用户名: 密码: 验证码:
波导结构的特征频率法及其超声导波声弹性效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声导波技术作为一种高效的无损检测方法,可同时实现缺陷与应力的检测,对主要的钢结构构件(如矩形管、H型钢、钢杆等)此类波导结构的无损检测具有潜在的优势。然而,钢结构中的板条类波导结构由于截面形状不规整,超声导波在其中的传播特性无法利用传统的波动求解方法,数值方法对此类结构的研究也甚少,而关于预应力波导结构的波动特性研究更为鲜见,严重制约着超声导波技术在此类结构中的推广应用。
     为究明诸如板条类等异性截面波导结构中超声导波的波动频散特性和预应力结构的波动特性及导波各模态的声弹应力敏感性,本文在连续体振动理论有限元分析的基础上,建立一种能够适应任意截面波导结构频散特性分析的方法。应用该方法研究板条类波导结构中超声导波的传播特性,并发展该方法应用于预应力结构的波动特性分析,实现超声导波声弹敏感模态与激励频散的优化选取。通过在超声导波声弹理论分析的基础上,探讨试验影响因素;搭建声弹试验系统;以钢杆和矩形管为研究对象,对纵向模态和SH0模态的声弹常数进行了试验测试,论证了超声导波声弹试验系统的可靠性和该方法的可行性。主要研究工作如下:
     (1)提出了一种适合求解截面沿轴向一致波导结构频散特性分析的有限元特征频率法,分析了收敛性要求所必需的网格单元尺寸与模型长度。用此方法计算了几种典型波导结构与两类特殊波导结构中各个模态的波动频散特性。实例分析结果表明:可利用适合的边界条件降低求解自由度数且能实现单一种类模态的频散计算;对于复杂波导结构与在高频段的频散计算较为困难。
     (2)研究分析了板条结构中导波的频散特性与板条宽度边界的影响。结果表明:同阶低次模态会叠加形成高次模态,产生的新模态截止频率由边界尺寸决定;发展无限单元法用于超声导波无损检测领域,并用于模拟板条结构中的Lamb波传播特性,验证了在板条结构中可激励出SH0与A0模态,其余Lamb波模态不容易被激励与识别;同时,以工程板条类结构矩形管、H型钢和椭圆管为研究对象,分析了此类结构的频散特性;发现此类结构各模态在截止频率处,受边界约束影响明显;最容易激励的是反对称类模态(弯曲模态),局部模态分析可由板条结构替代。
     (3)发展有限元特征频率法应用于预应力波导结构频散特性分析。提出利用声弹常数频散曲线表征超声导波的声弹性效应,得到了适合杆、板、圆管与板条结构中应力检测时,声弹性效应较敏感的模态与所对应的激励频率。发现导波多数模态存在无声弹性效应的频率盲点;对于不同结构中频散特性相同的模态具有相同的声弹性效应。
     (4)阐明了材料组分、三阶弹性常数和织构效应对声弹性效应的影响,并对三阶弹性常数的各个参量通过正交分析方法得到了影响纵向模态声弹性效应的主次因素与显著性水平。同时,对温度效应、拉伸应变、泊松效应带来的影响进行了分析,并对时延估计方法的精度进行了评估。结果表明:泊松效应可不予考虑,互相关函数法最适合用于声弹的时延估计。最后,通过试验标定的方法对测量系统的工作参数给出了建议。
     (5)搭建了超声导波声弹试验测试系统,以杆结构与矩形管为检测对象,对纵向模态与SH0模态的声弹特性进行了试验研究。结果表明:在低应力区域得到的声弹常数误差普遍较大,说明超声导波声弹常数标定应选在高应力区域。通过频率与模态对声弹性效应影响的试验研究论证了超声导波声弹试验系统的可靠性与理论声弹计算方法的可行性。而SH0模态的初步声弹试验结果表明该方法对矩形管等板条类结构的应力检测具有可行性,但需要完善的试验测量技术。
As an efficient nondestructive testing method, Ultrasonic guided wavetechnology can detect concurrently defects and stress, it has a potential advantage thatthe main components of steel structure (e.g., rectangular tube, h-beam, steel rod, etc.)are detected. However, because of the complexity of cross section shape, the wavecharacteristics of steel structures are difficult solved by the traditional wave theory,the numerical method is also less, and the research of prestressed waveguide structureis more rare.
