用户名: 密码: 验证码:
创伤性脑损伤及低温脑保护机制实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
创伤性脑损伤(traumatic brain injury,TBI)由于其发病率随着经济及交通的发展逐年增高已经越来越引起临床医生及科研学者的重视,多年来许多研究者致力探索促进创伤性脑损伤患者康复的途径,对创伤性脑损伤的致伤机制、临床评估、辅助诊断以及治疗方法的探索一直在以基础结合临床的模式向前延伸。他们从不同角度对颅脑损伤的发生原因、生物力学机制、病理生理学、病理形态学及分子病理学变化等方面进行了广泛而深入的研究。目前认为,颅脑创伤后的继发性因素,或称二次脑损伤因素,是造成脑损害发生、发展的重要原因。这些因素涉及:脑缺血、能量代谢障碍、钙离子超载、氧自由基堆积、兴奋性氨基酸的神经毒作用、炎性因子刺激等等。
     在创伤性脑损伤中创伤性昏迷是研究中的难点,其发病机制及治疗一直困扰着广大研究者,揭示创伤昏迷机制已成为神经科学工作者面临的新课题。对创伤昏迷这一临床问题的关注是推动基础研究的原动力。颅脑伤导致的长期昏迷,与颅脑创伤导致的早期脑内病理变化密切相关,从急性创伤昏迷的动物模型着手,有可能获取与创伤打击相关性较为密切的病理机制依据。在本研究的实验一我们成功建立了正中液压冲击致创伤昏迷动物模型,在此基础上分析及探讨了钙蛋白酶Ⅱ及电压门控钠通道亚型mRNA在中脑的表达,并研究了microRNA在中脑的变化,试图从mRNA表达方面及microRNA调控方面阐释创伤性昏迷的部分发病机制。
     低温疗法一直是创伤性脑损伤的治疗研究中的热点,自19世纪国外学者着手这方面研究到国内外学者的广泛基础研究及临床应用已有百余年历史,其研究成果令人满意,通过实验性研究及临床应用研究,对亚低温脑保护的机制,适用范围等都有了较深入的认识,并把低温治疗应用于临床,形成了较为完整的理论及应用体系。但其确切脑保护机制仍未完全清楚,研究亚低温脑保护机制仍然是个极具吸引力的课题,很多学者仍在致力于亚低温脑保护机制的探索。本研究的实验二应用侧方液压损伤建立中型颅脑损伤模型,从髓鞘结构、细胞骨架、炎症调节、免疫功能等方面较为细致地分析、阐述了亚低温脑保护的可能机理,旨在丰富亚低温脑保护作用的机制,并为亚低温更深入的实验研究以及临床应用提供实验依据。
     在低温脑保护的实验及临床研究方面,有关超深低温脑保护的研究较少,因为其临床应用较为困难,但超深低温脑保护作为低温脑保护的研究整体的一部分是不可或缺的,否则我们就无法全方位的了解其作用机理,无法更全面的临床应用。本研究的实验三在我院与上海交通大学合作前期研究成果的基础上进一步探讨选择性脑超深低温复苏技术对恒河猴颈动脉血流阻断时限的研究,旨在发现超深低温对全脑缺血复苏的极限时间窗,并研究热缺血不同时限超深低温的脑保护作用,为今后超深低温基础研究及临床应用奠定实验及理论基础。
     实验一大鼠急性创伤昏迷模型的建立及昏迷机制的实验研究
     目的:1.建立稳定大鼠急性创伤昏迷模型2.研究CalpainⅡ、电压门控钠通道亚型6(Nach6)mRNA在创伤昏迷大鼠中脑的表达变化。3.分析创伤昏迷大鼠中脑microRNA变化。
     方法:健康Sprague-Dawley(SD)大鼠12只,雌雄不限,随机分为两组。假手术对照组(n=6):大鼠麻醉后正中钻孔埋管而不打击。急性创伤昏迷组(n=6):麻醉,3%戊巴比妥钠腹腔注射(50mg/kg),麻醉生效后备皮消毒,固定头部于大鼠立体定向仪。头皮正中切口3am,骨膜剥离器剥离骨膜,正中矢状缝环钻钻孔,骨窗直径约4.8mm,暴露完整硬脑膜。于骨窗前后颅骨固定螺丝两枚,骨窗内置入内径2.6mm打击管(injury tube),即干胶粘合与颅骨连接处,牙科骨水泥牢固固定后缝合头部切口。麻醉清醒(翻正反射恢复)后使用液压损伤打击仪压力约1.7atm液压冲击大鼠硬脑膜,造成大鼠急性昏迷。实验组昏迷1小时后断头取脑,对照组麻醉1小时后断头取脑,取中脑组织采用Realtime PCR法测定CalpainⅡ、电压门控钠通道亚型(Nach6)mRNA的表达,microRNA芯片测定昏迷大鼠中脑microRNh变化。
     结果:1.建立较稳定大鼠创伤昏迷模型,死亡率<20%,昏迷时间>1h。2.Realtime PCR结果:实验组与对照组比较CalpainⅡmRNA表达明显增加(p<0.01),Nach6mRNA表达明显增加(p<0.05)。3.昏迷大鼠中脑33个microRNA上调2倍以上,38个microRNA下调50%。
     结论:1.急性创伤昏迷大鼠中脑中钙蛋白酶起到了损害性因素的作用,溶解神经组织及髓鞘。电压门控钠通道亚型在急性创伤昏迷大鼠中脑中表达增加,钠离子内流,导致神经细胞及神经胶质细胞损伤。两者亦可能相互影响,加速钠钙离子内流,影响中脑网状激活系统,可能和创伤昏迷发病机制有关。2.创伤昏迷大鼠中脑33个microRNh上调2倍以上,38个microRNA下调50%以上。microRNA在创伤昏迷大鼠的发生机制中可能参与了中脑细胞骨架、细胞黏附、细胞凋亡、代谢相关、缺血相关等多环节,可能参与了创伤昏迷相关基因的表达调控。
     实验二侧方液压脑损伤及亚低温脑保护机制研究
     第一部分大鼠侧方液压脑损伤模型的建立
     目的:建立稳定大鼠侧方液压脑损伤动物模型。
     方法:麻醉,3%戊巴比妥钠腹腔注射(50mg/kg),麻醉生效后备皮消毒,固定头部于大鼠立体定向仪。头皮正中切口3cm,矢状缝右侧4mm环钻钻孔,暴露完整硬脑膜。于骨窗前后颅骨固定螺丝两枚,骨窗内置入内径2.6mm打击管(injury tube),即干胶粘合与颅骨连接处,牙科骨水泥牢固固定。使用液压损伤打击仪压力约1.4atm造成中度颅脑损伤,建立稳定侧方液压脑损伤动物模型。
     结果:本次实验使用国际认可的侧方液压冲击建立脑损伤动物模型,压力为1.4atm,模型稳定性好,死亡率低,仅一只死亡(约为5.6%),重复性强,可信度高。
     结论:本模型显著特点为:(1)致伤力定量准确,重复性好;(2)根据打击能量划分伤情,可复制出轻、中、重型脑损伤模型,打击能量越大,伤情越重,预后越差;(3)可以观察各种治疗方法对颅脑伤后死亡率和神经功能障碍的影响。
     第二部分侧方液压脑损伤大鼠海马CalpainⅡ及MBP、MAP2 mRNA的表达
     目的:研究CalpainⅡ及MBP、MAP2 mRNA在侧方液压脑损伤海马的表达。
     方法:健康Sprague-Dawley(SD)大鼠18只,雌雄不限,假手术对照组(n=6):钻孔埋管而不打击。侧方液压脑损伤组(n=6):在打击后即刻予呼吸机辅助通气,使用电热毯维持体温,监测各项生理指标。亚低温组(n=6):在侧方液压损伤后待生理指标稳定后使用冰屑降温法将大鼠肛温降至33℃并维持亚低温不致波动,肛温计监测肛温,亚低温维持3小时。伤后3小时断头取脑,海马组织做RT-PCR实验分别检测CalpainⅡ及MBP、MAP2 mRNA在海马的表达。
     结果:钙蛋白酶Ⅱ常温创伤组和对照组比较,CalpainⅡmRNA表达明显增高(P<0.01):亚低温组和常温创伤组比较,CalpainⅡmRNA表达明显降低(P<0.01)。MBP常温创伤组和对照组比较,MBP mRNA表达明显降低(P<0.01);亚低温组和常温创伤组比较,MBP mRNA表达表达明显增高(P<0.01)。MAP2常温创伤组和对照组比较,MAP2 mRNA表达明显降低(P<0.01):亚低温组和常温创伤组比较,MAP2 mRNA表达表达明显增高(P<0.01)。
     结论:1.亚低温可通过抑制海马CalpainⅡ表达而发挥脑保护作用。2.亚低温能通过增加海马MBP表达而减轻MBP降解及脱髓鞘,从而起到神经保护作用。3.亚低温能够通过维持海马MAP2的稳定而起到脑保护作用。4.亚低温可能通过抑制CalpainⅡ表达减轻钙离子对神经细胞及神经胶质细胞髓鞘及细胞骨架的溶解破坏而减轻MBP降解及脱髓鞘,维持MAP2的稳定而起到脑保护作用。但维持髓鞘及细胞骨架正常结构的因素很多,具体机制有待以后实验中进一步研究。
     第三部分侧方液压脑损伤大鼠皮层PPAR-γ、NF-κBmRNA的表达
     目的:研究PPAR-γ、NF-κB在侧方液压脑损伤大鼠皮层的表达。
     方法:健康Sprague-Dawley(SD)大鼠18只,雌雄不限,假手术对照组(n=6):钻孔埋管而不打击。侧方液压脑损伤组(n=6):在打击后即刻予呼吸机辅助通气,使用电热毯维持体温,监测各项生理指标。亚低温组(n=6):在侧方液压损伤后待生理指标稳定后使用冰屑降温法将大鼠肛温降至33℃并维持亚低温不致波动,肛温计监测肛温,亚低温维持3小时。伤后3小时断头取脑,皮层组织做RT-PCR实验分别检测PPAR-γ、NF-κB在液压脑损伤大鼠皮层的表达。
     结果:PPAR-γmRNA在大鼠皮层的相对表达量,侧方液压打击组(n=6)与对照组(n=6)比较明显降低(P<0.05);亚低温组(n=6)与侧方液压打击组比较(n=6)明显升高(P<0.05):对照组(n=6)与亚低温组(n=6)比较,差异无显著性(P>0.05)。NF-κB mRNA在大鼠皮层的相对表达量,侧方液压打击组(n=6)与对照组(n=6)比较明显增加(P<0.05);亚低温组(n=6)与侧方液压打击组(n=6)比较明显降低(P<0.05)。
     结论:亚低温可能通过增加PPAR-γ表达,与NF-κB的亚基P65/P50结合增加,降低了NF-κB与DNA结合活性,抑制NF-κB DNA合成,达到抑制NF-κB表达的作用,或通过竞争结合协同活化因子P300和CBP增强来抑制NF-κB的转录。通过调节PPAR-γ和NF-κB的协同或单独发挥作用多途径减轻脑损伤,达到脑保护作用。
     第四部分亚低温对侧方液压脑损伤大鼠免疫功能的影响
     目的:研究侧方液压脑损伤大鼠亚低温治疗后血清CD4~+T细胞、CD8~+ T细胞、IL-2、TNF-α、IL-6、IL-10的变化。
     方法:将大鼠随机分为正常对照组(n=6)、液压脑损伤第1到3组(n=6),亚低温第1到3组(n=6)。时相点分别为3h、1d、3d。动物模型完成后于不同时点分别经下腔静脉抽血,流式细胞仪检测血清CD4~+T细胞、CD8~+T细胞相对含量,酶联免疫吸附实验(ELISA)检测血清IL-2、TNF-α、IL-6、IL-10水平。
     结果:1.CD4~+T细胞T1组、T2组、T3组与正常对照组比较相对含量明显降低(P<0.05),同一时间段H1组与T1组比较、H2组与T2组比较、H3组与T3组比较CD4~+T细胞相对含量明显上升(P<0.01);CD8~T细胞T1组、T2组、T3组与正常对照组比较相对含量明显升高(P<0.05),同一时间段H1组与T1组比较、H2组与T2组比较、H3组与T3组比较CD8~+T细胞相对含量明显降低(P<0.01)。2.血清IL-2含量T1组、T2组、T3组与正常对照组比较相对含量明显降低(P<0.05),同一时间段H1组与T1组比较、H2组与T2组比较、H3组与T3组比较血清IL-2含量明显上升(P<0.05);血清TNF-α含量T1组、T2组、T3组与正常对照组比较相对含量明显升高(P<0.05),同一时间段H1组与T1组比较、H2组与T2组比较、H3组与T3组比较血清TNF-α含量明显降低(P<0.05);血清IL-6含量T1组、T2组、T3组与正常对照组比较相对含量明显升高(P<0.05),同一时间段H1组与T1组比较、H2组与T2组比较、H3组与T3组比较血清IL-6含量明显升高(P<0.05);血清IL-10含量T1组、T2组、T3组与正常对照组比较相对含量明显升高(P<0.05),同一时间段H1组与T1组比较、H2组与T2组比较、H3组与T3组比较血清IL-10含量明显升高(P<0.05)。
     结论:1.亚低温可增加创伤性脑损伤大鼠血清CD4~+T细胞相对含量,降低CD8~+T细胞相对含量。2.创伤性脑损伤后大鼠血清IL-2水平明显降低;创伤性脑损伤后大鼠血清TNF-α水平明显升高;创伤性脑损伤后大鼠血清IL-6水平明显升高:创伤性脑损伤后大鼠血清IL-10水平明显升高。3.亚低温可增加创伤性脑损伤后大鼠血清IL-2水平;亚低温可降低创伤性脑损伤后大鼠血清TNF-α水平;亚低温可提高创伤性脑损伤后大鼠血清IL-6水平;亚低温可提高创伤性脑损伤后大鼠血清IL-10水平。4.创伤性脑损伤后亚低温治疗可能通过多种途径改善机体免疫状态,抑制创伤后炎症反应来达到脑保护作用。
     实验三恒河猴脑常温极限缺血时间窗下选择性超深低温对其保护作用的研究
     目的:研究不同缺血时间窗下选择性超深低温复苏的脑保护作用,探讨脑缺血复苏的极限时间。
     方法:健康成年恒河猴15只(由中国科学院昆明动物研究所提供),雄性,反应灵敏,神经功能正常,年龄4-10岁,平均年龄7.90±1.82岁,体重4.2-14kg,平均8.22±2.15 kg,随机分为四组,双侧颈总动脉阻断立即超深低温灌注组(n=4),双侧颈动脉阻断10分钟超深低温灌注组(n=4),双侧颈动脉阻断15分钟超深低温灌注组(n=4),双侧颈动脉阻断20分钟超深低温灌注组(n=3),建立超深低温复苏模型。
     结果:双侧颈总动脉阻断立即超深低温灌注组(n=4),双侧颈动脉阻断10分钟超深低温灌注组(n=4)安全复苏,全部长期存活;双侧颈动脉阻断15分钟深低温灌注组(n=4)长期存活2只,重残1只,死亡1只;双侧颈动脉阻断20分钟深低温灌注组(n=3)复苏困难,生命体征分别维持3、7、20小时后全部死亡;双侧颈总动脉阻断立即超深低温灌注组(n=4)、双侧颈动脉阻断10分钟超深低温灌注组(n=4)、15分钟阻断复苏组磁共振(MRI、MRA、DWI、ADC)均未见明显缺血改变。微细结构观察双侧颈总动脉阻断立即超深低温灌注组、双侧颈动脉阻断10分钟超深低温灌注组脑及全身器官未见异常改变;15分钟阻断复苏组存活3只猴病理检查散在神经细胞坏死;20分钟阻断复苏组及15分钟阻断复苏组死亡1只猴见大量神经细胞死亡,全身各器官明显异常改变。
     结论:(1)灵长类动物恒河猴可以在单侧颈内动脉冷灌注的条件下迅速达到脑选择性超深低温(14.3-16℃)。(2)脑选择性超深低温灌注是安全、可靠及有效的,既具有明显的脑保护作用、延长断血流的安全时限,又可避免全身超深低温带来的各器官并发症。可作为脑缺血的有效复苏手段。(3)10分钟常温缺血时间窗下复苏是安全的,复苏后脑及全身各器官正常,无并发症。(4)15分钟常温脑缺血超深低温复苏是可能的,但但疗效不确切,可能存留不同程度神经功能障碍,且死残率较高。(5)20分钟常温脑缺血时间窗下复苏由于不可逆性损害已经出现,导致复苏无效。(6)脑缺血复苏的黄金时间为10分钟,在10分钟内采取超深低温复苏可完全恢复大脑功能而无器官并发症;在10分钟-15分钟时间窗内进行超深低温复苏可在大脑短暂完全缺血情况下提高缺血耐受,虽有可能挽救生命,但神经功能缺失及死残率均较高。
The research of traumatic brain injury(TBI)has been attracted by clinician and scientific researchers owing to its increased morbidity with the development of economy and transportation,many years wilderness researcher devote themselves to search for the rehabilitative method of TBI,the exploration for vulnerate mechanism,clinical evaluation, auxiliary diagnosis,and treatment of TBI go extends ahead with the mode of foundation binding clinic constantly.They have performed extensive and penetrating investigation from different point of view for the occurrence reasons,biomechanics mechanisms,pathophysiology, pathomorphology,molecular pathology and other aspects of brain trauma. At present,we presume that the secondly brain injured factors be the important reasons for the brain damage.These lectors involve in cerebral ischemia,energy dysmetabolism,overload of ca~(2+),accretion of oxygen-derived free radicals,neurotoxic action of excitatory amino acids, stimulus by inflammatory factor,and so on.
     Traumatic coma is the difficult spot in the research of TBI,the pathogenesis and treatment always perplex many researchers,how to reveal the mechanism of traumatic coma has already become the new topic that neuroscience worker faced,pay close attention to the clinic issue of traumatic coma is the motive power for foundation research.Long term coma make close correlation with the earlier period in brain induced by brain trauma,initiate with the animal model of acute traumatic coma,we may obtain the pathomechanism correlated with trauma.In test 1 of our research,we established the traumatic coma animal model successfully by midline fluid percussion(MFP),and analysised the expression of calpainⅡ, Voltage-gated sodium channel-6(Nach6)and the variation of microRNA in midbrain,try to interpret the section of pathogenesis of traumatic coma on the expression of mRNA and regulation of microRNA.
