用户名: 密码: 验证码:
Lamb波损伤成像中的频散补偿方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Lamb波是一种板类结构中的超声导波,具有传播距离远并对结构内部和表面损伤均敏感的优点,所以广泛应用于结构健康监测中。然而,Lamb波存在多模和频散特性。即使对于单模式的监测信号,频散效应也使其波包发生扩展和变形,幅值随之减小,这种现象会随着传播距离的增大表现得越明显,严重降低了传感信号的分辨率和信噪比。本文主要研究了Lamb波的单模式产生方法和频散补偿方法,并用于提高成像分辨率。主要研究工作包括以下几个方面:
     (1)对基于PZT的Lamb波激励、传播和传感过程进行了力学建模,得到不同激励方式下的传感信号解析表达式,理论分析了Lamb波的多模特性,并在不同结构中进行了实验研究;建立了Lamb波传感模型,理论研究了不同频散特性对传感信号的影响情况,进行了数值验证。
     (2)基于Lamb波力学建模结果,对比研究了频率调节和双面激励这两种单模式激励方法;在铝板中进行了一维近邻多损伤监测,考察了双面激励方法提高Lamb波监测分辨率的能力;理论分析了延迟叠加成像原理,并研究了基于复小波变换的信号包络提取方法;提出利用双面激励来提高延迟叠加成像的分辨率,在铝板中进行了实验验证。
     (3)分别研究了非频散信号构建(ND-SC)和时间-距离域映射(TDDM)两种基于理论波数曲线的频散补偿方法,分别给出了基于宽带激励或窄带激励的ND-SC和TDDM实现过程。对利用阶跃激励获取结构脉冲响应进行了实验研究。提出了基于ND-SC和TDDM的高分辨率损伤成像方法,在铝板中进行了实验验证。
     (4)针对ND-SC和TDDM扰乱信号频谱以及需要绝对波数曲线的问题,分别研究了线性频散信号构建(LD-SC)方法和改进的时间-距离域映射(ITDDM)方法。研究了Lamb波相对波数曲线的测量方法,证明了基于相对波数测量曲线的LD-SC和ITDDM的可行性。提出了基于LD-SC和ITDDM的高分辨率损伤成像方法,分别在铝板和材料参数未知的玻璃纤维复合材料板中进行了实验验证。
     (5)理论和实验研究了时间反转(TR)对Lamb波信号的自动频散补偿作用。针对传统TR方法消除补偿波包时间信息以及TR物理操作复杂的问题,提出了虚拟时间反转(VTR)方法。VTR方法中,采用换元激励和接收机制(CERM)代替固定激励和接收机制(FERM)以保留信号时间信息,并通过信号运算虚拟进行基于CERM的TR操作。给出了基于阶跃激励的VTR实现过程,提出了基于VTR的高分辨率损伤成像方法。分别在铝板、玻璃纤维复合材料板以及碳纤维复合材料板中进行了实验研究。
Lamb waves, a kind of guided ultrasonic waves in plate-like structures, are widely used instructural health monitoring (SHM), because of the ability of long-distance transmission and highsensitivity to both the surface and the internal defects. However, Lamb waves have multi-mode anddispersion characteristics. Even for the single-mode signals, the wavepackets can spread out in timeand space with their envelopes deformed and amplitudes decreased, due to the dispersion effect. Theeffect will become more serious with longer traveling distance, resulting in extremely poorerresolution and signal-to-noise-rate (SNR) for sensor signals. In the dissertation, the single modegeneration and dispersion compensation methods are studied and adopted to improve the damageimaging resolution. The main works are as follows:
     (1) After mechanical modeling for the procedure of Lamb wave exciting, propagating andreceiving with PZT wafers, the analytical expressions of the sensor signals under different excitationmanners are derived. The multi-mode characteristic of Lamb waves is then analyzed and validated byexperiments in different structures. Moreover, the sensing modal of Lamb waves is also established.The effects of different dispersion relations on sensor signals are theoretically and numericallyinvestigated.
     (2) With the mechanical modeling results, two single mode generation methods, frequencytuning and double-side excitation, are compared. To prove the ability of double-side excitation ofimproving Lamb wave monitoring resolution, the one-dimension localization for adjacent multipledamages is carried out in an aluminum plate. Hereafter, the delay-and-sum imaging theory is studiedtogether with signal envelope extraction method using complex wavelet transform. Double-sideexcitation is then used to enhance the delay-and-sum imaging resolution and its efficiency isexperimentally verified.
     (3) Two dispersion removal methods based on theoretical wavenumber curves, i.e.,non-dispersive signal construction (ND-SC) and time-to-distance domain mapping (TDDM) areresearched. The implement procedures of these two approaches are also discussed consideringbroadband or narrowband excitation. The method to estimate the structural impulse responses withstep pulse excitation is experimentally studied. The high-resolution imaging methods based onND-SC and TDDM are developed and validated.
     (4) To solve the problems of seriously distorbing the signal spectra and requiring absolute wavenumber curves in ND-SC and TDDM, linear-dispersive signal construction (LD-SC) andimproved TDDM (ITDDM) methods are studied, respectively. The method of measuring the relativewavenumber curve is introduced and the feasibility of using LD-SC and ITDDM with relativewavenumber curves is testified. The methods of LD-SC and ITDDM are then applied to improve theimaging resolution in both the aluminum plate and the glass-fiber composite plate with unknownmaterial parameters.