     To investigate wave characteristics of the special section waveguideds andprestressed structures, a finite element eigenfrequency method is established toanalysis dispersion of arbitrary cross-section waveguideds base on continuum theoryof vibration. The propagaton characteristics of plate strip are studied by this method,and it is applied to analysis wave motion of prestressed structure, the optimal modesand excitation frequencies are obtained for stress measurement. On the basis oftheoretical analysis, the effect factors are study, and acoustoelastic experiment systemis constructed. With steel bar and rectangular tube as the research object, theacoustoelastic effect of longitudinal modes and SH0mode are studied, demonstratesreliability of acoustoelastic experimental system and feasibility of this method. Themain work is as follows:
     (1) The finite element eigenfrequency method is put forward to solve dispersioncharacteristic which cross section is consistent along the axial, the convergence isanalysed for mesh size and length of the model. The dispersion of common structuresand two kinds of special waveguide structures are calculated. The results show thatfree degree numbers and type of model can be choosed by the suitable boundaryconditions. It is difficult that the dispersion is calculated for complex waveguidestructure and high frequency band.
     (2) The wave characteristics of plate strip are studied, and the affect of widthboundary is analyzed for dispersion. The results show that the low order mode canform high order modal by in-order superposition, the cutoff frequency is determinedby the boundary dimensions for new mode. A0and SH0mode can be generated inplate strip by numerical simulation combined with the infinite element method, therest of the Lamb wave modes is not easy to be incentive and recognition, the reason is explained that S0mode is difficult to excitate. The engineering structure, rectangulartube, h-beam and elliptical tube as the research object, the dispersion characteristicsare analyzed, it is found that the boundary constraint is obvious in cutoff frequency.The antisymmetric mode is easiest generated, the local modal analysis can besubsituted for plate strip.
     (3) The prestressed waveguide structure is analysed by finite elementeigenfrequency method. It is presented that acoustoelastic effect is described byacoustoelastic constant dispersion curve. The acoustoelastic effect sensitive mode andexcitation frequency are obtained for plate, rod, pipe and plate strip. The frequencyblind spot is existent that no acoustoelatic effect. It is provided with the sameacoustoelasticity effect for the same dispersion in different structures.
     (4) The affect of acoutoelstic effect is clarify for material composition,third-order elastic constants and texture effect, the secondary factors and thesignificance level of third-order elastic constants is obtained by orthogonal analysismethod for longitudinal modes. the temperature effect, the effects of tensile strain,poisson's effect is analyzed, and the precision of time delay estimation method areevaluated. The results show that the poisson effect can be ignored, thecross-correlation method is best suited for time delay estimation. Finally, themeasuring system is calibrated.
     (5) The acoustoelastic test system is established. The acoustoelstic effect oflongitudinal modes and SH0mode were studied with rod and rectangular tube astesting object. The results show that: the error of acoustoelastic constant is bigger inlow stress areas. The reliability of experimental system and the feasible of theorymethod are demonstrated. The SH0mode test results show that the method is adaptivefor rectangular tube, but it is prerequisite to improve experiment technology.
引文
[1]周红波,高文杰,黄誉.钢结构事故案例统计分析[J].工程设计.2008,23(6):28-30.
    [2]叶梅新,黄琼.钢结构事故研究[J].长沙铁道学院学报.2002,20(4):6-10.
    [3]徐晗,陈灼民,武松涛.电阻应变测量方法浅析[J].测控技术.2002,21(8):24-26.
    [4]欧进萍,周智,武湛君,等.黑龙江呼兰河大桥的光纤光栅智能监测技术[J].土木工程学报.2004,37(1):45-50.