     Hypothermia treatment always to be the hot spot in the research of treatment about TBI,it has been hundreds of years from the 19 century overseas scholar initiate to extensive elementary investigation and clinical application,the outcome is satisfactory,the fairly penetrating recognition on mechanisms applicability of mild hypothermia neuroprotection has been achieved by experiment and clinical application study.But it is not clearly about the neuroprotective mechanisms,the study on neuroprotective mechanisms of mild hypothermia still to be the extremely attractive topic,many scholars still dedicate to explore this topic.In test 2 of our research,we established the moderate brain injury animal model,detailed analyze and explain the neuroprotective mechanisms of mild hypothermia on myelin sheath constitution,cytoskeleton, inflammatory regulation,immune function,and so on,in order to supplement the neuroprotective mechanisms of mild hypothermia,and provide experimental evidence for further empirical study and clinical application.
     The research of ultraprofound hypothermia is less than that of mild hypothermia in experimental and clinical study,for the reason of it is difficult to applicated in clinical.But as the whole integrity of the research of hypothermia,ultraprofound hypothermia should not de neglected,otherwise we could not understand the mechanism of hypothermia omnibearing and full-scale clinical application.In test 3 of our research, we research the duration time limit of selective cerebral ultraprofound hypothermia following both carotid arteries clip in monkey based on the research achievement that made by our college cooperation with Shanghai jiaotong university,in order to find the duration time limit of selective cerebral ultraprofound hypothermia following both carotid arteries clip,establish experimental and theory foundation for the further research and clinical application of ultraprofound hypothermia.
     Test 1.The establishment of animal model of acute traumatic coma in rat and research of the mechanism of it
     Objective:1.Establish safe animal model of acute traumatic coma in rat.2.Research the expression of calpainⅡand Voltage-gated sodiumchannel-6(Nach-6)mRNA in midbrain.3.study the variation of microRNA in mindbrain.
     Methods:12 Sprague-Dawley(SD)rats were subjected to 2 groups randomly,sham operated group(n=6):rats were anesthetized,the placement of injury tube inside the craniectomy,but not accepted fluid injury. acute traumatic coma group(n=6):rats under anesthesia with amobarbital(50mg/kg),Fixed Head with rat stereotaxic apparatus,a 4.8mm craniectomy centered over the midline parietal bone,exposured cerebral dura mater,the placement of injury tube(2.6mm)inside the craniectomy, dental bone cement fixed the tube,1.7atm fluid pressure impacted cerebral dura mater after conscious(righting reflex recovered).The brain were removed in experimental group 1h after coma,and in control group1h after operation,midbrain tissue were analyzed by RT-PCR to determine the expression of calpainⅡand Voltage-gated sodium channel-6(Nach-6)mRNA, and were studied by microRNA chip.
     Results:1.Established corresponding stable animal model of acute traumatic coma in rat.mortality<20%,coma time>1h.2.Results of RT-PCR: experimental group compared with control group,the relative amount of the expression of calpainⅡmRNA increased significantly(p<0.01),the relative amount of the expression of Nach6 mRNA increased significantly (p<0.05).3.33microRNA up-regulation above 2 fold,38 microRNA down regulation 50%.
     Conclusion:1.CalpainⅡacted as damage factor to dissolve nerve and myelin sheath.The expression of Nach6 increased in midbrain in traumatic coma rats,sodium ion inflow,resulted in nerve cell and glial cell injuried.They may influence each other,accelerated sodium and calcium ion inflow,effected reticular activating system in midbrain,it may concerned with the pathogenesis of traumatic coma.2.33microRNA up-regulation above 2 fold,38 microRNA down regulation 50%.microRNA may involved in cytoskeleton,cell adhesion,apoptosis,metabolism,ischemia, and involved in the regulation of expression in related gene in the mechanism of traumatic coma.
     Test 2.
     study on mechanism of the lateral fluid percussion brain injury and mild hypothermic neuroprotection
     Part 1 the establishment of animal model of the lateral fluid percussion brain injury in rat
     Objective:Established stable animal model of the lateral fluid percussion brain injury.
     Methods:12 Sprague-Dawley(SD)rats were subjected to 2 groups randomly. sham operated group(n=6):rats were anesthetized,the placement of injury tube inside the craniectomy,but not accepted fluid injury,acute traumatic coma group(n=6):rats under anesthesia with amobarbital (50mg/kg),Fixed Head with rat stereotaxic apparatus,a 4.8mm craniectomy centered over the the left parietal bone,4.0mm lateral to the sagittal suture,the placement of injury tube(2.6mm)inside the craniectomy, dental bone cement fixed the tube,1.7atm fluid pressure impacted cerebral dura mater to establish moderate brain injury,established stable animal model of the lateral fluid percussion brain injury.
     Results:We use international approved fluid percussion brain injury device to establish animal model of brain injury,pressure is 1.4atm,it appears better stability,better repeatability,low mortality,high degree of confidenceonly one rat was dead(about5.6%).
     Conclusions:This animal model significant characteristic is:1. accurate quantitation of pressure,better repeatability,2.traumatic condition can be divided according to quantitation of energy,it can replicate mild,moderate,severe brain injury animal model.3.we can observe various kinds of treatment effect on mortality,dysfunction of nervous system after brain injury.
     Part 2 the expression of calpainⅡ,MBP,MAP2 mRNA in hippocampus
     objective:Study the expression of calpainⅡ,MBP,MAP2 mRNA in hippocampus.
     Methods:18 Sprague-Dawley(SD)rats were subjected to 3 groups randomly,sham operated group(n=6):rats were anesthetized,the placement of injury tube inside the craniectomy,but not accepted fluid injury.LFP brain injury group(n=6):rats were assisted ventilation by respirator after injury,maintained body temperature by electrically heated blanket. Mild hypothermia group(n=6):rats'rectal temperature were dropped to 33℃and been maintained in this lever by ice after injury,rectal temperature were monitored by meter,it takes 3 hours for mild hypothermia. hippocampus tissue were analyzed by RT-PCR to determine the expression of calpainⅡ,MBP,MAP2 mRNA.
     Results:Brain injury group compared with control group,the relative amount of the expression of calpainⅡmRNA increased significantly(p<0.01);mild hypothermia group compared with brain injury group,the relative amount of the expression of calpainⅡmRNA decreased significantly(p<0.01).brain injury group compared with control group, the relative amount of the expression of MBP mRNA decreased significantly (p<0.01);mild hypothermia group compared with brain injury group, the relative amount of the expression of MBP mRNA increased significantly (p<0.01).brain injury group compared with control group,the relative amount of the expression of MAP2 mRNA decreased significantly(p<0.01); mild hypothermia group compared with brain injury group,the relative amount of the expression of MAP2mRNA increased significantly(p<0.01).
     Conclutions:1.Mild hypothermia may provide neuroprotection by inhibit the expression of calpainⅡ.2.Mild hypothermia may provide neuroprotection by promote the expression of MBP,reduce degradation of MBP and demyelination.3.Mild hypothermia may provide neuroprotection by maintain tabilization of MAP2.4.Mild hypothermia may provide neuroprotection by inhibit the expression of calpainⅡand reduce solution and damage of myelin sheath and cytoskeleton in nerve cell and glial cell, reduce degradation of MBP and demyelination,tabilization of MAP2.But there are many factors that maintain normal structure of cytoskeleton, specific mechanisms will be studied in afterwards tests.
     Part 3 The expression of PPAR-γ、NF-κBmRNA in cortex
     Objective:Study the expression of PPAR-γ、NF-κBmRNA in cortex.