     (5) Automatically compensating dispersion effect in Lamb wave signals through time reversal(TR) is analyzed. To overcome the problems that traditional TR method eliminates propagation timeof Lamb waves and its procedure is complicated, a virtual time reversal (VTR) method is developed.In VTR, changing-element exciting and receiving mechanism (CERM) rather than fixed exciting andreceiving mechanism (FERM) is adopted for time information reservation. Furthermore, the physicalmanipulations of CERM-based TR are replaced by signal operations. The VTR realization under steppulse excitation is discussed. The high-resolution imaging method based on VTR is introduced. Toverify the proposed imaging method, the experiments are arranged in an aluminum plate, a glass-fibercomposite plate and a carbon-fiber composite plate, respectively.
引文
[1]陶宝祺.智能材料结构.北京:国防工业出版社,1997.
    [2]袁慎芳.结构健康监控.北京:国防工业出版社,2007.
    [3] Sohn H, Farrar R, Hemez F, et al. A review of structural health monitoring literature:1996-2001. Los Alamos National Laboratory Report, LA-13976-MS,2003.
    [4] Farrar CR, Sohn H, Hemez FM, et al. Damage prognosis: current status and future needs. LosAlamos National Laboratory Report, LA-14051-MS,2003.
    [5] Kabashima S, Ozaki T, Takeda N. Damage Detection of Satellite Structures by Optical Fiberwith Small Diameter, Smart Structures and Materials2000: Smart Structures and IntegratedSystems, Proceedings of SPIE,2000,3(985):343~351.
    [6] Matsuzaki Y. Smart Structures Research in Japan. Smart Materials and Structures,1997,6(4):1~10.
    [7]欧进萍,肖仪清,黄虎杰,等.海洋平台结构实时安全监测系统.海洋工程,2001,19(2):1~6
    [8] Lia HN, Lia DS and Song GB. Recent applications of fiber optic sensors to health monitoring incivil engineering. Engineering Structures,2004,26(11):1647-1657.
    [9] Loayssa A. Optical Fiber Sensors for Structural Health Monitoring. In: Mukhopadhyay S.(ed.)New Developments in Sensing Technology for Structural Health Monitoring. Heidelberg:Springer-Verlag;2011.335-358.
    [10] Speckmann H, Henrich R. Structural health monitoring (SHM)-overview on technologiesunder development. In: Proceedings of the16th world conference on NDT (WCNDT). Montreal,Canada, August30-September3,2004.
    [11] Lin B, Giurgiutiu V. Modeling and testing of PZT and PVDF piezoelectric wafer active sensors.Smart Materials and Structures,2006,15(4):1085-1093.
    [12] Boller C. Next generation structural health monitoring and its integration into aircraft design.International Journal of Systems Science,2000,31(11):1333-1349.
    [13] Raghavan A, Cesnik CES. Review of guided-wave structural health monitoring. The Shock andVibration Digest,2007,39(2):91-114.
    [14] Sodano HA. Development of an automated eddy current structural health monitoring techniquewith an extended sensing region for corrosion detection. Structural Health Monitoring,2007,6(2):111-119.
    [15] Zilberstein V, Walrath K, Grundy D, et al. MWM eddy-current arrays for crack initiation andgrowth monitoring. International Journal of Fatigue,2003,25(9-11):1147-1155.
    [16] Goldfine N, Zilberstein V, Schlicker D, et al. Surface Mounted Periodic Field Eddy CurrentSensors for Structural Health Monitoring. In: Kundu T(ed.). Smart Structures and Materials,NDE for Health Monitoring and Diagnosis, SPIE Conference Proceedings, Newport Beach, CA,March4-8,2001.
    [17] Varadan VK, Varadan VV. Microsensors, microelectromechanical systems (MEMS), andelectronics for smart structures and systems. Smart Materials and Structures,2000,(6):953-972.
    [18] Yuan SF, Liang DK, Shi LH, et al. Recent Progress on Distributed Structural Health MonitoringResearch at NUAA. Journal of Intelligent Material Systems and Structures,2008,19(3):373-386.
    [19] Qing XL, Beard SJ, Kumar A, et al. Advances in the development of built-in diagnostic systemfor filament wound composite structures. Composites Science and Technology,2006,66(11-12):1694-1702.
    [20] Lin M, Chang FK. The manufacture of composite structures with a built-in network ofpiezoceramics. Composites Science and Technology,2002,62(7-8):919-939.
    [21] Qing XL, Kumar A, Zhang C. A hybrid piezoelectric/fiber optic diagnostic system for structuralhealth monitoring. Smart Materials and Structures,2005,14(3): S98-S103.
    [22] Lemistre MB, Balageas DL. A hybrid electromagnetic acousto-ultrasonic method for SHM ofcarbon/epoxy structures. Structural Health Monitoring,2003,2(2):153-160.
    [23] Giurgiutiu V. Structural health monitoring with piezoelectric wafer active sensors. Boston:Elsevier Academic Press,2008.
    [24] Lamb H. On waves in an elastic plate. Proceedings of the Royal Society,1917,93(651):114-128.
    [25] Yuan S, Wang L, Shi L. Active monitoring for on-line damage detection in composite structures.Journal of Vibration and Acoustics,2003,125(2):178-186.
    [26] Yuan S, Wang L, Peng G. Neural network method based on a new damage signature forstructural health monitoring. Thin Walled Structure,2005,43(4):553-563.
    [27]公聪聪.采用压电贴层的智能结构健康监测技术研究,[硕士学位论文].南京:解放军理工大学,2008.
    [28]张灵妍.基于波包分解模型的Lamb波无损伤检测技术研究,[硕士学位论文].南京:解放军理工大学,2004.
    [29] Su Z, Ye L, Lu Y. Guided Lamb waves for identification of damage in composite structures: Areview. Journal of Sound and Vibration,2006,295(3-5):753-780.
    [30] Li F, Murayama H, Kageyama K, et al. Guided wave and damage detection in compositelaminates using different fiber optic sensors. Sensors,2009,9(5):4005-4021.