    [5]黄尚廉,陈伟民,饶云江,等.光纤应变传感器及其在结构健康监测中的应用[J].测控技术.2004,23(5):1-4.
    [6]朱金国,陈宣民.频率法测定拉索索力[J].结构设计与研究应用.2003(2):84-85.
    [7] Jiles D C. Review of Magnetic Methods for Nondestructive Evaluation[J]. NDTInternational,1988,21(5):311-319.
    [8]王威,王社良,苏三庆,等.钢铁材料结构构件工作应力的检测方法及特点[J].钢结构.2004,19(5):43-46.
    [9] Peiter A. Simultaneous X-ray measurements in-situ of tri-axial stresses[J]. Poisson’s ratioand the stress free lattice spacing. Strain,1987,23(8):103.
    [10]陈玉安,周上祺.残余应力X射线测定方法的研究现状[J].无损检测.2001,23(1):19-22.
    [11] Puro A E. Determination of the quenching stresses in prismatic specimens by the method ofintegral photoelasticity[J]. Journal of Applied Mechanics and Technical Physics.1991,32(4):641-644.
    [12]贺玲凤,刘军.声弹性技术[M].北京:科学出版社.2002.
    [13] Alleyne D N, Cawley P. A two-dimensional Fourier transform method for the measurementof propagating multimode signals[J]. J Acousto ScoAm,1991,89(3):1159-1168.
    [14] Rose J L, Krishna M R, Frank T C. Ultrasonic guided wave inspection concepts for steamgenerator tubing[J]. Material Evaluation,1994,26(2):307-311.
    [15] Lowe M J S, Alleyne D N, Cawley P. The inspection of tendons in post-tensioned concreteusing guided ultrasonic wave[J]. Insight,1999,41(7):446-452.
    [16] Thompson W. Transmission of elastic waves through a stratified solid medium[J]. Journalof Applied Physics.1950,21(2):89-93.
    [17] Knopoff L. A matrix method for elastic wave problems[J]. Bulletin of the SeismologicalSociety ofAmerica.1964,54(1):431-438.
    [18] Lowe M. Matrix techniques for modeling ultrasonic waves in multilayered media[J]. IEEETransactions on Ultrasonics, Ferroelectrics and Frequency Control.1995,42(4):525-542.
    [19] Maradudin A A, Wallis R F, Mills D L, Ballard R L. Vibrational edge modes in finitecrystals[J]. Physical Review B,1972,6(4):1106-1111.
    [20] Datta S, Hunsinger B J. Analysis of line acoustical waves in general piezoelectriccrystals[J]. Physical Review B,1977,16(10):4224-4229.
    [21] Datta S, Hunsinger B J. Analysis of surface waves using orthogonal functions[J]. Journal ofApplied Physics,1978,49:475–479.
    [22] Lefebvre J E, Zhang V, Gazalet J, et al. Legendre polynomial approach for modelingfree-ultrasonic waves in multilayered plates[J]. Journal of Applied Physics,1999,85(7):3419-3427.
    [23] Yu Jiangong, Wu Bin, He Cunfu. Guided circumferential waves in orthotropic cylindricalcurved plate and the mode conversion by the end-reflection[J]. Applied Acoustics,2007,68(5):594-602.
    [24]禹建功,吴斌.压电空心圆柱中的波特性[J].固体力学学报,2009,30(3):259-266.
    [25] Zienkiewicz O C. The Finite Element Method: Its Basis and Fundamentals[M]. UK:Butterworth-Heinemann,2005.
    [26] Finnveden S, Evaluation of modal density and group velocity by a fnite element method[J].Journal of Sound and Vibration,273(2004):51–75.
    [27] Duhamel D, Mace B R, Brennan M J. Finite element analysis of the vibrations ofwaveguides and periodic structures[J]. Journal of Sound and Vibration,294(2006):205-220.