     Methods:18 Sprague-Dawley(SD)rats were subjected to 3 groups randomly,sham operated group(n=6):rats were anesthetized,the placement of injury tube inside the craniectomy,but not accepted fluid injury.LFP brain injury group(n=6):rats were assisted ventilation by respirator after injury,maintained body temperature by electrically heated blanket. Mild hypothermia group(n=6):rats' rectal temperature were dropped to 33℃and been maintained in this lever by ice after injury,rectal temperature were monitored by meter,it takes 3 hours for mild hypothermia,cortex tissue were analyzed by RT-PCR to determine the expression of PPAR-γ、NF-κB mRNA in cortex.
     Results:Brain injury group compared with control group,the relative amount of the expression of PPAR-γmRNA decreased significantly(p< 0.01);mild hypothermia group compared with brain injury group,the relative amount of the expression of PPAR-γmRNA increased significantly (p<0.01).brain injury group compared with control group,the relative amount of the expression of NF-κB mRNA increased significantly(p<0.01); mild hypothermia group compared with brain injury group,the relative amount of the expression of NF-κB mRNA decreased significantly(p<0.01).
     conclusion:Mild hypothermia probably increase the expression of PPAR-γ,it makes the number of PPAR-γcombine with P65/P50 subunit of NF-κB increased,then makes combine activity depressed,inhibit synthesis of NF-κB DNA,at last inhibit the expression of NF-κB,or inhibit NF-κB transcription by reinforce competitive binding cooperation activating factor P300 and CBP.mild hypothermia provide neuroprotection probably through PPAR-γin coordination with NF-κB or act alone make multi-pathway to relieve brain damage.
     Part 4 The effect of mild hypothermia on immune function in LFP brain injuried rats
     objective:Study the change of CD4~+,CD8~+antigen,IL-2、TNF-α、IL-6、IL-10 levels in serum after mild hypothermia treatment for LFP brain injuried rats.
     Methods:Rats were subjected to 3 groups randomly.Control group(n=6), LFP brain injuried 1-3 group(n=6),mild hypothermia 1-3 group(n=6),time points is:3h、1d、3d.blood was drew from inferior caval vein in different time points after the animal model accomplished,CD4~+,CD8~+ levels in serum were determined by using flow cytometry,IL-2、TNF-α、IL-6、IL-10levels in serum were determined though enzyme-linked immunosorbent assay (ELISA).
     Results:1.T1 group,T2 group,T3group compared with control group, relative amount of CD4~+T cell decreased significantly(P<0.05),H1 group compared with T1 group,H2 group compared with T2 group,H3 group compared with T3 group in the same time point,relative amount of CD4~+T cell increased significantly(P<0.01);T1 group,T2 group,T3group compared with control group,relative amount of CD8~+T cell increased significantly (P<0.05),H1 group compared with T1 group,H2 group compared with T2 group,H3 group compared with T3 group in the same time point,relative amount of CD8~+T cell decreased significantly(P<0.01).2.T1 group,T2 group,T3group compared with control group,IL-2 levels in serum decreased significantly(P<0.05),H1 group compared with T1 group,H2 group compared with T2 group,H3 group compared with T3 group in the same time point,IL-2 levels in serum increased significantly(P<0.05);T1 group, T2 group,T3group compared with control group,TNF-αlevels in serum increased significantly(P<0.05),H1 group compared with T1 group,H2 group compared with T2 group,H3 group compared with T3 group in the same time point,TNF-αlevels in serum decreased significantly(P<0.05); T1 group,T2 group,T3group compared with control group,IL-6 levels in serum increased significantly(P<0.05),H1 group compared with T1 group, H2 group compared with T2 group,H3 group compared with T3 group in the same time point,IL-6 levels in serum increased significantly(P<0.05); T1 group,T2 group,T3group compared with control group,IL-10 levels in serum increased significantly(P<0.05),H1 group compared with T1 group, H2 group compared with T2 group,H3 group compared with T3 group in the same time point,IL-10 levels in serum increased significantly(P<0.05).
     Conclusions:1.Mild hypothermia can increase relative amount of CD4~+T cell and decrease CD8~+T cell in serum in brain injuried rats.2.IL-2 levels in serum decreased,TNF-α,IL-6,IL-10 levels in serum increased in brain injuried rats.3.Mild hypothermia can increase IL-2,IL-6,IL-10 levels in serum,decrease TNF-αlevels in serum in brain injuried rats.4.Mild hypothermia treatment after brain injury can provide neuroprotection probably by improving body immune state through multi-pathway and inhibit traumatic inflammatory reaction.
     Test3 Neuroprotection of selective ultro-pround hypothermia in time limit of common temperature brain ischemia in rhesus monkey
     Objective:Study the Neuroprotection of selective ultro-pround hypothermia in different time limit of common temperature brain ischemia,approach the limit time of brain ischemia resuscitation.
     Methods:15 healthy adult rhesus monkey,male,normal nervous function, 4-10 years old,average old 7.90±1.82 years old,4.2-14kg,average weight 8.22±2.15kg,randomly divided into 4 groups:resuscitation of Omin of 2 carotid artery blockage group(n=4),resuscitation of 10min of 2 carotid artery blockage group(n=4),resuscitation of 15min of 2 carotid artery blockage group(n=4),resuscitation of 20min of 2 carotid artery blockage group(n=3),establish animal models of ultro-pround hypothermia resuscitation.
     Results:All of the monkey in esuscitation of 0min of 2 carotid artery blockage group(n=4)and resuscitation of 10min of 2 carotid artery blockage group(n=4)were survived;2 long-term surviving,1 severe disable, 1 died in 15min of 2 carotid artery blockage group(n=4);it is difficult to resus the monkey in 20min of 2 carotid artery blockage group(n=3), vital sign were sustained 3、7、20 hours then died.Image of obviously ischemia were not found in 0min,10min,15min of 2 carotid artery blockage group in MRI、MRA、DWI、ADC.In fine structure observation,generous nerve cell and organ structure were normal in 0min,10min and survived monkey in 10min group.Minority of nerve cell were died in 15min of 2 carotid artery blockage group.Generous nerve cell were died in 20min of 2 carotid artery blockage group and died monkey in 10 min group.
     Conclutions:(1)Selective brain ultro-pround hypothermia(14.3-16℃) may achieved by half internal carotid artery cold irritating in mayrhesus monkey.(2)Selective brain ultro-pround hypothermia is safe,reliability and effective,not only act as neuroprotection and prolonged the time limit of ischemia but also avoid organ complication in system,it can be used as a tool of resuscitation.(3)It is safety for resuscitation in 10 min brain ischemia.(4)It is possible for resuscitation in 15 min brain ischemia,but may result in different degree the nerve nerve disfunction and organ complication and high disability and death rate.(5) resuscitation of 20min of 2 carotid artery blockage was invalid due to irreversibility damage.(6)We presume:the gold time of resuscitation for brain ischemia is in 10min,cerebral function will be full recovered without organ complication by ultro-pround hypothermia in 10min;life can be saved in 15min,but may result in different degree nerve disfunction and high disability and death rate.
引文
1.Lauralyn A.Mclntyre,Dean A.etal.Prolonged Therapeutic Hypothermia After Traumatic Brain Injury in Adults:A Systematic Review.JAMA,2003,289(1):2992-2999.
    2.Paul E.Marik,Joseph Varon,Management of Head Trauma.Chest,2002,122(9):699-711.
    3.DONALD M.HILTY.Rehabilitation for Traumatic Brain Injury Am J Psychiatry,2006,163(10):1845-1846.
    4.N Nakayama,A Okumura,J Shinoda,etal.Relationship between regional cerebral metabolism and consciousness disturbance in traumatic diffuse brain injury without large focal lesions:an FDG-PET study with statistical parametric mapping analysis J.Neurol:Neurosurg.Psychiatry,2006,77(6):856-862.
    5.Mauro Africa,Bruno Bissonnette.Therapeutic Hypothermia Seminars in Cardiothoracic and Vascular Anesthesia,2007,11(4):6-15.
    6.R Ramani.Hypothermia for brain protection and resuscitation.Curr Opin Anaesthesiol,2006,19(5):487-491.
    7.J Sahuquillo,A Vilalta.Cooling the injured brain:how does moderate hypothermia influence the pathophysiology of traumatic brain injury.Curt Pharm Des,2007,13(22):2310-2322.
    8.LH Mcilvoy The effect of hypothermia and hyperthermia on acute brain injury.AACN Clin Issues,2005,16(4):488-500.
    9. A Theodorsson, L Holm, E Theodorsson. Hypothermia-induced increase in galanin concentrations and ischemic neuroprotection in the rat brain. Neuropeptides, 2008, 42(1): 79-87.
    