    [31] Ayres JW, Lalande F, Chaudhry Z, et al. Qualitative impedance-based health monitoring of civilinfrastructures. Smart Materials and Structures,1998,7(5):599-605.
    [32] Giurgiutiu V, Rogers C A. Recent advancements in the electro-mechanical (E/M) impedancemethod for structural health monitoring and NDE. In: Proc. Conf. on Smart Structures andMaterials. San Diego, CA, USA,1998,3329:536-547.
    [33] Gyuhae P, Sohn H, Farrar CR, et al. Overview of piezoelectric impedance-based healthmonitoring and path forward. The Shock and Vibration Digest,2003,35(6):451-463.
    [34] Liang C, Sun FP, Rogers CA. Coupled electro-mechanical analysis of adaptive materialsystem-determination of the actuator power consumption and system energy Transfer. Journal ofIntelligent Material Systems and Structures,1994,5(1):12-20.
    [35] Peairs DM, Park G, Inman DJ. Improving accessibility of the impedance-based structural healthmonitoring method. Journal of Intelligent Material Systems and Structures,2004,15(2):129-139.
    [36] Montalvao D, Maia NMM and Ribeiro AMR. A review of vibration-based structural healthmonitoring with special emphasis on composite materials. The Shock and Vibration Digest,2006,38(4):295-324.
    [37] Farrar CR, Doebling SW, Nix DA. Vibration-based structural damage identification.Philosophical transactions of the Royal Society: Mathematical, Physical, and Engineeringsciences,2001,359(1778):131-149.
    [38] Messina A, Williams EJ, Contursi T. Structural damage detection by a sensitivity andstatistical-based method. Journal of Sound and Vibration,1998,216(5):791-808.
    [39] Pascual R, Golinval JC, Razeto M. A frequency domain correlation technique for modelcorrelation and updating. In: Proceedings of the15th International Modal Analysis Conference,Orlando, U.S.A,1997:587-592.
    [40] Zang C, Friswell MI, Imregun M. Structural health monitoring and damage assessment usingmeasured FRFs from multiple sensors, part I: the indicator of correlation criteria. KeyEngineering Materials,2003,245-246(131):131-140.
    [41] Doebling SW, Farrar CR, Prime MB. Review of vibration-based damage identification methods.Shock and Vibration Digest,1998,30(2):91-104.
    [42] Gostautas RS, Ramirez G, Peterman RJ. Acoustic emission monitoring and analysis of glassfiber-reinforced composites bridge decks. Journal of Bridge Engineering,2005,10(6):713-721.
    [43] Nair A, Cai CS. Acoustic emission monitoring of bridges: review and case studies. EngineeringStructures,2010,32(6):1704-1714.
    [44] Groot PJ, Wijnen PA, Janssen RB. Real-time frequency determination of acoustic emission fordifferent fracture mechanisms in carbon epoxy composites. Composites Science and Technology,1995,55(4):405-412.
    [45] Morscher GN. Modal acoustic emission of damage accumulation in a woven SiC/SiC composite.Composites Science and Technology,1999,59(5):687-697.
    [46] Surgeon M, Wevers M. Modal analysis of acoustic emission signals from CFRP laminates.NDT&E International,1999,32(6):311-322.
    [47] Silva-Munoz RA, Lopez-Anido RA. Structural health monitoring of marine compositestructural joints using embedded fiber Bragg grating strain sensors. Composite Structures,2009,89(2):224-234.
    [48] Kesavan A, John S, Herszberg I. Strain-based structural health monitoring of complexcomposite structures. Structural Health Monitoring,2008,7(3):203-213.
    [49] Li HCH, Herszberg I, Davis CE, et al. Health monitoring of marine composite structural jointsusing fibre optic sensors. Composite Structures,2006,75(1-4):321-327.
    [50] Wishaw M, Barton DP. Comparative vacuum monitoring: a new method of in-situ, real-timecrack detection and monitoring. In: Proceding of10th Asia-Pacific Conference OnNondestructive Testing, Brisbane,2001.
    [51] Stehmeier H, Speckmann H. Comparative Vacuum Monitoring (CVM) Monitoring of fatiguecracking in aircraft structures. In:2nd European Workshop on Structural Health Monitoring,Munich, Germany, July7-9,2004.
    [52] Kousourakis A, Mouritz AP, Bannister MK. Interlaminar properties of polymer laminatescontaining internal sensor cavities. Composite Structures,2006,75(1-4):610-618.
    [53] Ihn JB, Chang FK. Detection and monitoring of hidden fatigue crack growth using a built-inpiezoelectric sensor/actuator network: I. Diagnostics. Smart Materials and Structures,2004,13(3):609-620.
    [54] Ihn JB, Chang FK. Pitch-catch active sensing methods in structural health monitoring foraircraft structures. Structural Health Monitoring,2008,7(1):5-19.
    [55] Lu Y, Ye L, Su Z. Quantitative assessment of through-thickness crack size based on Lamb wavescattering in aluminium plates. NDT&E International,2008,41(1):59-68.
    [56] Lu Y, Ye L, Su Z. Quantitative evaluation of crack orientation in aluminium plates based onLamb waves. Smart Materials and Structures,2007,16(5):1907-1914.
    [57] Kim YH, Kim DH, Han JH, et al. Damage assessment in layered composites using spectralanalysis and Lamb wave. Composites Part B: Engineering,2007,38(7-8):800-809.
    [58] Sohn H, Park G, Wait JR, et al. Wavelet-based active sensing for delamination detection incomposite structures. Smart Materials and Structures,2004,13(1):153-160.