    [28] YAN ZhiXin, CAI HanCheng, WANG QunMin, et al. Finite difference numericalsimulation of guided wave propagation in the full grouted rock bolt[J]. SCIENCE CHINATechnological Sciences,2011,54(5):1292-1299.
    [29] Brian R Mace, Denis Duhamel, Michael J Brennan, et al. Finite element prediction of wavemotion in structural waveguides[J]. Journal Acoustical Society of America.2005,117(5):2835-2843.
    [30] Bai H, Shah A H. Application of boundary element method for3d wave scattering incylinders[J]. International journal of computational methods,2011,8(1):57-76.
    [31] Rose Joseph L, Zhu Wenhao, Cho Younho. Boundary element modeling for guided wavereflection and transmission factor analyses in defect classification[C]. Proceedings of theIEEE Ultrasonics Symposium,1998:885-888.
    [32] Zhao Xiaoliang, Rose Joseph L.Three-dimensional defect in a plate boundary elementmodeling for guided wave scattering[J]. Advances in Nondestructive Evaluation,2004,270-273(1):453-460.
    [33] Alessandro M, Erasmo V, Bartoli I, el at. A semi-analytical finite element formulation formodeling stress wave propagation in axisymmetric damped waveguides[J]. Journal ofSound and Vibration,2008,318(9):488-505.
    [34] Santos H, Cristóv o M Mota Soares, Carlos A Mota Soares, et al. A semi-analytical fniteelement model for the analysis of cylindrical shells made of functionally graded materialsunder thermal shock[J]. Composite Structures,86(2008):10-21.
    [35] Santos H, Mota Soares CM, Mota Soares CA, et al.. A semi-analytical fnite element modelfor the analysis of laminated3D axisymmetric shells: bending free vibration andbuckling[J]. Compos Struct,2005,71:273–281.
    [36] Ahmad Z A B, Gabbert U. Simulation of Lamb wave reflections at plate edges using thesemi-analytical finite element method[J]. Ultrasonics,2012,52(7):815-820.
    [37] Cantrell J H, Salama K. Acoustoelastic characterisation of materials[J]. InternationalMaterials Reviews,1991,36(4):125-145.
    [38] Hughes D S. Ultrasonic Velocity in an Elastic Solid[J]. Journal of Applied Physics.1950,21(3):294-301.
    [39] Hughes D S, Kelly J L. Second-order elastic deformation of solids[J]. Physical Review.1964,92(5):1145-1149.
    [40] Bergman R H, Shahbender R A. Effect of Statically Applied Stresses on the Velocity ofPropagation of Ultrasonic Waves[J]. Journal ofApplied Physics.1958,29(12):1736-1738.
    [41] Benson R W, Raelson V J. Acousticelasticity[J]. Product Engineering.1959,30:56-59.
    [42] Toupin R A, Bernstein B. Sound Waves in Deformed Perfectly Elastic MaterialsAcoustoelastic Effect[J]. The Journal of the Acoustical Society of America.1961,33(2):216-225.
    [43] Smith R T, Stern R, Stephens R W B. Third-order elastic moduli of polycrystalline metalsfrom ultrasonic velocity measurements[J]. J. Acoust. Soc.Am,1966:40(5):1002-1008.
    [44] Nelson N Hsu. Acoustical Birefringence and the Use of Ultrasonic Waves for ExperimentalStress Analysis[J]. Experimental Mechanics.1974,14(5):169-176.
    [45] Kennedy L W, Jones O E. Longitudinal wave propagation in a circular bar loaded suddenlyby a radially distributed end stress[J]. Journal ofApplied Mechanics.1969,36(3):470-478.
    [46] S Chaki, G Corneloup, I Lillamand, et al. Nondestructive control of bolt tightening:absolute and differential evaluation. Mater. Eval,2006,64(6):629-633.
    [47]伍行健,吴克成.平面声弹性技术研究[J].实验力学.1987,2(1):44-51.