    10. MA Tortorici, PM Kochanek, SM Poloyac, etal. Effects of hypothermia on drug disposition, metabolism, and response: A focus of hypothermia-mediated alterations on the cytochrome P450 enzyme system. Crit Care Med, 2007, 35(9): 2196-2204.
    
    11. Radoslav K, Jus, Zeljko Dzakula, etal. Brain Energetics and Tolerance to Anoxia in Deep Hypothermia. Ann. N.Y. Acad, 2005(10), 1048:10-35.
    
    12. Alam HB, Chen Z, Ahuja N, etal. Profound hypothermia protects neurons and astrocytes, and preserves cognitive functions in a Swine model of lethal hemorrhage. J Surg Res, 2005, 126(2):172-181.
    1.Hilaire J.Thompson Jonathan Lifshitz,Niklas Marklund,etal.Lateral Fluid Percussion Brain Injury:A 15-Year Review and Evaluation.Journal of Neurotr-auma.2005.22(1):42-75.
    2.J Lifshitz,BM Witgen,MS Grady.Acute cognitive impairment after lateral fluid percussion brain injury recovers by 1 month:evaluation by conditioned fear response.Behav Brain Res,2007,177(2):347-357.
    3.H Shojo and K Kibayashi Changes in localization of synaptophysin following fluid percussion injury in the rat brain.Brain Res,2006,1078(1):198-211.
    4.Y Iwamoto,T Yamaki,N Murakami,etal.Investigation of morphological change of lateral and midline fluid percussion injury in rats,using magnetic resonance imaging.Neuro-surgery,1997,40(1):163-167.
    5.BJ Kelley,O Farkas,J Lifshitz,etal.Traumatic axonal injury in the perisomatic domain triggers ultrarapid secondary axotomy and Wallerian degeneration.Exp Neurol,2006,198(2):350-360.
    6.J Lifshitz,BJ Kelley,JT Povlishock,etal.Perisomatic thalamic axotomy after diffuse traumaticbrain injury is associated with atrophy rather than cell death.J Neuropathol Ex-p Neurol,2007,66(3):218-229.
    7.E Schultke,H Kamencic,M Zhao,GF Tian,etal.Neuroprotection following fluid percus-sion brain trauma:a pilot study using quercetin.J Neurotrauma,2005,22(12):1475-1484.
    8.S Hoshino,S Kobayashi,T Furukawa,etal.Multiple immunostaining methods to detect tra-umatic axonal injury in the rat fluid-percussion brain injury model.Neurol Med Chir(Tokyo),2003,43(4):165-174.
    9.T Kita,T Tanaka,N Tanaka,etal.The role of tumor necrosis factor-alpha in diffuse ax-onal injury following fluid-percussive brain injury in rats.Int J Legal Med,2000,113(4):221-228.
    1.Barbara Tremper-Wells,Mary Lou Vallano Nuclear Calpain Regulates Ca~(2+)-dependent Signaling via Proteolysis of Nuclear Ca~(2+)/Calmodulin-dependentProtein Kinase Type Ⅳ in Cultured Neurons J.Biol.Chem.,2005,280(11):2165-2175.
    2.Francisco Sanchez-Sanchez,Francisco Martinez-Redondo,J.Daniel Aroca-Aguilar,etal.Characterization of the Intracellular Proteolytic Cleavage of Myocilin and Identification of Calpain Ⅱ as a Myocilin-processing Protease J.Biol.Chem.,2007,282(9):27810-27824.
    3.Fei Liu,Inge Grundke-Iqbal,Khalid Iqbal,etal.Truncation and Activation of Calcineurin A by Calpain Ⅰ in Alzheimer Disease Brain J.Biol.Chem.,2005,280(11):37755-37762.
    4.Nancy R.Gough.Dispersing Clusters with Calpain Sci.STKE,2007,2007(7):259.
    5.Thomas H.Rhodes,Carlos G.Vanoye,etal.Sodium channel dysfunction in intractable childhood epilepsy with generalized tonic-clonic seizures J.Physiol.,2005,569(12):433-445.
    6.Scheller KL,Krzemien DM Yaroweki PJ,etal.A novel,abundant sodium channel expressed in neurons and glia.J.Neurosci,1995,15(2):3231.
    7.JW Huh,AG Widing,R Raghupathi.Basic science:repetitive mild non-contusive brain trauma in immature rats exacerbates traumatic axonal injury and axonal calpain activation:a preliminary report.J Neurotrauma,2007,24(1):15-27.
    8.B Atalay,H Caner,A Can,M Cekiumez Attenuation of microtubule associated protein-2 degradation after mild head injury by mexiletine and calpain-2 inhibitor.Br J Neurosurg,2007,21(3):281-287
    9.HY Wu a,DR Lynch.Calpain and synaptic function.Mol Neurobiol,2006,33(3):215-236.
    10.JW Huh,MA Franklin,AG Widing,etal.Regionally distinct patterns of calpain activation and traumatic axonal injury following contusive brain injury in immature rats.Dev Neurosci,2006,28(4-5):466-476.
    11.Emi Nakajima,Larry L.David,Cory Bystrom,etal.Calpain-Specific Proteolysis in Primate Retina:Contribution of Calpains in Cell Death Invest.Ophthalmol.Vis.Sci.,2006,47(11):5469-5475.
    12. Jia Liu, Richard B. Marchase, John C. Chatham Increased O-GlcNAc levels during reperfusion lead to improved functional recovery and reduced calpain proteolysis Am J Physiol Heart Circ Physiol, 2007, 293(9): H1389-H1399.
    
    13. Orsolya Farkas, Jonathan Lifshitz, John T. etal. Mechanoporation Induced by Diffuse Traumatic Brain Injury: An Irreversible or Reversible Response to Injury? The Journal of Neuroscience, 2006, 26(12), 3130-3140.
    
    14. Monica Averna, Roberto Stifanese, Roberta De Tullio, etal. Regulation of Calpain Activity in Rat Brain with Altered Ca~(2+) Homeostasis. Biol. Chem., 2007, 282 (4): 2656-2665.
    
    15. Firas H. Kobeissy , Andrew K. Ottens , Zhiqun Zhang, etal. Novel Differential Neuroproteomics Analysis of Traumatic Brain Injury in Rats. Molecular & Cellular Proteomics, 2006,10(5):1887-1898.
    
    16. Christopher A. Ahem, Amy L. Eastwood, etal. Electrostatic Contributions of Aromatic Residues in the Local Anesthetic Receptor of Voltage-Gated Sodium Channels. Circ. Res., 2008,1021(1): 86-94.
    
    17. Dieter R. Riddall, Michael J. Leach, etal. A Novel Drug Binding Site on Voltage-Gated Sodium Channels in Rat Brain Mol. Pharmacol., 2006, 69(1):278-287.
    
    18. Y Gu, L Wang, C Xiao, etal. Effects of lead on voltage-gated sodium channels in rat hippocampal CA1 neurons. Neuroscience, 2005,133(3): 679-690
    
    19. X Zhou, XW Dong, T Priestley The neuroleptic drug, fluphenazine, blocks neuronal voltage-gated sodium channels. Brain Res, 2006,1106(1): 72-81.
    
    20. FS Cusdin, JJ Clare, AP Jackson. Trafficking and cellular distribution of voltage-gated sodium channels. Traffic, 2008,9(1): 17-26.
    
    21.Narender K. Dhingra, Michael A. Freed, Robert G. Smith. Voltage-Gated Sodium Channels Improve Contrast Sensitivity of a Retinal Ganglion Cell J. Neurosci., 2005,25(8): 8097-8103.
    22.I Tarnawa, H Bolcskei, P Kocsis. Blockers of voltage-gated sodium channels for the treatment of central nervous system diseases. Recent Patents CNS Drug Discov, 2007, 2(1): 57-78.
    23. Bryan C. Hains, Joshua P. Klein, Carl Y. Saab, etal. Upregulation of Sodium Channel Na 1.3 and Functional Involvement in Neuronal Hyperexcitability Associated with Central Neuropathic Pain after Spinal Cord Injury. J. Neurosci., 2003, 23(10) :8881.
    
    24. John A. Wolf, 1 Peter K. Stys, etal. Traumatic Axonal Injury Induces Calcium Influx Modulated by Tetrodotoxin-Sensitive Sodium Channels. The Journal of Neuroscience, 2001,21(6):1923-1930.
    
    25. Nancy Osorio, Gisele Alcaraz, Francoise Padilla, etal. Differential targeting and functional specialization of sodium channels in cultured cerebellar granule cells J. Physiol., 2005, 569(11): 801-816.
    
    26. Teresa K. Aman , Indira M. Raman. Subunit Dependence of Na Channel Slow Inactivation and Open Channel Block in Cerebellar Neurons. Biophys. J,2007, 92(3):1938-1951.
    
    27. MG Fehlings, S Agrawal . Role of sodium in the pathophysiology of secondary spinal cord injury. Spine, 1995,20(20): 2187-2191.
    1.RC Lee,RL Feinbaum,V Ambros.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell,1993,75(5):843-854.
    2.Joel R.Neilson,Grace X.Y.Zheng,etal.Dynamic regulation of miRNA expression in ordered stages of cellular development Genes & Dev.,2007,21(3):578-589.
    3.ERIC C.LAI,COLIN WIEL,GERALD M.RUBIN Complementary miRNA pairs suggest a regulatory role for miRNA:miRNA duplexes RNA,2004,10(2):171.
    4.nui Wang,Robert A.Ach,Bo Curry Direct and sensitive miRNA profiling from low-input total RNA. RNA, 2007, 13(1): 151-159.
    
    5. W Chen, LR Jensen, J Gecz, etal. Mutation screening of brain-expressed X-chromosomal miRNA genes in 464 patients with nonsyndromic X-linked mental retardation. Eur J Hum Genet, 2007, 15(3): 375-378.
    
    6. WJ Lukiw , AI Pogue. Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J Inorg Biochem, 2007, 101(9): 1265-1269.
    
    7. L Smirnova, A Grafe, A Seiler, etal. Regulation of miRNA expression during neural cell specification. S Schumacher, RNitsch, FG WulczynEur JNeurosci, 2005, 21(6): 1469-1477.
    
    8. MS Nicoloso , GACalin. MicroRNA involvement in brain tumors: from bench to bedside. Brain Pathol, 2008, 18(1): 122-129.
    
