
    (d) Yang H. -H., Zhang S. -Q., Chen X. -L., Zhuang Z. -X., Xu J. -G., Wang X. -R. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem. 2004, 76: 1316-1321;
    (e) Ding J., Hudalla, C. J., Cook J. T., Walsh D. P., Boissel C. E., Iraneta P. C., O'Gara J. E. Synthesis and surface chemistry of spherical mesoporous organic-inorganic hybrid particles with an integrated alcohol functionality on the pore surface. Chem. Mater. 2004, 16: 670-681.
    [2] Liu Z., Zhang D., Han S., Li C., Lei B., Lu W., Fang J., Zhou C. Single crystalline magnetite nanotubes. J. Am. Chem. Soc. 2005, 127: 6-7.
    [3] (a) Lee M. H., Tai C. Y., Lu C. -H. Synthesis of spherical zirconia by precipitation between two water/oil emulsions. J. Eur. Ceramic Soc. 1999, 19: 2593-2603;
    (b) Maher G. H., Hutchins C. E., Ross S. D. Preparation and characterization of ceramic fine powders produced by the emulsion process. J. Mater. Process. Tech. 1996, 56: 200-210.
    [4] (a) Lee M. S., Park S. S., Lee G. -D., Ju C. -S., Hong S. -S. Synthesis of TiO_2 particles by reverse microemulsion method using nonionic surfactants with different hydrophilic and hydrophobic group and their photocatalytic activity. Catal. Today 2005, 101: 283-290;
    (b) Kwon C. H., Kim J. H., Jung I. S., Shin H., Yoon K. H. Preparation and characterization of TiO_2-SiO_2 nano-composite thin films. Ceram. Int. 2003, 29: 851-856.
    [5] (a) Boyle T. J., Coker E. N., Zechmann C. A., Voigt J. A., Rodriguez M. A., Kemp R. A. Precipitation of spherical magnesium(Ⅱ) cresolate particles. Chem. Mater. 2003, 15: 309-319;
    (b) Bai F., Yang X., Huang W. Synthesis of narrow or monodisperse poly(divinylbenzene) microspheres by distillation-precipitation polymerization. Macromolecules 2004, 37: 9746-9752;
    (c) Soler-Illia G. J. de A. A., Candal R. J., Regazzoni A. E., Blesa M. A. Synthesis of mixed copper-zinc basic carbonates and Zn-doped tenorite by homogeneous alkalinization. Chem. Mater. 1997, 9: 184-191.
    [6] (a) Yan. C. L., Xue D. F. Novel self-assembled MgO nanosheet and its precursors. J. Phys. Chem. B 2005, 109: 12358-12361;
    (b) Li Q., Ding Y., Yu G. H., Li C., Li F. Q., Qian Y. T. Fabrication of light-emitting porous hydromagnesite with rosette-like architecture. Solid State Commun. 2003, 125: 117-120.
    [7] Zhang Z. P., Zheng Y. J., Ni Y. W., Chen J. P., Liu Z. M., Liang X. M. Temperature-and pH-dependent morphology and FT-IR analysis of magnesium carbonate hydrates. J. Phys. Chem. B 2006, 110: 12969-12973.
    [8] Murata T., Howell F. S., Itatani K. Sinterability of magnesium-oxide powder containing spherical agglomerates. J. Mater. Sci. 2001, 36: 1277-1284.
    [9] Choudhary V. R., Gunjikar V. G., Pataskar S. G., Zope G. B. Influence of preparation conditions of basic magnesium carbonate on its thermal analysis. Thermochim. Acta, 1994, 232: 95-110.
    [10] Sing S. W., Everett D. H., Haul R. A. W., Moscou L., Pierotti R. A., Rouquerol J., Siemieniewska T. Reporting of physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure & Appl. Chem. 1985, 57: 603-619.
    [11] Luan Z., He H., Zhou W., Cheng C. F., Klinowski J. Effect of structural aluminum on the mesoporous structure of MCM-41. J. Chem. Soc., Faraday Trans. 1995, 91: 2955-2959.