    [48]王寅观.声弹法及其应力测量的超声技术[J].新技术新工艺.1989(4):13-15.
    [49] Joshi S C, Pathare R G. Ultrasonic instrument for measuring bolt stress[J]. Ultrasonics.1984,22(6):261-269.
    [50]王寅观,邵良华.三阶弹性常数的超声测量方法[J].同济大学学报.1995,23(5):552-557.
    [51]姜文华.测量三阶弹性常数的非线性声学方法[J].物理.1994,23(4):231-235.
    [52] Crecraft D I. Ultrasonic measurement of stress[J]. Ultrasonics,1968,6(2):117.
    [53] Andrei Zagrai, Vlasi Gigineishvili, Walter A Kruse, et al. Acousto-Elastic Measurementsand Baseline-Free Assessment of Bolted Joints using Guided Waves in Space Structures[C].Health Monitoring of Structural and Biological Systems2010,7650(765017):1-12.
    [54] Hirao M, Ogi H, Yasui H. Contactless measurement of bolt axial stress using a shear-waveelectromagnetic acoustic transducer. NDT and E International.2001,34(3):179-183.
    [55] Jhang K Y, Quan H H, Ha J, et al. Estimation of clamping force in high-tension boltsthrough ultrasonic velocity measurement. Ultrasonics.2006,44(suppl1):1339-1342.
    [56] Jaglinski T, Nimityongskul A. Study of bolt load loss in bolted aluminum joints. Journal ofEngineering Materials and Technology.2007,129(1):49-54.
    [57]何存富,吴斌,范晋伟.超声柱面导波技术及其应用研究进展[J].力学进展.2001,31(2):203-214.
    [58] Chen HLR, He Y, Ganga Rao. Measurement of prestress force in the rods of stressed timberbridges using stress waves[J]. Mater. Eval,1998,56(8):977-981.
    [59] Kwun H, Bartels K A, Hanley J J. Effect of tensile loading on the properties of elastic wavein a strand [J]. J.Acoust. Soc. Am,1998:103(6):3370-3375.
    [60] Laguere L, Aime J C, M Brissaud. Magnetostrictive pulse-echo device for non-destructiveevaluation of cylindrical steel materials using longitudinal guided waves[J]. Ultrasonics,39(2002):503–514.
    [61] Chen HLR, Wissawapaisal K. Application of Wigner-Ville transforms to evaluate tensileforces in seven-wire prestressing strands[J]. Eng Mech,2002,128(11):1206-1214.
    [62] Di-Scalea F L, Rizzo P, Frieder S. Stress measurement and defect detection in steel strandsby guided stress waves[J]. Journal of Materials in Civil Engineering,2003,15(3):219-227.
    [63] Rizzo P, Di-Scalea F L. Ultrasonic inspection of multi-wire steel strands with the aid of thewavelet transform[J]. Smart Materials and Structures,2005,14(4):685-695.
    [64] Feng Chen, Paul D Wilcox. The effect of load on guided wave propagation[J]. Ultrasonics,47(2007):111-122.
    [65] Philip W Loveday. Semi-analytical fnite element analysis of elastic waveguides subjectedto axial loads[J]. Ultrasonics,49(2009):298-300.
    [66] Philip W Loveday, Paul D Wilcox. Guided wave propagation as a measure of axial loads inrails[C]. Proceedings of SPIE-The International Society for Optical Engineering,2010,7650(23):1-8.
    [67] Ahmed Frikha, Fabien Treyssède, Patrice Cartraud. Effect of axial load on the propagationof elastic waves in helical beams[J]. Wave Motion,2011,48(1):83–92.
    [68] Fabien Treyssède. Elastic waves in helical waveguided[J]. Wave Motion,2008,45(4):457-470.
    [69] Gavric L. Computation of Propagative Waves in Free Rail Using A Finite ElementTechnique[J]. Journal of Sound and Vibration,1995,185(3):531-543.