    9. Kim VN, Nam JW. Genomics of microRNA. Trends in Genetics, 2006, 22(3): 165-173.
    
    10. Gregory RI, Yan KP, Amuthan G, et al. The microprocessor complex mediates the genesis of miRNA. Nature, 2004, 432(7014):235-240.
    
    11. Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science, 2004, 303(5654):95-98.
    
    12. Valencia-Sanchez MA, Liu J, Hannon GJ. al. Control of translation and mRNA degradation by miRNA and siRNAs.GenesDev, 2006. 20(3):515-24.
    
    13. Ying SY, Lin SL. Current perspectives in intronic microRNAs (miRNA). J Biomed Sci, 2006, 13(1): 5~15.
    
    14. Lin H, Gregory JH. MiRNA; Small RNAs with a big role in gene regulation. Nature, 2006, 5 (7) :522-531.
    
    15. Aurora EK, Frank JS. Oncomis-miRNA with a role in cancer. Nature, 2006,6 (4) : 259-269.
    
    16. M Lewsey, FC Robertson, T Canto, etal. Selective targeting of miRNA-regulated plant development by a viral counter-silencing protein. Plant J, 2007, 50(2): 240-252.
    
    17. Ranhui Duan, ChangHui Pak, Peng Jin. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA Hum. Mol. Genet., 2007,16(3): 1124-1131
    
    18. MR Willmann, RS Poethig. Conservation and evolution of miRNA regulatory programs in plant development. Curr Opin Plant Biol, 2007, 10(5): 503-511.
    
    19. FE Ahmed. Role of miRNA in carcinogenesis and biomarker selection: a methodological view. Expert Rev Mol Diagn, 2007, 7(5): 569-603.
    
    20. Ana Eulalio, Jan Rehwinkel, Mona Stricker, etal. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing Genes & Dev., 2007, 21(10): 2558-2570.
    
    21. Jonathan R. Kerr , Nicola Boschetti. Short regions of sequence identity between the genomes of human and rodent parvoviruses and their respective hosts occur within host genes for the cytoskeleton, cell adhesion and Wnt signalling J. Gen. Virol., 2006, 87(12): 3567-3575.
    
    22. Angie M. Cheng, Mike W. Byrom, Jeffrey Shelton, etal. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis .Nucleic Acids Res., 2005, 33(3): 1290-1297.
    1.J Lifshitz,BM Witgen,MS Grady Acute cognitive impairment after lateral fluid percussion brain injury recovers by 1 month:evaluation by conditioned fear response.Behav Brain Res,2007,177(2):347-357.
    2.S Li,T Kuroiwa,N Katsumata,S Ishibashi,etal.Unilateral spatial neglect and memory deficit associated with abnormal beta-amyloid precursor protein accumulation after lateral fluid percussion injury in Mongolian gerbils.Acta Neurochir Suppl,2006,96(1):144-147.
    3.A Ohsumi,H Nawashiro,N Otani,etal.Alteration of gap junction proteins (connexins)following lateral fluid percussion injury in rats.Acta Neurochir Suppl,2006,96(1):148-150.
    4.JH Yi,DV Pow,AS Hazell.Early loss of the glutamate transporter splice-variant GLT-1v in rat cerebral cortex following lateral fluid-percussion injury.Gila,2005,49(1):121-133.
    5.H Shojo,K Kibayashi.Changes in localization of synaptophysin following fluid percussion injury in the rat brain.Brain Res,2006,1078(1):198-211.
    6.JE Levasseur,B Alessandri,M Reinert,etal.Lactate,not glucose,up-regulates mitochondrial oxygen consumption both in sham and lateral fluid percussed rat brains.Neurosurgery,2006,59(5):1122-1130;discussion 1130-1131.
    7.HG Sullivan,J Martinez,DP Becker,etal.F1uid-percussion model of mechanical brain injury in the cat.J Neurosurg.1976,45(5):521-534.
    8.TK Mclntosh,R Vink,L Noble,etal.Traumatic brain injury in the rat:characterization of a lateral fluid-percussion model.Neuroscience,1989,28(1):233-244.
    9.JWLighthall,CE Dixon,and TEAnderson.Experimental models of brain injury.J Neurotrauma,1989,6(2):83-97.
    10.JS Truettner,OF A1onso,W Dalton Dietrich,etal.Influence of therapeutic hypothermia on matrix metalloproteinase activity after traumatic brain injury in rats. J Cereb Blood Flow Metab, 2005,25(11): 1505-16.
    
    11. JS Truettner, T Suzuki, WD Dietrich, etal. The effect of therapeutic hypothermia on the expression of inflammatory response genes following moderate traumatic brain injury in the rat. Brain Res Mol Brain Res, 2005, 138(2): 124-134.
    
    12. Mauro Arrica, Bruno Bissonnette. Therapeutic Hypothermia, rdiothoracic and Vascular Anesthesia, 2007, 11(1): 6-15.
    
    13.F Clausen ,L Hillered. Intracranial pressure changes during fluid percussion, controlled cortical impact and weight drop injury in rats. Acta Neurochir (Wien), 2005, 147(7): 775-780.
    
    14. Vink, R., Mullins, P.G., Temple, M.D., etal. Small shifts in craniotomy position in the lateral fluid percussion injury model are associated with differential lesion development. J. Neurotrauma 2001, 18(8): 839-847.
    
    15. Statler, K. D., Kochanek, P. M., Dixon, C. E., et al. Isoflurane improves long-term neurologic outcome versus fentanyl after traumatic brain injury in rats. J. Neurotrauma, 2000, 17(12), 1179-1189.
    
    16. LD Tran LD, J Lifshitz J, BM Witgen BM, etal. Response of the contralateral hippocampus to lateral fluid percussion brain injury. J Neurotrauma, 2006, 23(9):1330-1342.
    
    17. Zhou Z, DaughertyWP, Sun D, Protection of mitochondrial function and improvement in cognitive recovery in rats treated with hyperbaric oxygen following lateral fluid-percussion injury. J Neurosurg, 2007, 106(4):687-669
    
    18. Bartnik BL, Lee SM, Hovda DA, etal. The fate of glucose during the period of decreased metabolism after fluid percussion injury: a 13C NMR study. J Neurotrauma, 2007, 24(7):1079-1092.
    
    19. Shojo H , Kibayashi K .Changes in localization of synaptophysin following fluid percussion injury in the rat brain. Brain Res, 2006, 1078(1):198-211.
    
    20. Clausen F , Hillered L. Intracranial pressure changes during fluid percussion, controlled cortical impact and weight drop injury in rats. Acta Neurochir (Wien), 2005, 147(7): 775-780.
    
    21. Levasseur JE, Alessandri B, Reinert M, etal. Lactate, not glucose, up-regulates mitochondrial oxygen consumption both in sham and lateral fluid percussed rat brains. Neurosurgery, 2006, 59(5): 1122-1130.
    
    22. T Maeda, SM Lee, DA Hovda, etal. Restoration of cerebral vasoreactivity by an L-type calcium channel blocker following fluid percussion brain injury.J Neurotrauma, 2005, 22(7): 763-771.
    
    23. Anthony Lau, Mark Arundine, Hong-Shuo Sun, etal. Inhibition of Caspase-Mediated Apoptosis by Peroxynitrite in Traumatic Brain Injury. The Journal of Neuroscience, 2006, 26(45): 11540-11553
    
    24. Raimondo D' Ambrosio, Jared P. Fairbanks, Jason S. Fender, etal. Post-traumatic epilepsy following fluid percussion injury in the rat. Brain, 2004, 127(2): 304-314.
    
    25. Raimondo D'Ambrosio, Jason S. Fender, Progression from frontal - parietal to mesial - temporal epilepsy after fluid percussion injury in the rat. Brain, 2005, 128(1): 174-188.
    
    26.I Kharatishvili, JPNissinen, TK McIntosh, etal. A model of post traumatic epilepsy induced by lateral fluid-percussion brain injury in rats. Neuroscience, 2006, 140(2): 685-697.
    
    27. JS Truettner, OF Alonso, f Dalton Dietrich, etal. Influence of therapeutic hypothermia on matrix metalloproteinase activity after traumatic brain injury in rats. J Cereb Blood Flow Metab, 2005, 25(11): 1505-1516.
    
    28. JS Truettner, T Suzuki, WD Dietrich, etal. The effect of therapeutic hypothermia on the expression of inflammatory response genes following moderate traumatic brain injury in the rat. Brain Res Mol Brain Res, 2005, 138(2): 124-134.
    
    29. Mauro Arrica, Bruno Bissonnette. Therapeutic Hypothermia, rdiothoracic and Vascular Anesthesia, 2007, 11(1): 6-15.
    
    30. HG Fritz, B Walter, M Holzmayr, etal. A pig model with secondary increase of intracranial pressure after severe traumatic brain injury and temporary blood loss. J Neurotrauma, 2005, 22(7): 807-821.
    1.Keiichiro Susuki,Matthew N.Rasband Spectrin and Ankyrin-Based Cytoskeletons at Polarized Domains in Myelinated Axons Experimental Biology and Medicine,2008,233(4):394-400.
    2.TS Benice,A Rizk,S Kohama,etal.Sex-differences in age-related cognitive decline in C57BL/6J mice associated with increased brain microtubule-associated protein2 and synaptophysin immunoreactivity.Neuroscience,2006,137(2):413-423.
    3.Y Haranishi,R Kawata,S Fukuda,etal.Moderate hypothermia,but not calpain inhibitor 2, attenuates the proteolysis of microtubule-associated protein 2 in the hippocampus following traumatic brain injury in rats. Eur J Anaesthesiol, 2005, 22(2): 140-147.
    
    4. J Kuhn, C Meissner, M Oehmichen Microtubule-associated protein2 (MAP2)-a promising approach to diagnosis of forensic types of hypoxia-ischemia. Acta Neuropathol, 2005, 110(6): 579-586.
    
    5. Virginie Fontaine-Lenoir, Beatrice Chambraud, Arlette Fellous, etal. Microtubule-associated protein 2 (MAP2) is a neurosteroid receptor PNAS, 2006, 103(3): 4711-4716.
    
    6. Extensive degradation of myelin basic protein isoforms by calpain following traumatic brain injury. J Neurochem, 2006, 98(3): 700-712.
    
    7. MC Liu, V Akle, W Zheng, etal. Backbone dynamics of the 18. 5 kDa isoform of myelin basic protein reveals transient alpha-helices and a calmodulin-binding site Biophys. J, 2008, 10(3): 1529.
    
    8. ZG Xiong, XP Chu, RP Simon. Ca2+-permeable acid-sensing ion channels and ischemic brain injury. J Membr Biol, 2006, 209(1): 59-68.
    
    9. Monica Averna, Roberto Stifanese, Roberta De Tullio, etal. Regulation of Calpain Activity in Rat Brain with Altered Ca~(2+) Homeostasis J. Biol. Chem., 2007, 282(1): 2656-2665.
    
    10. Edon Melloni, Monica Averna, Roberta De Tullio, etal. Regulation of calpain activity in brain following altered Ca2+ homeostasis FASEB J, 2006, 20(3): A1352-A1353.
    
    11. MM Folkerts, EA Parks, JR Dedman, etal. Phosphorylation of calcium calmodul in-dependent protein kinase II following lateral fluid percussion brain injury in rats. J Neurotrauma, 2007, 24(4): 638-650.
    