    [59] Lu Y, Ye L, Su Z, et al. Artificial neural network (ANN)-based crack identification in aluminumplates with Lamb wave signals. Journal of Intelligent Material Systems and Structures,2009,20(1):39-49.
    [60]孙亚杰,袁慎芳,王帮峰.极值理论在复合材料结构健康监测中的应用研究.宇航学报,2007,28(5):1366-1370.
    [61] DN Alleyne, Cawley P. The interaction of Lamb waves with defects. IEEE Transactions onUltrasonics, Ferroelectrics, and Frequency Control,1992,39(3):381-397.
    [62] Cho Y, Rose JL. A boundary element solution for a mode conversion study on the edgereflection of Lamb waves. Journal of the Acoustical Society of America,1996,99(4):2097-2109.
    [63] Cho Y. Estimation of ultrasonic guided wave mode conversion in a plate with thicknessvariation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2000,47(3):591-603.
    [64] Castaings M, Clezio EL, Hosten B. Modal decomposition method for modeling the interactionof Lamb waves with cracks. Journal of the Acoustical Society of America,2002,112(6):2567-2582.
    [65] Shkerdin G, Glorieux C. Lamb mode conversion in a plate with a delamination. Journal of theAcoustical Society of America,2004,116(4):2089-2100.
    [66] Shkerdin G, Glorieux C. Lamb mode conversion in an absorptive bi-layer with a delamination.Journal of the Acoustical Society of America,2005,118(4):2253-2264.
    [67] Kazys R, Mazeika L, Barauskas R.3D Analysis of interaction of Lamb waves with defects inloaded steel plates. Ultrasonics,2006,44(1): e1127-e1130
    [68] Cegla FB, Rohde A, Veidt M. Analytical prediction and experimental measurement for modeconversion and scattering of plate waves at non-symmetric circular blind holes in isotropicplates. Wave Motion,2008,45(3):162-177
    [69] Kim SB, Sohn H. Instantaneous reference-free crack detection based on polarizationcharacteristics of piezoelectric materials. Smart Materials and Structures,2007,16(6):2375-2387.
    [70] Sohn H. Reference-free crack detection under varying temperature. KSCE Journal of CivilEngineering,2011,15(8):1395-1404.
    [71] Sohn H, Kim SB. Development of dual PZT transducers for reference-free crack detection inthin plate structures. IEEE transactions on ultrasonics, ferroelectrics, and frequency control,2010,57(1):229-240.
    [72] Toyama N, Okabe T, Takeda N. Lamb wave evaluation and localization of transverse cracks incross-ply laminates. Journal of materials science,2003,38(8):1765-1771.
    [73] Diamanti K, Soutis C, Hodgkinson JM. Lamb waves for the non-destructive inspection ofmonolithic and sandwich composite beams. Composites Part A: Applied Science andManufacturing,2005,36(2):189-195.
    [74] Rosalie SC,Vaughan M,Bremner A, et al. Variation in the group velocity of Lamb waves as atool for the detection of delamination in GLARE aluminium plate-like structures. CompositeStructures,2004,66(1-4):77-86.
    [75] Toyama N, Takatsubo J. Lamb wave method for quick inspection of impact-induceddelamination in composite laminates. Composites science and technology,2004,64(9):1293-1300.
    [76] Petculescu G, Krishnaswamy S, Achenbach JD. Group delay measurements using modallyselective Lamb wave transducers for detection and sizing of delaminations in composites. SmartMaterials and Structures,2008,17(1):015007.1-015007.9.
    [77] Ramadas C, Padiyar MJ, Balasubramaniam K, et al. Delamination size detection using time offlight of anti-symmetric (A0) and mode converted A0mode of guided Lamb waves. Journal ofIntelligent Material Systems and Structures,2010,21(8):817-825.
    [78] Malyarenko EV, Hinders MK. Fan beam and double crosshole Lamb wave tomography formapping flaws in aging aircraft structures. The Journal of the Acoustical Society of America,2000,108(4):1631-1639.
    [79] Leonard KR, Hinders MK. Multi-mode Lamb wave tomography with arrival time sorting. TheJournal of the Acoustical Society of America,2005,117(4):2028-2038.
    [80] Ip KH, Mai YW. Delamination detection in smart composite beams using Lamb waves. Smartmaterials and structures,2004,13(3):544-551.
    [81] Hu N, Shimomukai T, Yan C. Identification of delamination position in cross-ply laminatedcomposite beams using S0Lamb mode. Composites Science and Technology,2008,68(6):1548-1554.
    [82] Quek ST, Tua PS, Jin J. Comparison of plain piezoceramics and inter-digital transducer forcrack detection in plates. Journal of Intelligent Material Systems and Structures, September,2007,18(9):949-961.
    [83] Tua PS, Quek ST, Wang Q. Detection of cracks in plates using piezo-actuated Lamb waves.Smart materials and structures,2004,13(4):643-660.
    [84] Yuan SF, Xu YD, Peng G. New developments in structural health monitoring based ondiagnostic Lamb wave. Journal of Materials Science&Technology,2004,20(5):490-496.
    [85]徐颖娣,袁慎芳,彭鸽.二维结构损伤的主动Lamb波定位技术研究.航空学报,2004,25(5):476-479.
    [86]彭鸽,袁慎芳,徐颖娣.基于主动Lamb波和小波变换的二维结构损伤定位研究.振动工程学报,2004,17(4):488-493.
    [87] Lemistre M, Balageas D. Structural health monitoring system based on diffracted Lamb waveanalysis by multiresolution processing. Smart Materials and Structures,2001,10(3):504-511.
    [88] Lu Y, Su Z, Ye L. Crack identification in aluminium plates using Lamb wave signals of a PZTsensor network. Smart Materials and Structures,2006,15(3):839-849.