    [70]刘增华,刘溯,吴斌,等.预应力钢绞线中超声导波声弹性效应的试验研究[J].机械工程学报,2010,46(2):22-26.
    [71]何文,王成,宁建国,等.端锚锚杆工作载荷的导波确定法[J].岩石力学与工程学报,2009,28(9):1767-1772.
    [72]何文,王成.基于导波技术的螺柱轴力无损检测[J].计算力学学报,2009,26(4):604-607.
    [73] Rose J L. Ultrasonic waves in solid media[M]. UK: Cambridge University Press,1999.
    [74] Denis Duhamel, Brian R Mace, and Michael J Brennan. Finite element analysis of thevibrations of wave guides and periodic structures[J]. Journal of Sound and Vibration.2006,294(1-2):205-220.
    [75] Achenbach J D. Wave Propagation in Elastic Solids[M]. NewYork: North-Holland.1984.
    [76] Ivan Bartoli. Structural health monitoring by ultrasonic guided waves[D]. San Diego:University of California.2007.
    [77] Ivan Bartoli, Francesco Lanza di Scalea, Mahmood Fateh. Modeling guided wavepropagation with application to the long-range defect detection in railroad tracks[J].NDT&E International.38(2005):325–334.
    [78] Rizzo P, Bartoli I, Cammarata M. Digital signal processing for rail monitoring by means ofultrasonic guided waves[J]. Insight-Non-Destructive Testing and Condition Monitoring.2007,49(6):237-332.
    [79] Takahiro Hayashi, Won-Joon Song, Joseph L Rose. Guided wave dispersion curves for abar with an arbitrary cross-section: a rod and rail example[J]. Ultrasonics.2003,41(3):175-183.
    [80] Chong Myoung Lee, Joseph L Rose, Younho Cho. A guided wave approach to defectdetection under shelling in rail[J]. NDT&E International.42(2009):174–180.
    [81] Seon M Han, Haym Benaroya, Timothy Wei. Dynamics of transversely vibrating beamsusing four engineering theories[J]. Journal of Sound and Vibration.1999,225(5):935-988.
    [82]胡超,韩刚,房学谦等. Mindlin板条中弹性波传播问题的分析[J].应用数学和力学,2006,27(6):701-708.
    [83] Mosera F, Jacobs L, Qu J, Modeling elastic wave propagation in waveguides with the fniteelement method[J]. NDT&E Int,32(1999):225–234.
    [84] Abdel-Rahman Mahmoud. FE-PML Modeling of Guided Elastic Waves and itsApplications to Ultrasonic NDE[D]. University of Manitoba Winnipeg Ph.D Thesis,Manitoba:2010.
    [85]李录贤,国松直,王爱琴.无限元方法及其应用[J].力学进展,2007,37(2):161-174.
    [86] Bettess P. Infinite Elements[J]. International Journal for Numerical Methods In Engineering,1977,11:53-64.
    [87] Beer G, Meek J L. Infinite domain elements[J]. International Journal for NumericalMethods in Engineering.1982,17:43-52.
    [88] Zienkiewicz O C, Bettess P. A noval boundary infinitelements[J]. International Journal forNumerical Methods in Engineering.1984,19:393-404.
    [89] Zheng Peng, Greve D W, I J Oppenheim. Ultrasonic Flaw Detection in a Monorail BoxBeam[C]. Proc of SPIE.2009,7292:729211.
    [90]贺玲凤,潘桂梅,小林昭一.利用激光超声测量H型钢梁的残余应力.华南理工大学学报.2001,29(7):20-23.
    [91] Pao Y H, W Sachse and H Fukuoka, Acoustoelasticity and ultrasonic measurement ofresidual stress[J]. Physical Acoustics, New York, Academic Press, ⅩⅦ,62-140,1984.
    [92] Sarah Duenwald, Hirohito Kobayashi, Kayt Frisch, et al. Ultrasound echo is related tostress and strain in tendon[J]. Journal of Biomechanics.44(2011):424-429.