    12. JW Huh, MA Franklin, AG Widing, etal. Regionally distinct patterns of calpain activation and traumatic axonal injury following contusive brain injury in immature rats. Dev Neurosci, 2006, 28(4-5): 466-476.
    
    13. Katia Fettucciari, Ilaria Fetriconi, Roberta Mannucci, etal. Group B Streptococcus Induces Macrophage Apoptosis by Calpain Activation J. Immunol., 2006, 176(1): 7542-7556.
    
    14. JW Huh, AG Widing, R Raghupathi. Basic science; repetitive mild non-contusive brain trauma in immature rats exacerbates traumatic axonal injury and axonal calpain activation: a preliminary report. J Neurotrauma, 2007, 24(1): 15-27.
    15. JM Wingrave, EA Sribnick, GG Wilford, etal. Relatively low levels of calpain expression in juvenile rat correlate with less neuronal apoptosis after spinal cord injury. Exp Neurol, 2004, 187(2): 529-532.
    
    16. MM Folkerts, EA Parks, JR Dedman, etal. Phosphorylation of calcium calmodul in-dependent protein kinase II following lateral fluid percussion brain injury in rats. J Neurotrauma, 2007, 24(4): 638-650.
    
    17. M. I. Damaj Nicotinic Regulation of Calcium/Calmodulin-Dependent Protein Kinase II Activation in the Spinal Cord J. Pharmacol. Exp. Ther., 2007, 320(1): 244-249.
    
    18. DARREL E. GOLL, VALERY F. THOMPSON, HONGQI LI, etal. The Calpain System Physiol Rev, 2003, 83(7): 731.
    
    19. NC Ringger, PJ Tolentino, DM McKinsey, etal. Effects of injury severity on regional and temporal mRNA expression levels of calpains and caspases after traumatic brain injury in rats. J Neurotrauma, 2004, 21(7): 829-841.
    
    20. M Liebetrau, D Burggraf, HK Martens, etal. Delayed moderate hypothermia reduces calpain activity and breakdown of its substrate in experimental focal cerebral ischemia in rats. Neurosci Lett, 2004, 357(1): 17-20.
    
    21.MD Mannie, JL Devine, BA Clayson, etal. Cytokine-neuroantigen fusion proteins: new tools for modulation of myelin basic protein (MBP)-specific T cell responses in experimental autoimmune encephalomyelitis. J Immunol Methods, 2007, 319(1-2): 118-132.
    
    22. ABuki, H Koizumi, JT Povlishock. Moderate posttraumatic hypothermia decreases early calpain-mediated proteolysis and concomitant cytoskeletal compromise in traumatic axonal injury. Exp Neurol, 1999, 159(1): 319-328.
    
    23. MC Liu, V Akle, W Zheng, etal. Extensive degradation of myelin basic protein isoforms by calpain following traumatic brain injury. J Neurochem, 2006, 98(3) : 700-712.
    
    24. Omar F. Laterza, Vijay R. Modur, Dan L. Crimmins, etal. Identification of Novel Brain Biomarkers. Clinical Chemistry, 2006, 52(7): 1713-1721.
    
    25. Julien Cau , Alan Hall Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways J. Cell Sci., 2005, 118(7): 2579-2587.
    
    26. Carole Abi Farah, Dalinda Liazoghli, Sebastien Perreault, etal. Interaction of Microtubule-associated Protein-2 and p63: A new link between microtubules and rough endoplasmic reyiculm membranes in neurons. J. Biol. Chem., 2005, 280(3): 9439-9449.
    
    27.ulie Baratier, Leticia Peris, Jacques Brocard, etal. Phosphorylation of Microtubule-associated Protein STOP by Calmodulin Kinase II. J. Biol. Chem., 2006, 281(7): 19561-19569.
    
    28. Susanna Aprea, Luis Del Valle, Giuseppe Mameli, etal. Tubulin-Mediated Binding of Human Immunodeficiency Virus-1 Tat to the Cytoskeleton Causes Proteasomal-Dependent Degradation of Microtubule-Associated Protein 2 and Neuronal Damage J. Neurosci., 2006, 26(4): 4054-4062.
    
    29. Benny Bjorkblom, Nina stman, Vesa Hongisto, etal. Constitutively Active Cytoplasmic c-Jun N-Terminal Kinase 1 Is a Dominant Regulator of Dendritic Architecture: Role of Microtubule-Associated Protein 2 as an Effector J. Neurosci., 2005, 25(7): 6350-6361
    
    30. L Dehmelt a, S Halpain The MAP2/Tau family of microtubule-associated proteins. Genome Biol, 2005, 6(1): 204.
    
    31. F Labombarda, S Gonzalez, MC Gonzalez Deniselle, etal. Progesterone increases the expression of myelin basic protein and the number of cells showing NG2 immunostaining inthe lesioned spinal cord. J Neurotrauma, 2006, 23(2): 181-192.
    
    32. J Kuhn, C Meissner, M Oehmichen. Microtubule-associated protein 2 (MAP2)-—a promising approach to diagnosis of forensic types of hypoxia-ischemia. Acta Neuropathol (Berl), 2005, 110(6): 579-586.
    
    33. H Caner, A Can, B Atalay, etal. Early effects of mild brain trauma on the cytoskeletal proteins neurofilament160 and MAP2, and the preventive effects of mexilitine. Acta Neurochir (Wien), 2004, 146(6): 611-621.
    
    34.O Kitamura,T Gotohda, A Ishigami, etal. Effect of hypothermia on postmortem alterations in MAP2 immunostaining in the human hippocampus. Leg Med (Tokyo), 2005, 7(5): 340-344.
    1.HJ Thompson,RC Hoover,NCTkacs,etal.Development of posttraumatic hyperthermia after traumatic brain injury in rats is associated with increased periventricular inflammation.J Cereb Blood Flow Metab,2005,25(2):163-176.
    2.Weidong Su,Craig R.Bush,Brian M.Necela,etal.Differential expression,distribution,and function of PPAR-γin the proximal and distal colon.Physiol Genomics,2007,30(8):342-353.
    3.Salvatore Cuzzocrea,Emanuela Mazzon,Rosanna Di Paola,etal.The role of the peroxisome proliferator-activated receptor- α(PPAR-α)in the regulation of acute inflammation J.Leukoc.Biol.,2006,79(3):999-1010.
    4.M Sokolowska,ML Kowalski,R Pawliczak.[Peroxisome proliferator-activated receptors-gamma(PPAR-gamma)and their role in immunoregulation and inflammation control]Postepy Hig Med Dosw(Online),2005,59(1):472-484.
    5.J Kriz.Inflammation in ischemic brain injury:timing is important.Crit Rev Neurobiol,2006,18(1-2):145-157,
    6.Roberta Brambilla,Valerie Bracchi-Ricard,Wen-Hui Hu,etal.Inhibition of astroglial nuclear factor κ B reduces inflammation and improves functional recovery after spinal cord injury J.Exp.Med.,2005,202(7):145-156.
    7.Venkatesh Rajapurohitam,Sabzali Javadov,Daniel M Purdham,etal.Abstract 1337:Attenuation of the Leptin-Induced Hypertrophy by NF- κB Inhibition Requires Activation of AMPK in Neonatal Cardiomyocytes Circulation,2007,116(10):270-274.
    8.C Zhong,X Zhao,J Sarva,etal.NAAG peptidase inhibitor reduces acute neuronal degeneration and astrocyte damage following lateral fluid percussion TBI in rats.J Neurotrauma,2005,22(2):266-276.
    9. N Garga, DH Lowenstein. Posttraumatic epilepsy: a major problem in desperate need of major advances. Epilepsy Curr, 2006, 6(1): 1-5.
    
    10. JH Yi, DV Pow, AS Hazell. Early loss of the glutamate transporter splice-variant GLT-lvin rat cerebral cortex following lateral fluid-percussion injury. Glia, 2005, 49(1): 121-133.
    
    11. A Bernardo and L Minghetti. PPAR-gamma agonists as regulators of microglial activation and brain inflammation. Curr Pharm Des, 2006, 12(1): 93-109.
    
    12. JH Lee, EH Joe, I Jou. PPAR-alpha activators suppress STAT1 inflammatory Signaling in lipopolysaccharide-activated rat glia. Neuroreport, 2005, 16(8):829-833.
    
    13. J Culman, Y Zhao, P Gohlke, etal. PPAR-gamma: therapeutic target for ischemic stroke, rends Pharmacol Sci, 2007, 28(5): 244-249.
    
    14. Kayo Taketa, Takeshi Matsumura, Miyuki Yano, etal. Ox-LDL activates PPAR α and PPARy through MAPK-dependent COX-2 expression in macrophages. J Biol Chem. 2008,21:[Epub ahead of print].
    
    15. Weidong Su, Craig R. Bush, etal. Differential expression, distribution, and function of PPAR-γ in the proximal and distal colon Physiol Genomics, 2007, 30(8): 342-353.
    
    16. Amy Y. M. Au, Claire McBride, etal. PAX8-Peroxisome Proliferator-Activated Receptor γ (PPAR(?)) Disrupts Normal PAX8 or PPARγ Transcriptional Function and Stimulates Follicular Thyroid Cell Growth. Endocrinology, 2006, 147(1): 367-376.
    
    17. Anping Chen , Jianye Xu. Activation of PPARy by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR .Am J Physiol Gastrointest Liver Physiol, 2005, 288(3): G447-G456.
    
    18. Shizuya Saika, Osamu Yamanaka, Yuka Okada, etal. Effect of overexpression of pparY on the healing process of corneal alkali burn in mice. Am J Physiol Cell Physiol, 2007, 293(7): C75-C86.
    
    19. Erin E. Kershaw, Michael Schupp, Hong-Ping Guan, etal. PPAR Y regulates adipose triglyceride lipase in adipocytes in vitro and in vivo. Am J Physiol Endocrinol Metab, 2007, 293(11): E1736-E1745.
    
    20. Dechun Li, Qiaohua Kang, Dan-Ming Wang. Constitutive Coactivator of Peroxisome Proliferator-Activated Receptor (PPAR(?)), a Novel Coactivator of PPAR γ that Promotes Adipogenesis. Mol. Endocrinol, 2007, 21(10): 2320-2333.
    21.Soo Lim, Cheng Ji Jin, Min Kim, etal. PPAR γ Gene Transfer Sustains Apoptosis, Inhibits Vascular Smooth Muscle Cell Proliferation, and Reduces Neointima Formation After Balloon Injury in Rats. Arterioscler. Thromb. Vasc. Biol., 2006, 26(4): 808-813.
    
    22. Servio H. Ramirez, David Heilman, Brenda Morsey, etal. Activation of Peroxisome Proliferator-Activated Receptor γ (PPAR γ) Suppresses Rho GTPases in Human Brain Microvascular Endothelial Cells and Inhibits Adhesion and Transendothelial Migration of HIV-1 Infected Monocytes . J. Immunol., 2008, 180(2): 1854-1865.
    
    23. Elizabeth A. Wohlfert, Frank C. Nichols, Erin Nevius, etal. Peroxisome Proliferator-Activated Receptor γ (PPAR γ) and Immunoregulation: Enhancement of Regulatory T Cells through PPAR γ-Dependent and -Independent Mechanisms. J. Immunol., 2007, 178(4): 4129-4135.
    