    [89] Su Z, Wang X, Chen Z. A built-in active sensor network for health monitoring of compositestructures. Smart Materials and Structures,2006,15(6):1939-1949.
    [90] Su Z, Ye L, Bu X. A damage identification technique for CF/EP composite laminates usingdistributed piezoelectric transducers. Composite structures,2002,57(1):465-471.
    [91] Su Z, Wang X, Chen Z. A hierarchical data fusion scheme for identifying multi-damage incomposite structures with a built-in sensor network. Smart Materials and Structures,2007,16(6):2067-2079.
    [92] Moll J, Schulte RT, Hartmann B, et al. Multi-site damage localization in anisotropic plate-likestructures using an active guided wave structural health monitoring system. Smart Materials andStructures,2010,19(4):45022-45037.
    [93] Giurgiutiu V, Bao JJ. Embedded-ultrasonics structural radar for in situ structural healthmonitoring of thin-wall structures. Structural Health Monitoring,2004,3(2):121-140.
    [94] Yu L, Giurgiutiu V. In situ2-D piezoelectric wafer active sensors arrays for guided wavedamage detection. Ultrasonics,2008,48(2):117-134.
    [95] Yu L, Giurgiutiu V. In-situ optimized PWAS phased arrays for Lamb wave structural healthmonitoring. Journal of Mechanics of Materials and Structures,2007,2(3):459-487.
    [96] Wilcox PD. Omni-directional guided wave transducer arrays for the rapid inspection of largeareas of plate structures. IEEE Transactions on Ultrasonics, Ferroelectrics, and FrequencyControl,2003,50(6):699-709.
    [97] Fromme P, Wilcox PD, Lowe MJS. On the development and testing of a guided ultrasonic wavearray for structural integrity monitoring. IEEE Transactions on Ultrasonics, Ferroelectrics, andFrequency Control,2006,53(4):777-785.
    [98] Rajagopalan J, Balasubramaniam K, Krishnamurthy CV. A single transmitter multi-receiver(STMR) PZT array for guided ultrasonic wave based structural health monitoring of largeisotropic plate structures. Smart Materials and Structures,2006,15(5):1190-1196.
    [99] Rajagopalan J, Balasubramaniam K, Krishnamurthy CV. A phase reconstruction algorithm forLamb wave based structural health monitoring of anisotropic multilayered composite plates.Journal of the Acoustical Society of America,2006,119(2):872-878.
    [100] Vishnuvardhan J, Muralidharan A, Krishnamurthy CV, et al. Structural health monitoring ofanisotropic plates using ultrasonic guided wave STMR array patches. NDT&E International,2009,42(3):193–198.
    [101] Purekar AS, Pines DJ, Sundararaman S, et al. Directional piezoelectric phased array filters fordetecting damage in isotropic plates. Smart Materials and Structures,2004,13(4):838-850.
    [102] Purekar AS, Pines DJ. Damage detection in thin composite laminates using piezoelectric phasedsensor arrays and guided Lamb wave interrogation. Journal of Intelligent Material Systems andStructures,2010,21(10):995-1010.
    [103] Malinowski P, Wandowski T, Trendafilova I, et al. A phased array-based method for damagedetection and localization in thin plates. Structural Health Monitoring,2009,8(1):5-15.
    [104] Sundararaman S, Adams DE, Rigas EJ. Structural damage identification in homogeneous andheterogeneous structures using beamforming. Structural Health Monitoring,2005,4(2):171-190.
    [105]孙亚杰.基于超声相控阵原理的结构健康监测技术研究,[博士学位论文].南京:南京航空航天大学,2010.
    [106]孙亚杰,袁慎芳,蔡建.基于超声相控阵的材料结构健康监测实验研究.宇航学报,2008,29(4):1393-1396.
    [107]孙亚杰,袁慎芳,邱雷,等.基于Lamb波相控阵和图像增强方法的损伤监测.航空学报,2009,30(7):1325-1330.
    [108]骆英,徐佳,李伯全,等.基于FPGA技术的新型相控阵驱动电路.仪表技术与传感器,2011,12(12):89-92.
    [109]杨平,郭景涛,施克仁.超声相控阵二维面阵实现三维成像研究进展. NDT无损检测,2007,29(4):177-180.
    [110] Leonard KR, Malyarenko EV, Hinders MK. Ultrasonic Lamb wave tomography. InverseProblems,2002,18(6):1795-1808.
    [111] McKeon JCP, Hinders MK. Parallel projection and crosshole Lamb wave contact scanningtomography. Journal of the Acoustical Society of America,1999,106(5):2568-2577.
    [112] Hou J, Leonard KR, Hinders MK. Automatic multi-mode Lamb wave arrival time extraction forimproved tomographic reconstruction. Inverse Problems,2004,20(6):1873-1888.
    [113] Malyarenko EV, Hinders MK. UltrasonicLambwave diffraction tomography. Ultrasonics,2001,39(4):269–281.
    [114] Rohde AH, Veidt M, Rose LRF, et al. A computer simulation study of imaging flexuralinhomogeneities using plate-wave diffraction tomography. Ultrasonics,2008,48(1):6-15.
    [115] Belanger P, Cawley P. Feasibility of low frequency straight-ray guided wave tomography.NDT&E International,2009,42(2):113–119.
    [116] Prasad SM, Balasubramaniam K, Krishnamurthy CV. Structural health monitoring of compositestructures using Lamb wave tomography. Smart Materials and Structures,2004,13(5):N73-N79.
    [117] Khare S, Razdan M, Munshi P, et al. Defect detection in carbon-fiber composites usingLamb-wave tomographic methods. Research in Nondestructive Evaluation,2007,18(2):101-119.