    [93] Abiza Z, Destrade M, Ogden R W. Large acoustoelastic effect[J]. Wave Motion,2011,49(2012):364-374.
    [94] Thurston R N, Brugger K. Third-order Elastic Constants and the Velocity of SmallAmplitude Elastic Waves in Homogeneously Stressed Media[J]. Physical Review1964,133(6A):1604-1610.
    [95] Rizzo P, Di-Scalea F L. Effect of frequency on the acoustoelastic response of steel bars[J].Exp. Tech,(2003):40-43.
    [96]他得安,刘镇清,贺鹏飞.管材超声检测中导波模式及频厚积的选择[J].同济大学学报.2004,32(5):696-700.
    [97] Washer G A, Green R E, R B Pond Jr. Velocity constants for ultrasonic stress measurementin prestressing tendons[J]. Res. Nondestr. Eval,14(2002):81-94.
    [98] Piervincenzo Rizzo. Health monitoring of tendons and stay cables for civil structures[D].University of California Ph.D Thesis. SANDIEGO:2004.
    [99] Navneet Gandhi. Determination of dispersion curves for acoustoelastic lamb wavepropagation. Degree masters in Georgia Institute of Technology.2010:47-60.
    [100]王军,王寅观.板中正交静应力与Lamb波波速关系探讨[J].声学技术,2008,27(3):300-308.
    [101] Sennosuke Takahashi, Ryohei Motegi. Stress dependency on ultrasonic wave propagationvelocity: Part2Third order elastic constants of steels. Journal of materials science[J].22(1987):1857-1863.
    [102]王寅观.钢试样应力测量的超声方法[J].声学技术.1988,7(1):26-29.
    [103] Thurston R N, Brugger K. Third-order elastic constants and the velocity of smallamplitude elastic waves in homogeneously stressed media[J]. Physical Review.1964,133(6A):1604-1610.
    [104] Egle D M, Bray D E. Measurement of acoustoelastic and third-order elastic constants forrail steel[J]. Journal of theAcoustical Society ofAmerica,1976,60(3):741-744.
    [105]任露泉.试验优化设计与分析[M].北京:高等教育出版社(第二版),2003.
    [106] Salama K, Ling C K. The effect of stress on the temperature dependence of ultrasonicvelocity[J]. JournalApplication physics.1980,51(3):1505-1509.
    [107] Di Scalea F L, Salamone S. Temperature effects in ultrasonic Lamb wave structural healthmonitoring systems[J]. Journal of the Acoustical Society of America,2008,124(1):161-174.
    [108] Croxford A J, Jochen Moll, Wilcox P D, et al. Effcient temperature compensationstrategies for guided wave structural health monitoring[J]. Ultrasonics.50(2010):517–528.
    [109] LIU Zenghua, ZHAO Jichen, WU Bin, et al. Temperature Dependence of UltrasonicLongitudinal Guided Wave Propagation in Long Range Steel Strands[J]. Chinese Journal ofMechanical Engineering,2011,24(3):487-494.
    [110] David Vincent. Linear and nonlinear ultrasonic characterization of single-layeredstructures[D]. The Ohio State University Ph.D. Thesis,1990:97-123.
    [111] Hernandez–Salazar C D, Baltazar A, Mijarez R. Structural Damage Monitoring onOverhead Transmission Lines Using Guided Waves and Signal Processing[C]. AIPconference proceedings.2010,1211:1721-1728.
    [112]刘彬,董世运,徐滨士等.互相关函数步长影响超声波评价涂层应力的实验研究[J].材料工程,2011,(4):54-57.
    [113] Laguerre L, Aime J C, Brissaud M. Magnetostrictive pulse-echo device fornon-destructive evaluation of cylindrical steel materials using longitudinal guided waves[J].Ultrasonics,2002,39:503-514.
    [114] Chaki S, G Bourse. Guided ultrasonic waves for non-destructive monitoring of the stresslevels in prestressed steel strands[J]. Ultrasonics,2009,49(2009):162-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700