    24. Veronique Pascal, Neera R. Nathan, Estefania Claudio, etal. NF- κ B p50/p65 Affects the Frequency of Ly49 Gene Expression by NK Cells. J. Immunol., 2007, 179(4): 1751-1759.
    
    25. Shu Fang Liu , Asrar B. Malik. NF-κB activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol, 2006, 290(4): L622-L645.
    
    26. Xindong Liu, Lilin Ye, Gregory J, etal. NF-KB Signaling Regulates Functional Expression of the MHC Class I-Related Neonatal Fc Receptor for IgG via Intronic Binding Sequences .J. Immunol, 2007, 179(9): 2999-3011.
    
    27.Manfred Neumann .Michael Naumann. Beyond IκBs: alternative regulation of NF- KB activity. FASEB J, 2007, 21(9): 2642-2654.
    
    28. Arindam Sana, Charles E. Hammond, Maria Trojanowska, etal. Helicobacter pylori-induced H,K-ATPase α -subunit gene repression is mediated by NF-KB p50 homodimer promoter binding . Am J Physiol Gastrointest Liver Physiol, 2008, 294 (3): G795-G807.
    
    29. Z Rakonczay, Jr, P Hegyi, T Takacs, etal. The role of NF-KB activation in the pathogenesis of acute pancreatitis .Gut, 2008, 57(2): 259-267.
    
    30. Tomohiro Aoki, Hiroharu Kataoka, Munehisa Shimamura, NF-KB Is a Key Mediator of Cerebral Aneurysm Formation Circulation, 2007,116(12): 2830-2840.
    
    31. EP Dixon, DT Stephenson, JA Clemens, etal. Bcl-Xshort is elevated following severe global ischemia in rat brains. Brain Res, 1997, 776(1-2): 222-229.
    
    32. Zheng-Hong Qin, Ren-Wu Chen, etal. Nuclear Factor KB Nuclear Translocation Upregulates c-Myc and p53 Expression during NMDA Receptor-Mediated Apoptosis in Rat Striatum J. Neurosci., 1999, 19(3): 4023.
    
    33. Mark F. McCarty, Keith I. Block. Preadministration of High-Dose Salicylates, Suppressors of NF-KB Activation, May Increase the Chemosensitivity of Many Cancers: An Example of Proapoptotic Signal Modulation Therapy Integr Cancer Ther, 2006, 5(9): 252-268.
    1.MN Sholkina,MY Lebedev,AA Babaev,etal.Effect of brain injury on immunophenotype of peripheral blood lymphocytes in rats.Russ J Immunol,2002,7(4):365-370.
    2.AT Mazzeo,NK Kunene,CB Gilman,etal.Severe human traumatic brain injury,but not cyclosporin a treatment,depresses activated T lymphocytes early after injury.J Neurotrauma,2006,23(6):962-975.
    3.Maria Cecilia G.Marcondes,Glaucia C.Furtado,Allen Wensky,etal.Immune Regulatory Mechanisms Influence Early Pathology in Spinal Cord Injury and in Spontaneous Autoimmune Encephalomyelitis.Am.J.Pathol.,2005,166(6):1749-1760.
    4.TV Arumugam,DN Granger,MPMattson.Stroke and T-cells.Neuromolecular Med,2005,7(3):229-242.
    5.E.G.McKeating,PJD.Andrews Cytokines and adhesion molecules in acute brain injury.Br.J.hnaesth.,1998,80(1):77-84.
    6.S Suzuki,T Yamashita,K Tanaka,etal.Activation of cytokine signaling through leukemia inhibitory factor receptor(LIFR)/gp130 attenuates ischemic brain injury in rats.J Cereb Blood Flow Metab,2005,25(6):685-693.
    7.Clark RSB,hochanek P(eds):Brain Injury.Boston:kluwer acadelnic Publishers [M],2001:p210-225.
    8.Miller CH,Quattrocchi KB,Frank EH,et al.Humoral and cellular immunity following severe head injury:review and current investigations.Neurol Res[J],1991,13(2):117-124.
    9.Quattrocchi KB,Frallk EH,Miller CH,et al.Severe head injury:effect upon Cellular immunity function[J].Neurol Res,1991,13(1):13-20.
    10.闰仁福,周跃,苏忠周等.颅脑损伤后T淋巴细胞亚群及性激素的动态变化[J].中华创伤杂志,2003,19(12):724-727.
    11.李永坤,谢观球,陈玉明等.重型颅脑损伤患者T辅助淋巴细胞1/T辅助淋巴细胞2的平衡偏移及其临床意义[J].中华创伤杂志,2003,19(4):243-244.
    12.Hofsteter HH,Sewell DL,Liu F,etal.autoreactive T cells promote post-traumatic healing in the central nervous system[J].J Neuroimmunol,2003,134(1-2):25-34.
    13.Fee D,Crumbaugh A,Jaeques T,etal.actitrated/effector CD4+T cells exacerbate acute damage in the central nervous system following traumatic injure[J].J N euroimmunol,2003,136(1-2):54-56.
    14.MNSholkina,MY Lebedev,AABabaev,etal.Effect of brain injury on Immunopheno type of peripheral blood lymphocytes in rats.Russ J Immunol,2002,7(4):365-370.
    15.Z hang,M Artelt,M Burnet,etal.Early infiltration of CD8+ macrophages/microglia to lesions of rat traumatic brain injury.Neuroscience,2006,141(2):637-644.
    16.Gokhan Yilmaz,Thiruma V.Arumugam,etal.Role of T Lymphocytes and Interferon-γin Ischemic Stroke Circulation,2006,113(1):2105-2112.
    17.HM Kim,HY Shin,HJ Jeong,etal.Reduced IL-2 but elevated IL-4,IL-6,and IgE serum levels in patients with cerebral infarction during the acute stage. J Mol Neurosci, 2000, 14(3): 191-196.
    
    18. M Schroeter, S Jander. T-cell cytokines in injury-induced neural damage and repair. Neuromolecular Med, 2005, 7(3): 183-195.
    
    19. D Bermpohl, Z You, EH Lo, etal. TNF alpha and Fas mediate tissue damage and functional outcome after traumatic brain injury in mice. J Cereb Blood Flow Metab, 2007, 27(11): 1806-1818.
    
    20. Y Hua, J Wu, RF Keep, etal. Tumor necrosis factor-alpha increases in the brain after intracerebral hemorrhage and thrombin stimulation. Neurosurgery, 2006, 58(3): 542-550, discussion 542-550.
    
    21. KL Brewer, TA Nolan. Spinal and supraspinal changes in tumor necrosis factor-alpha expression following excitotoxic spinal cord injury. J Mol Neurosci, 2007, 31(1): 13-21.
    
    22. Y Pang, LW Fan, B Zheng, etal. Role of interleukin-6 in lipopolysaccharide-induced brain injury and behavioral dysfunction in neonatal rats. Neuroscience, 2006, 141(2):745-755.
    
    23.O Schulte-Herbruggen, C Nassenstein, M Lommatzsch, etal.Tumor necrosis factor-alpha and interleukin-6 regulate secretion of brain-derived neurotrophic factor in human monocytes. J Neuroimmunol ,2005, 160(1-2):204-209.
    
    24. S Flood, R Parri, A Williams, etal. Modulation of interleukin-6 and matrix metalloproteinase 2 expression in human fibroblast-like synoviocytes by functional ionotropic glutamate receptors. Arthritis Rheum, 2007, 56(8): 2523-2534.
    
    25. D Orion, Y Schwammenthal, TReshef, etal. Interleukin-6 and soluble intercellular adhesion molecule-1 in acute brain ischaemia. Eur J Neurol, 2008, 15(4): 323-328.
    
    26. A Chiaretti, A Antonelli, A Mastrangelo, etal. Interleukin-6 and nerve growth factor upregulation correlates with improved outcome in children with severe traumatic brain injury. J Neurotrauma, 2008, 25(3): 225-234.
    
    27. Hiroaki Ooboshi, Setsuro Ibayashi, Takashi Shichita, etal. Postischemic Gene Transfer of Interleukin-10 Protects Against Both Focal and Global Brain Isch emia Circulation, 2005, 11(1): 913(2)-919.
    
    28. L Qian, JS Hong, PM Flood. Role of microglia in inflammation-mediated degeneration of dopaminergic neurons: neuroprotective effect of interleukin 10. J Neural Transm Suppl, 2006, (70): 367-371.
    
    29. SH Hsiao, CP Chang, TH Chiu, etal. Resuscitation from experimental heatstroke by brain cooling therapy. Resuscitation, 2007, 73(3): 437-445.
    1.Kontos HA. Oxygen radicals in cerebral ischemia:the 2001 willis lecture[J]. Stroke, 2001, 32(11): 2712-2716.
    
    2. Hochachka, M Klain, PM Kochanek, etal. Suspended animation for delayed resuscitation. Crit Care Med, 1996, 24(2 Suppl): S24-47.
    
    3. Ala Nozari, Peter Safar, Xianren Wu, etal. Suspended Animation Can Allow Survival without Brain Damage after Traumatic Exsanguination Cardiac Arrest of 60 Minutes in Dogs. J Trauma, 2004, 57(6): 1266-1275.
    
    4. W Behringer, P Safar, X Wu, etal. Survival without brain damage after clinical death of60-120 mins in dogs using suspended animation by profound hypothermia. Crit Care Med, 2003, 31(5): 1523-1531.
    
    5. SA Tisherman. Suspended animation for resuscitation from exsanguinating hemorrhage. Crit Care Med, 2004, 32(2 Suppl): S46-50.
    
    6. HB Alam, P Rhee, K Honma, etal. Does the rate of rewarming from profound hypothermic arrest influence the outcome in a swine model of lethal hemorrhage?J Trauma, 2006, 60(1): 134-146.
    
    7. SamuelA, Tisherman. Hypothermia and injury. J. Curr Opin Crit Care, 2004, 10(11): 512-519.
    
    8. Radoslav K, Jus, Zeljko Dzakula, etal. Brain Energetics and Tolerance to Anoxia in Deep Hypothermia. Ann. N.Y. Acad, 2005, 1048(10): 10-35
    
    9. Alam HB, Chen Z, Ahuja N, etal. Profound hypothermia protects neurons and astrocytes, and preserves cognitive functions in a Swine model of lethal hemorrhage. J Surg Res, 2005, 126(2): 172-181.
    
    10. Gregory Schears, Tatiana Zaitseva , Steven Schultz, etal. Brain oxygenation and metabolism during selective cerebral perfusion in neonates. Eur J Cardiothorac Surg, 2006, 29(2): 168-174.
    
    11.Ohta T, Sakaguchi I, Dong LW, et al. Selective cooling of brain using Pround hemodilution in dogs. J. Neurosurgery, 1992, 31(6): 1049-1054.
    
    12. Ohda T, Kimura T, Ogata Y, etal. Optimized retrograde cerebral perfusion reduces ischemic energy depletion. J Artif Organs, 2004, 7(1): 19-26.
    