    [118] Sekhar BVS, Balasubramaniam K, Krishnamurthy CV. Structural health monitoring offiber-reinforced composite plates for low-velocity impact damage using ultrasonic Lamb wavetomography. Structural Health Monitoring,2006,5(3):243-253.
    [119] Hay TR, Royer RL, Gao H, et al. A comparison of embedded sensor Lamb wave ultrasonictomography approaches for material loss detection. Smart Materials and Structures,2006,15(4):946-951.
    [120] Zhao X, Gao H, Zhang G, et al. Active health monitoring of an aircraft wing with embeddedpiezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring.Smart Materials and Structures,2007,16(4):1208-1217.
    [121] Wang D, Ye L, Lu Y, et al. Probability of the presence of damage estimated from an activesensor network in a composite panel of multiple stiffeners. Composites Science and Technology,2009,69(13):2054–2063.
    [122] Lin X, Yuan FG. Damage detection of a plate using migration technique. Journal of IntelligentMaterial Systems and Structures,2001,12(7):469-482.
    [123] Lin X, Yuan FG. Detection of multiple damages by prestack reverse-time migration. AIAAJournal,2001,39(11):2206-2215.
    [124] Lin X, Yuan FG. Experimental study applying a migration technique in structural healthmonitoring. Structural health monitoring,2005,4(4):341-353.
    [125] Wang L, Yuan FG. Damage identification in a composite plate using prestack reverse-timemigration technique. Structural Health Monitoring,2005,4(3):195-211.
    [126] Zhou L, Yuan FG, Meng WJ. A pre-stack migration method for damage identification incomposite structures. Smart Structures and Systems,2007,3(4):439-454.
    [127]孟伟杰.基于兰姆波叠前逆时偏移方法实现复合材料结构健康监测,[硕士学位论文].南京:南京航空航天大学,2006.
    [128]严刚,周丽.基于频率-波数域偏移方法的板结构损伤实时识别.振动工程学报,2008,21(6):620-625.
    [129]严刚,周丽.基于Mindlin板理论的偏移损伤成像数值仿真研究.力学学报,2010,21(6):499-505.
    [130]严刚,周丽.基于频率-波数域偏移的损伤被动成像识别研究.固体力学学报,2011,32(S):273-279.
    [131] Michaels JE, Michaels TE. Enhanced differential methods for guided wave phased arrayimaging using spatially distributed piezoelectric transducers. AIP Conference Proceedings,2006,820:837-844.
    [132] Michaels JE, Michaels TE. Guided wave signal processing and image fusion for in situ damagelocalization in plates. Wave Motion,2007,44(6):482–492.
    [133] Michaels JE. Detection, localization and characterization of damage in plates with an in situarray of spatially distributed ultrasonic sensors. Smart Materials and Structures,2008,17(3):035035.1-035035.15.
    [134] Michaels JE, Hall JS, Michaels TE. Adaptive imaging of damage from changes in guided wavesignals recorded from spatially distributed arrays. Health Monitoring of Structural andBiological Systems2009. Edited by Kundu, Tribikram. Proceedings of the SPIE, Volume7295,pp.729515-729515-11(2009).
    [135] Hall JS, Michaels JE. Minimum variance ultrasonic imaging applied to an in situ sparse guidedwave array. IEEE Transactions on Ultrasonics, Ferroelectrics,2010,57(10):2311-2323.
    [136] Hall JS, McKeon P, Satyanarayan L, et al. Minimum variance guided wave imaging in aquasi-isotropic composite plate. Smart Materials and Structures,2011,20(2):25013-25020.
    [137] Hall JS, Michaels JE. Computational efficiency of ultrasonic guided wave imaging algorithms.IEEE Transactions on Ultrasonics, Ferroelectrics,2011,58(1):244-248.
    [138] Ng CT, Veidt M. A Lamb-wave-based technique for damage detection in composite laminates.Smart Materials and Structures,2009,18(9):074006.1-074006.12.
    [139] Wang CH, Rose JT, Chang FG. A synthetic time-reversal imaging method for structural healthmonitoring. Smart Materials and Structures,2004,13(2):415-423.
    [140]王强,袁慎芳.主动Lamb波损伤成像监测中的波包重建方法.宇航学报,2009,30(3):1207-1211.
    [141] Wang Q, Yuan S F. Baseline-free imaging method based on new PZT sensor arrangements.Journal of Intelligent Material Systems and Structures,2009,20(14):1663-1673.
    [142] Sicard S, J Goyette J, Zellouf D. A SAFT algorithm for lamb wave imaging of isotropicplate-like structures. Ultrasonics,2002,39(7):487-494.
    [143] Sicard S, Chahbaz A.Goyette J. Guided Lamb waves and L-SAFT processing technique forenhanced detection and imaging of corrosion defects in plates with small depth-to wavelengthratio. IEEE Transactions on Ultrasonics, Ferroelectrics,2004,51(10):1287-1297.
    [144] Su Z, Cheng L, Wang X, et al. Predicting delamination of composite laminates using an imagingapproach. Smart Materials and Structures,2009,18(7):074002.1-074002.8.
    [145] Wilcox P, Lowe M, Cawley P. The effect of dispersion on long-range inspection using ultrasonicguided waves. NDT&E International,2001,34(1):1-9.
    [146] Giurgiutiu V. Tuned Lamb wave excitation and detection with piezoelectric wafer active sensorsfor structural health monitoring. Journal of Intelligent Material Systems and Structures,2005,16(4):291-305.
    [147] Xu B, Giurgiutiu V. Single mode tuning effects on Lamb wave time reversal with piezoelectricwafer active sensors for structural health monitoring, Journal of Nondestructive Evaluation,2007,26(2-4):123-134.