    [12] (a) Kumar D., Pillai K. T., Sudersanan V., Dey G. K., Gupta N. M. Hydrothermal synthesis and characterization of uranium-containing MCM-48 samples. Chem. Mater. 2003, 15: 3859-3865;
    (b) Chen X., Huang L., Li Q. Hydrothermal transformation and characterization of porous silica templated by surfactants. J. Phys. Chem. 1997, 101: 8460-8467.
    [13] Choudhary V. R., Rane V. H., Gadre R. V. Influence of precursors used in preparation of MgO on its surface properties and catalytic activity in oxidative coupling of methane. J. Catal. 1994, 145: 300-311.
    [14] Mitsuhashi K., Tagami N., Tanabe K., Ohkubo T., Sakai H., Koishi M., Abe M. Synthesis of microtubes with a surface of "house of cards" structure via needlelike particles and control of their pore size. Langmuir 2005, 21: 3659-3663.
    [15] (a) Freitag F., Kleinebudde P. How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Comparison of four magnesium carbonates. Euro. J. Pharm. Sci. 2003, 19: 281-289;
    (b) Botha A., Strydom C. A. Preparation of a magnesium hydroxy carbonate from magnesium hydroxide. Hydrometallurgy 2001, 62: 175-183.
    [16] Botha A., Strydom C. A. DTA and FT-IR analysis of the rehydration of basic magnesium carbonate. J. Therm. Anal. Calorim. 2003, 71: 987-995.
    [17] Lanas J., Alvarez J. I. Dolomitic lime: thermal decomposition of nesquehonite. Thermochim. Acta 2004, 421: 123-132.
    [1] Yang H. -H., Zhang S. -Q., Chen X. -L., Zhuang Z. -X., Xu J. -G., Wang X. -R. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem. 2004, 76: 1316-1321.
    [2] Ding J., Hudalla C. J., Cook J. T., Walsh D. P., Boissel C. E., Iraneta P. C., O'Gara J. E. Synthesis and surface chemistry of spherical mesoporous organic-inorganic hybrid particles with an. integrated alcohol functionality on the pore surface. Chem. Mater. 2004, 16: 670-681.
    [3] Kodaka M. Correlation between molecular size and packing density of solvents. J. Phys. Chem. B 2004, 108: 1160-1164.
    [4] Martin T., Galameau A., Direnzo F., Brunel D., Fajula F., Heinisch S., Cretier G., Rocca J. L. Great improvement of chromatographic performance using MCM-41 spheres as stationary phase in HPLC. Chem. Mater. 2004, 16: 1725-1731.
    [5] Gallis K. W., Araujo J. T., Duff K. J., Moore J. G., Landry C. C. The use of mesoporous silica in liquid chromatography. Adv. Mater. 1999, 11: 1452-1455.
    [6] Boissiere C., Kummel M., Persin M., Larbot A., Prouzet E. Spherical MSU-1 mesoporous silica particles tuned for HPLC. Adv. Funct. Mater. 2001, 11: 129-135.
    [7] Yan C., Xue D. Novel self-assembled MgO nanosheet and its precursors. J. Phys. Chem. B 2005, 109: 12358-12361.
    [8] Zhang Z., Zheng Y., Ni Y., Liu Z., Chen J., Liang X. Temperature-and pH-dependent morphology and FT-IR analysis of magnesium carbonate hydrates. J. Phys. Chem. B 2006, 110: 12969-12973.
    [9] Zhang Z., Zheng Y., Zhang J., Zhang Q., Chen J., Liu Z., Liang X. Synthesis and shape evolution of monodisperse basic magnesium carbonate microspheres. Cryst. Growth Des. 2007, 7: 337-342.
    [10] Li Q., Ding Y., Yu G. H., Li C., Li F. Q., Qian Y. T. Fabrication of light-emitting porous hydromagnesite with rosette-like architecture. Solid State Commun. 2003, 125: 117-120.