    [148] Santoni GB, Yu L, Xu B. Lamb wave-mode tuning of piezoelectric wafer active sensors forstructural health monitoring. Journal of Vibration and Acoustics,2007,129(6):752-762.
    [149] Yu L, Santoni GB, Giurgiutiu V. Shear lag solution for tuning ultrasonic piezoelectric waferactive sensors with applications to Lamb wave array imaging. International Journal ofEngineering Science,2010,48(10):848–861.
    [150] Raghavan A, Cesnik CES. Modeling of piezoelectric-based Lamb wave generation and sensingfor structural health monitoring. Smart Structures and Materials2004: Sensors and SmartStructures Technologies for Civil, Mechanical, and Aerospace Systems. Edited by Liu, Shih-Chi.Proceedings of the SPIE, Volume5391, pp.419-430(2004).
    [151] Bottai GS, Chrysochoidis NA, Giurgiutiu V, et al. Analytical and experimental evaluation ofpiezoelectric wafer active sensors performances for Lamb waves based structural healthmonitoring in composite laminates. In: Kundu Tribikram(ed.). Health Monitoring of Structuraland Biological Systems2007. Proceedings of the SPIE,2007,6532:65320N.
    [152] Wooh SC, Shi Y. Synthetic phase tuning of guided waves. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control,2001,48(1):209-223.
    [153] Glushkov EV, Glushkova NV, Kvasha OV, et al. Selective Lamb mode excitation bypiezoelectric coaxial ring actuators. Smart Materials and Structures,2010,19(3):035018.1-035018.7.
    [154] Grondel S, Paget C, Delebarre C, et al. Design of optimal configuration for generating A Lambmode in a composite plate using piezoceramic transducers. The Journal of the AcousticalSociety of America,2002,112(1):84-90.
    [155] Su Z, Ye L. Selective generation of Lamb wave modes and their propagation characteristics indefective composite laminates. Journal of Materials: Design and Applications,2004,218(2):95-110.
    [156] Wang X, Lu Y, Tang J. Damage detection using piezoelectric transducers and the Lamb waveapproach: I. System analysis. Smart Materials and Structures,2008,17(2):1-15.
    [157] Kim YH, Kim DH, Han JH. Damage assessment in layered composites using spectral analysisand Lamb wave. Composites: Part B,2007(7-8),38:800-809.
    [158] Yeuma CM, Sohna H, Ihn JB. Lamb wave mode decomposition using concentric ring andcircular piezoelectric transducers. Wave Motion,2011,48(4):358–370.
    [159] Alleyne DN, Cawley P. Optimization of Lamb wave inspection techniques. NDT&EInternational,1992,25(1):11–22.
    [160] Cawley P, Alleyne DN. The use of Lamb waves for the long range inspection of large structures.Ultrasonics,1996,34(2-5):287–290.
    [161] Yamasaki T, Tamai S, Hirao M. Optimum excitation signal for long-range inspection of steelwires by longitudinal waves. NDT&E International,2001,34(3):207–212.
    [162] Alleyne D, Pialucha TP, Cawley P. A signal regeneration technique for long-range propagationof dispersive Lamb waves. Ultrasonics,1993,31(3):11-22.
    [163] Sicard R, Goyette J, Zellouf D. A numerical dispersion compensation technique for timerecompression of Lamb wave signals. Ultrasonics,2002,40(1-8):727–732.
    [164] Wilcox PD. A rapid signal processing technique to remove the effect of dispersion from guidedwave signals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2003,50(4):419-427.
    [165] Engholm M, Stepinski T. Adaptive beamforming for array imaging of plate structures usinglamb waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2010,57(12):2712-2724.
    [166]倪园,程建政,张德俊,等.利用频散补偿法消除兰姆波频散效应.无损检测,2008,30(7):412-414.
    [167]焦敬品,何存富,吴斌,等.基于时间一空间变换的超声导波检测新技术研究.工程力学,2005,22(5):89-93.
    [168] Booer AK, Chambers J, Mason IM. Fast numerical algorithm for the recompression of dispersedtime signals. Electronics Letters,1977,13(6):453-455.
    [169] Liu L, Yuan FG. A linear mapping technique for dispersion removal of Lamb waves. StructuralHealth Monitoring,2010,9(1):75-86.
    [170] Xu B, Yu L, Giurgiutiu V. Lamb Wave Dispersion Compensation in Piezoelectric Wafer ActiveSensor Phased-Array Applications In: Kundu Tribikram(ed.). Health Monitoring of Structuraland Biological Systems2009. Proceedings of the SPIE,2009,7295.
    [171] Fink M. Time reversal of ultrasonic fields-part I: Basic principles. IEEE Transactions onUltrasonics, Ferroelectrics, and Frequency Control,1992,39(5):555-566.
    [172] Wu F, Thomas JL, Fink M. Time reversal of ultrasonic fields-part II: Experimental Results.IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1992,39(5):567-578.
    [173] Cassereau D, Fink M. Time-reversal of ultrasonic fields. III. Theory of the closed time-reversalcavity. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1992,39(5):579-592.
    [174] Fink M, Cassereau D, Derode A, et al. Time-reversed acoustics. Reports on Progress in Physics,2000,63(12):1933-1955.
    [175] Fink M, Prada C, Wu F, et al. Self-focusing in inhomogeneous media with “time-reversal”acoustic mirrors. In: McAvoy BR(ed.). Proc. IEEE Utrason. Symp.1989,2:681-686.
    [176] Ing RK, Fink M. Time reversed Lamb waves. IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control,1998,45(4):1032-1043.
    [177] Park HW, Sohn H, Law KH, et al. Time reversal active sensing for health monitoring of acomposite plate. Journal of Sound and Vibration,2007,302(1-2):50-66.
    [178] Gangadharan R, Murthy CRL, Gopalakrishnan S, et al. Time reversal technique for healthmonitoring of metallic structure using Lamb waves. Ultrasonics,2009,49(8):696–705.
    [179] Park HW, Kim SB, Sohn H. Understanding a time reversal process in Lamb wave propagation.Wave Motion,2009,46(7):451-467.
    [180]王强. Lamb波时间反转方法及其在结构健康监测中的应用研究,[博士学位论文].南京:南京航空航天大学,2009.
    [181]王强,袁慎芳.复合材料板脱层损伤的时间反转成像监测[J].复合材料学报,2009,26(3):99-104.
    [182]邱雷,袁慎芳,张逍越,等.基于Shannon复数小波的复合材料结构时间反转聚焦多损伤成像方法[J].复合材料学报,2010,27(2):101-107.
    [183] Qiu L, Yuan SF, Zhang XY, et al. A time reversal focusing based impact imaging method and itsevaluation on complex composite structures. Smart Materials and Structures.2011,20(10):105014.
    [184] Zhang HY, Chen XH, Cao YP, et al. Focusing of Time Reversal Lamb Waves and ItsApplications in Structural Health Monitoring [J]. Chinese Physics Letters,2010,27(10):104301.
    [185]邓菲,吴斌,何存富.基于时反导波检测的管道缺陷圆周定位研究[J].声学学报,2008,33(1):28-34.
    [186] Sohn H, Park HW, Law KH, et al. Damage detection in composite plates by using an enhancedtime reversal method. Journal of Aerospace Engineering,2007,20(3):141-151.
    [187] Sirohi J, Chopra I. Fundamental understanding of piezoelectric strain sensors. Journal ofIntelligent Material Systems and Structures,2000,11(4):246-257.
    [188]张沛霖,张仲渊.压电测量.北京:国防工业出版社,1983.
    [189] Crawley EF, de Luis J. Use of piezoelectric actuators as elements of intelligent structures. AIAAJournal,1987,25(10):1373-1385.
    [190]罗斯JL.固体中的超声波,何存富,吴斌,王秀彦(译),北京:科学出版社,2005.
    [191] Wang L, Yuan FG. Active damage localization technique based on energy propagation of Lambwaves. Smart Structures and Systems,2007,3(2):201-207.
    [192]徐守时.信号与系统理论、方法和应用(修订二版).合肥:中国科学技术大学出版社,2006.
    [193]胡广书.数字信号处理理论、算法与实现.北京:清华大学出版社,2003.
    [194]潘泉,张磊,孟晋丽,等.小波滤波方法及应用.北京:清华大学出版社,2005.
    [195] Jeong H. Analysis of plate wave propagation in anisotropic laminates using a wavelet transform.NDT&E International,2001,34(3):185-190.
    [196]邵志学.混凝土结构合成孔径超声成像技术研究,[博士学位论文].南京:解放军理工大学,2011.
    [197] Shi LH, Wang X W, Li G, et al. Wideband Lamb wave analysis based on continuous wavelettransform. Smart Structures and Systems,2005,1(3):257-266.
    [198] Ting CS, Sachse W. Measurement of ultrasonic dispersion by phase comparison of continuousharmonic waves. J. Acoust. Soc. Am.1978,64(3):852-857.
    [199] Sachse W, Pao YH. On the determination of phase and group velocities of dispersive waves insolids. J. Appl. Phys,197849(8):4320-4327.
    [200] He P, Zheng J. Acoustic dispersion and attenuation measurement using both transmitted andreflected pulses. Ultrasonics,2001,39(1):27-32.
    [201] Peters F, Petit L. A broad band spectroscopy method for ultrasound wave velocity andattenuation measurement in dispersive media. Ultrasonics,2003,41(5):357-363.
    [202] Park HC, Kim DS. Evaluation of the dispersive phase and group velocities using harmonicwavelet transform. NDT&E International,2001,34(7):457-67.
    [203] Zhao B, Basir OA, Mittal GS. Estimation of ultrasound attenuation and dispersion using shorttime Fourier transform. Ultrasonics,2005,43(5):375-381.
    [204]汪承濒,魏炜.改进的时间反转法用于有界面时超声目标探测的鉴别.声学学报,2002,27(3):193-197.
    [205]巍炜,刘晨,汪承濒.固体中时间反转法的声束自聚焦.声学学报,2000,25(4):340-344.
    [206]张碧星,陆铭慧,汪承濒.用时间反转法在水下波导介质中实现自适应聚焦的研究声学学报.声学学报,2002,27(6):541-548.
    [207]陆铭,慧,张碧星,汪承灏.时间反转法在水下通信中的应用.声学学报,2005,30(4):349-354.
    [208]阎丽明,李建龙,潘翔,等.时间反转处理用于掩埋目标检测.声学学报,2008,33(6):542-547.
    [209] Silva A J, Jesus S M. Underwater Communications Using Virtual Time Reversal in a VariableGeometry Channel. In: IEEE Oceans Conf. Record4. Washington: IEEE,2002:2416-2421.
    [210]殷敬伟,惠俊英,王燕,等.虚拟时间反转镜Pattern时延差编码水声通信.系统仿真学报,2007,19(17):4033-4036.
    [211]惠娟,胡丹,惠俊英,等.聚焦波束形成声图测量原理研究.声学学报,2007,32(4):356-361.
    [212]时洁,杨德森,刘伯胜.基于虚拟时间反转镜的噪声源近场定位方法研究.兵工学报,2008,29(10):1215-1219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700