    [11] Murata T., Howell F. S., Itatani K. Sinterability of magnesium-oxide powder containing spherical agglomerates. J. Mater. Sci. 2001, 36: 1277-1284.
    [12] Choudhary V. R., Gunjikar V. G., Pataskar S. G., Zope G. B. Influence of preparation conditions of basic magnesium carbonate on its thermal analysis. Thermochim. Acta 1994, 232: 95-110.
    [13] Sing K. S. W., Everett D. H., Haul R. A. W., Moscou L., Plerotti R. A., Rouquerol J., Siemieniewska T. Reporting physisorption data for gas/solid system with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57: 603-619.
    [14] Li W. -C., Lu A. -H., Weidenthaler C., Schuth F. Hard-templating pathway to create mesoporous magnesium oxide. Chem. Mater. 2004, 16: 5676-5681.
    [15] Makhluf S., Dror R., Nitzan Y., Abramovich Y., Jelinek R., Gedanken A. Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv. Funct. Mater. 2005, 15: 1708-1715.
    [16] Gregg S. J. Sixty years in the physical adsorption of gases. Colloids Surf. 1986, 21: 109-124.
    [17] Giamello E., Murphy D., Paganini M. C. Continuous wave electron paramagnetic resonance spectroscopy in the investigation of the surface properties and chemical reactivity of an ionic oxide(MgO). Colloids Surf. 1996, 115: 157-170.
    [18] Xu Y. J., Li J. Q., Zhang Y. F. Conversion of N_2O to N_2 on MgO (001) surface with vacancy: ADFT study. Chin. J. Chem. 2003, 21: 1123-1129.
    [19] Xu Y. J., Li J. Q., Zhang Y. F. O_2 adsorption on MgO(001) surface with oxygen and magnesium vacancies. Acta Phys. Chim. Sin. 2003, 19: 815-818.
    [20] Tench A. J., Holroyd P. The identification of O~(2-) adsorbed on magnesium oxide. Chem. Commun. 1968, 471-473.
    [21] Ferrari A. M., Pacchioni G. Surface reactivity of MgO oxygen vacancies: electrostatic mechanisms in the formation of O~(2-) and CO~- species. J. Chem. Phys. 1997, 107: 2066-2078.
    [22] Pacchioni G., Pescarmona P. Stru ture and stability of oxygen vacancies on sub-surface, terraces, and low-coordinated surface sites of MgO: an ab initio study. Surf Sci. 1998, 412/413: 657-671.
    [23] Ozaki M., Kratohvil S., Matijevic E. Formation of monodispersed spindle-type hematite particles. J. Colloid Interface Sci. 1984, 102: 146-151.
    [24] Mreeuwsma A., Lyklema J. Physical and chemical adsorption of ions in the electrical double layer on hematite (α-Fe_2O_3). J. Colloid Interface Sci. 1973, 43: 437-448.
    [25] Tomaszewski P. E., Maczka M., Majchrowski A., Waskowska A., Hanuza J. Crystal structure and vibrational properties of KMg_4(PO_4)_3. Solid State Sci. 2005,7: 1201-1208.
    [26] Kongshaug K. O., Fjellvag H., Lillerud K. P. Synthesis and crystal structure of the hydrated magnesium diphosphate Mg_2P_2O_7 center dot 3.5H_2O and its high temperature variant Mg_2P_2O_7 center dot H_2O. Solid State Sci. 2000, 2: 205-214.
    [27] Kongshaug K. O., Fjellvag H., Lillerud K. P. Synthesis and crystal structure of the organically templated open framework magnesium phosphate UiO-20 with DTF topology. Chem. Mater. 2000, 12: 1095-1099.
    [28] Schroeder L. W., Mathew M., Brown W. E. XO_4~(n-) ion hydration. The crystal structure of magnesium phosphate docosahydrate. J. Phys. Chem. 1978, 82: 2335-2340.
    [29] Li C, Lu Y. Selective flotation of scheelite from calcium minerals with sodium oleate as a collector and phosphates as modifiers. II. The mechanism of the interaction between phosphate modifiers and minerals. Int. J. Miner. Process. 1983, 10: 219-235.
    [1] Trudinger U., Muller G., Unger K. K. Porous zirconia and titania as packing materials for high-performance liquid chromatography. J. Chromatogr. 1990, 535: 111-125.
    [2] Kurganov A., Trudinger U., Isaeva T., K. Unger K. Native and modified alumina, titania and zirconia in normal and reversed-phase high-performance liquid chromatography. Chromatographia 1996, 42: 217-222.
    [3] Jaroniec C. P., Jaroniec M., Kruk M. Comparative studies of structural and surface properties of porous inorganic oxides used in liquid chromatography. J. Chromatogr. A 1998, 797: 93-102.
    [4] Kirkland J. J., van Straten M. A., H. Claessans A. High pH mobile phase effects on silica-based reversed-phase high-performance liquid chromatographic columns. J. Chromatogr. 1995, 691: 3-19.
    [5] Mao Y., Carr P. W. Separation of selected basic pharmaceuticals by reversed-phase and ion-exchange chromatography using thermally tuned tandem columns. Anal. Chem. 2001, 73: 4478-4485.
    [6] Dittmann M. M., Masuch K., Rozing G. Separation of basic solutes by reversed-phase capillary electrochromatography. J. Chromatogr. A 2000, 887: 209-221.
    [7] Valette J. C., Bizet A. C., Demesmay C., Rocca J. L., Verdon E. Separation of basic compounds by capillary electrochromatography on an X-Terra RP18(?) stationary phase. J. Chromatogr. A 2004, 1049: 171-181.
    [8] Pfleiderer B., Bayer E. Silanediol groups of the silica gel nucleosil: active sites involved in the chromatographic behaviour of bases. J. Chromatogr. 1989,468:67-71.
    [9] Koyama J., Nomura J., Ohtsu Y., Nakata O., Takahashi M. Influence of metal impurities in silica gel on protein analysis in reversed-phase HPLC. Chem. Lett. 1990, 687-690.
    [10] Vervoort R. J. M., Maris F. A., Hindriks H. Comparison of high-performance liquid chromatographic methods for the analysis of basic drugs. J. Chromatogr. 1992, 623: 207-220.
    [11] Cox G. B. The influence of silica structure on reversed-phase retention. J. Chromatogr. 1993, 656: 353-367.
    [12] McCalley D. V. Influence of organic solvent modifier and solvent strenght on peak shape of some basic compounds in high-performance liquid chromatography using a reversed-phase column. J. Chromatogr. A 1995, 708: 185-194.
    [13] Vervoort R. J. M., Debets A. J. J., Claessens H. A., Cramers C. A., de Jong G. J. Optimisation and characterisation of silica-based reversed-phase liquid chromatographic systems for the analysis of basic pharmaceuticals. J. Chromatogr. A 2000, 897: 1-22.
    [14] McCalley D. V. Effect of organic solvent modifier and nature of solute on the performance of bonded silica reversed-phase columns for the analysis of strongly basic compounds by high-performance liquid chromatography. J. Chromatogr. A 1996, 738: 169-179.
    
    [15] Kobayashi S., Tanaka I., Shirota O., Kanda T., Ohtsu Y. Synthesis and characterization of a polymer-coated C_(18) stationary phase with high carbon content for liquid chromatography. J. Chromatogr. A 1998, 828: 75-81.
    [16] Sykora D., Tesaova E., Popl M. Interactions of basic compounds in reversed-phase high-performance liquid chromatography influence of sorbent character, mobile phase composition, and pH on retention of basic compounds. J. Chromatogr. A 1997, 758: 37-51.
    [17] Fairbank R. W. P., Wirth M. J. Role of surface-adsorbed water in the horizontal polymerization of trichlorosilanes. J. Chromatogr. A 1999, 830: 285-291.
    [18] Morrison R. D., Dolan J. W. Reversed-phase LC in 100% water. How can you avoid phase collapse when 5% organic solvent is too strong? LC-GC 2000, 18: 936-939.
    [19] Kirkland J. J., Adams J. B., van Straten M. A., Claessens H. A. Bidentate silane stationary phases for reversed phase high-performance liquid chromatography. Anal. Chem. 1998, 70: 4344-4352.
    [20] Nawrocki J., Dunlap C., McCormick A., Carr P. W. Part I. Chromatography using ultra-stable metal oxide-based stationary phases for HPLC. J. Chromatogr. A 2004, 1028: 1-30.
    [21] Lanrent C., Billiet H. A. H., de Galan L. On the use of alumina in HPLC with aqueous mobile phases at extreme pH. Chromatographia 1983, 17: 253-258.
    [22] Snyder L. R. Principles of Adsorption Chromatography. Marcel Dekker, New York, 1968, p163.
    [23] Shi Z. -G., Xu L., Da S. -L., Feng Y. -Q. Study of the magnesia additive on the characterization of zirconia-magnesia composite sphere. Micropor. Mesopor. Mater. 2006, 94: 34-39.
    [24] Sing K. S. W., Everett D. H., Haul R. A. W., Moscou L., Plerotti R. A., Rouquerol J., Siemieniewska T. Reporting physisorption data for gas/solid system with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57: 603-619.
    [25] Rouquerol J., Avnir D., Fairbridge C. W., Everett D. H., Haynes J. H., Pernicone N., Ramsay J. D. F., Sing K. S. W., Unger K. K. Recommendations for the characterization of porous solids. Pure Appl. Chem. 1994, 66: 1739-1758.
    [26] Li W. -C., Lu A. -H., Weidenthaler C., Schuth F. Hard-templating pathway to create mesoporous magnesium oxide. Chem. Mater. 2004, 16: 5676-5681.
    [27] Makhluf S., Dror R., Nitzan Y., Abramovich Y., Jelinek R., Gedanken A. Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv. Funct. Mater. 2005, 15: 1708-1715.
    [28] Gregg S. J. Sixty years in the physical adsorption of gases. Colloids Surf. 1986, 21: 109-124.
    [29] Jiang Z. T., Yu Y. -M. Synthesis of porous titania microspheres for HPLC packings by polymerization-induced colloid aggregation(PICA). Anal. Chem. 2001, 73: 686-688.
    [30] Giamello E., Murphy D., Paganini M. C. Continuous wave electron paramagnetic resonance spectroscopy in the investigation of the surface properties and chemical reactivity of an ionic oxide(MgO). Colloids Surf. 1996, 115: 157-170.
    [31] Xu Y. J., Li J. Q., Zhang Y. F. O_2 adsorption on MgO(001) surface with oxygen and magnesium vacancies. Acta Phys. Chim. Sin. 2003, 19: 815-818.
    [32] Ferrari A. M., Pacchioni G. Surface reactivity of MgO oxygen vacancies: electrostatic mechanisms in the formation of O_2~- and CO~- species. J. Chem. Phys. 1997, 107: 2066-2078.
    [33] Pacchioni G., Pescarmona P. Structure and stability of oxygen vacancies on sub-surface, terraces, and low-coordinated surface sites of MgO: an ab initio study. Surf. Sci. 1998, 412/413: 657-671.
    [34] Strain H. H. Molecular structure and adsorption sequences of carotenoid pigments. J. Am. Chem. Soc. 1948, 70: 588-591.
    [35] Sabacky M. J., Jones L. B., Frame H. D., Strain Jr. H. H. Elution capacity of organic substances in solution-adsorption chromatography. Anal. Chem. 1962, 34: 306-311.
    [36] Synder L. R. Water deactivated magnesia as a chromatographic adsorbent. J. Chromatogr. 1967, 28: 300-316.
    [37] Storr-Hansen E., Cleemann M., Cederberg T., Jansson B. Selective retention of non-ortho substituted coplanar chlorinated biphenyl congeners on adsorbents for column chromatography. Chemosphere 1992, 24: 323-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700