    13. Xianren Wu, Tomas Drabek, Patrick M. etal. Induction of Profound Hypothermia for Emergency Preservation and Resuscitation Allows Intact Survival After Cardiac Arrest Resulting From Prolonged Lethal Hemorrhage and Trauma in Dogs.Circulation,2006,113(4):1974-1982.
    14.JY Jiang,W Xu,PF Yang,etal.Marked protection by selective cerebral profound hypoth ermia after complete cerebral ischemia in primates.J Neurotrauma,2006,23(12):1847-1856.
    15.Kerstin olsson.Fluid Balance in Ruminants:Adaptation to External and Internal Challenges.New york Academy of Sciences,2005,1040(10):156-161.
    16.Irmak MK,Korkmaz A,Erogul o,etal.Selective brain cooling seems to be a mechanism leading to human craniofacial diversity observed in different geographical regions.Med Hypotheses,2004,63(6):974-979.
    17.Shane K.Maloney,Andrea Fuller,Graham MitchellI,etal.Rectal temperature measurement results in artifacture evidence of selective brain cooling.Am J Physiol Regulatory Integrative Comp physiol,2001,281(1):R108-R114.
    18.Furuse M,Ohta T,Ikenaga T,etal.Effects of intravascular perfusion of cooled crystalloid solution on cold-induced brain injury using an extracorporeal cooling-filtration system.Ac ta Neurochir(Wien),2003,145(11):983-992.
    19.杨朋范,朱诚,江基尧等.犬颈内动脉内冷灌注脑选择性降温对脑保护的实验研究.中华创伤杂志.1999,15(3):190-192
    20.徐蔚,高永军,孙亮等。猴脑选择性深低温对全身主要器官功能的影响。昆明医学院学报,2003,24(2):6-9。
    21.周杰,冯忠堂,高永军等。恒河猴脑选择性超深低温断血流复苏模型的建立。中华外科杂志,2005,43(13):889-891。
    22.A Forschler,J Boltze,D Waldmin,etal.MRI of experimental focal cerebral ischemia in sheep.Rofo,2007,179(5):516-524.
    23.O Sitburana,WJ Koroshetz.Magnetic resonance imaging:implication in acute ischemic stroke management.Curr Atheroscler Rep,2005,7(4):305-312.
    24.MCLeary,LR Caplan Technology insight:brain MRI and cardiac surgery--detection of postoperative brain ischemia.Nat Clin Pract Cardiovasc Med,2007,4(7):379-388.
    25.Laura Caracuel,Fernando J.Perez-Asensio,etal.Sonia Martinez-Revelles,Francesc Jimenez-Altayo,etal.Endothelial dysfunction in rat mesenteric resistance artery after transient middle cerebral artery occlusion J.Pharmacol.Exp.Ther.,2008,10(2):1124/jpet.107.134619.
    26. 0 Y Bang, P H Lee, K G Heo, etal. Specific DWI lesion patterns predict prognosis after acute ischaemic stroke within the MCA territory. J. Neurol. Neurosurg. Psychiatry, 2005, 76(9): 1222-1228.
    
    27. F Chen, Y Suzuki, N Nagai, etal. Rodent stroke induced by photochemical occlusion of proximal middle cerebral artery: evolution monitored with MR imaging and histopathology. Eur J Radiol, 2007, 63(1): 68-75.
    
    28. MM Thurnher , R Bammer. Diffusion-weighted MR imaging (DWI) in spinal cord ischemia. Neuroradiology, 2006, 48(11): 795-801.
    
    29. C Plank, A Roller, C Mueller-Mang, etal. Diffusion-weighted MR imaging (DWI) in the evaluation of epidural spinal lesions. Neuroradiology, 2007, 49(12): 977-985.
    
    30. Tihomir Paul Obrenovitch. Molecular Physiology of Preconditioning-Induced Brain Tolerance to Ischemia Physiol Rev, 2008, 88(1): 211-247.
    
    31. Sebastian Jander, Michael Schroeter, Andreas Saleh Imaging Inflammation in Acute Brain Ischemia. Stroke, 2007, 38(2): 642-645.
    1.Kerstin olsson.Fluid Balance in Ruminants:Adaptation to External and Internal Challenges.New york Academy of Sciences,2005,1040(10):156-161.
    2.Irmak MK,Korkmaz A,Erogul o,etal(?)Selective brain cooling seems to be a mechanism leading to human craniofacial diversity observed in different geographical regions.Med Hypotheses,2004,63(6):974-979.
    3.Shane K.Maloney,A ndrea Fuller,Graham MitchellI,etal.Rectal temperature measurement results in artifacture evidence of selective brain cooling.Am J Physiol Regulatory Integrative Comp physiol,2001,281(1):R108-R114.
    4.Wang H,Olivero W,Lanzino G,etal.Rapid and selective cerebral hypothermia achieved using a cooling helmet.J Neurosurg,2004,100(2):272-277.
    5.Tooley J R,Eagle R C,Satas S,etal.Significant head cooling can be achieved while maintaining normothermia in the newborn piglet.Archives of Disease in Childhood Fetal and Neonatal Edition,2005,90(3):F262-FF266.
    6.Kazuhisa Mori,Jota Saito,Yoshiaki Kurata,etal.Rapid Development of Brain Hypothermia Using Femoral-Carotid Bypass.Acad.Emerg.Med.,2001,8(4): 303-338.
    
    7. Allers M, Boris-Moller F, Lunderquist A, etal.A new method of selective, rapid cooling of the brain: an experimental study. Cardiovasc Intervent Radiol, 2006, 29(2): 260-263.
    
    8. Iatrou CC, Domaingue CM, Thomas RD, etal.The effect of selective brain cooling on intracerebral temperature during craniotomy. Anaesth Intensive Care, 2002, 30(2): 167-170.
    
    9.NoguchiY, Nishio S, Kawauchi M, et al .A new method of inducing selective brain hypothermia with saline Perfusion into the subdural space:effects on transient cecerebral ischemia in cats .Acta Med Okayama, 2002, 56(6): 279-286.
    
    10. Hagioka S, Takeda Y, Takata K, etal. Nasopharyngeal cooling selectively and rapidly decreases brain temperature and attenuates neuronal damage, even if initiated at the onset of cardiopulmonary resuscitation in rats. Crit Care Med, 2003, 31(10): 2502-2508.
    
    11.Trubel H, Herman P, Kampmann C, etal. Selective pharyngeal brain cooling. Biomed Tech (Ber1), 2003, 48(11): 298-300.
    
    12. Trubel H, Herman P, Kampmann C, etal. A novel approach for selective brain cooling: implications for hypercapnia and seizure activity. Intensive Care Med, 2004, 30(9): 1829-1833.
    
    13. Radoslav K, Jus, Zeljko Dzakula, etal. Brain Energetics and Tolerance to Anoxia in Deep Hypothermia . Ann. N.Y. Acad, 2005, 1048(10): 10-35
    
    14. Alam HB, Chen Z, Ahuja N, etal. Profound hypothermia protects neurons and astrocytes, and preserves cognitive functions in a Swine model of lethal hemorrhage. J Surg Res, 2005, 126(2): 172-181.
    
    15. Schwartz AE, Stone JG, Pile-Spellman J, etal. Selective cerebral hypothermia by means of transfemoral internal carotid artery catheterization. Radiology, 1996, 201(11): 571-572.
    
    16. Lownie SP, Menkis AH, Craen RA, etal. Extracorporeal femoral to carotid artery perfusion in selective brain cooling for a giant aneurysm. Case report. J Neurosurg, 2004, 100(2): 343-347.
    
    17. Seref A. Kucuker, Mehmet Ali Ozatik .Ahmet Saritas, etal. Arch repear with unilateral antegrade cerebral perfusion. european journal of cardio-thoracic surgery, 2005, 8(27):638-643
    
    18. Li Z, Yang L, Summers R, M Jackson, etal. Is maintenance of cerebral hypothermia
    141 the principal mechanism by which retrograde cerebral perfusion provides better brain protection than hypothermic circulatory arrest? A study in a porcine model. J Card Surg, 2004, 19(1): 28-35.
    19. Ohda T, Kimura T, Ogata Y, etal. Optimized retrograde cerebral perfusion reduces ischemic energy depletion. J Artif Organs, 2004, 7(1): 19-26.
    20.Gregory Schears, Tatiana Zaitseva , Steven Schultz, etal._Brain oxygenation and metabolism during selective cerebral perfusion in neonates. Eur J Cardiothorac Surg, 2006, 29(2): 168-174.
    
    21. YS Wen, MS Huang, MT Lin, etal. Rapid brain cooling by hypothermic retrograde jugular vein flush. J Trauma ,2005, 58(3):577-581.
    
    22. Justus T. Strauch, David Spielvogel, Alexander Lauten, etal. Optimal temperature for selective cerebral perfusion. J Thorac Cardiovasc Surg 2005,130(7): 74-82.
    
    23. Furuse M, Ohta T, Ikenaga T, etal. Effects of intravascular perfusion of cooled crystalloid solution on cold-induced brain injury using an extracorporeal cooling-filtration system. Acta Neurochir (Wien), 2003, 145(11): 983-992.
    
    24. Ryukichi Takayama, Rumiko Uda, Naofumi Isono, etal. Selective Brain Hypothermia Suppresses Noxious-Evoked Movement in Canines. Anesth Analg, 2005, 100(10): 1458-1462.
    
    25. JT Strauch, UF Franke, T Wahlers, etal. Antegrade selective cerebral perfusion-how to proceed? Thorac Cardiovasc Surg, 2006, 54(2):78-84.
    1. HG Sullivan, J Martinez, DP Becker, etal. Fluid-percussion model of mechanical brain injury in the cat. J Neurosurg. 1976, 45(5): 521-534.
    
    2. TK McIntosh, R Vink, L Noble, etal.Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model. Neuroscience, 1989, 28(1): 233-244.
    
    3. JW Lighthall, CE Dixon, and TE Anderson. Experimental models of brain injury. J Neurotrauma, 1989, 6(2): 83-97.
    
    4. F Clausen ,L Hillered. Intracranial pressure changes during fluid percussion, controlled cortical impact and weight drop injury in rats. Acta Neurochir (Wien), 2005, 147(7): 775-780.
    
    5. Vink, R., Mullins, P. G., Temple, M. D., etal. Small shifts in craniotomy position in the lateral fluid percussion injury model are associated with differential lesion development. J. Neurotrauma 2001, 18(8): 839-847.
    
    6. Statler, K. D., Kochanek, P.M., Dixon, C. E., et al. Isoflurane improves long-term neurologic outcome versus fentanyl after traumatic brain injury in rats. J. Neurotrauma, 2000, 17(12) :1179-1189.
    
    7. T Maeda, SM Lee, DA Hovda,etal. Restoration of cerebral vasoreactivity by an L-type calcium channel blocker following fluid percussion brain injury.J Neurotrauma, 2005, 22(7): 763-771.
    
    8. Anthony Lau, Mark Arundine, Hong-Shuo Sun, etal. Inhibition of Caspase-Mediated Apoptosis by Peroxynitrite in Traumatic Brain Injury. The Journal of Neuroscience, 2006, 26(45): 11540-11553
    
    9. Raimondo D' Ambrosio, Jared P. Fairbanks, Jason S. Fender, etal. Post-traumatic epilepsy following fluid percussion injury in the rat. Brain, 2004, 127(2): 304-314.
    
    10. Raimondo D'Ambrosio, Jason S. Fender, Progression from frontal - parietal to mesial - temporal epilepsy after fluid percussion injury in the rat. Brain, 2005, 128(1): 174-188.
    
    11. I Kharatishvili, JP Nissinen, TK Mclntosh, etal. A model of posttraumatic epilepsy induced by lateral fluid percussion brain injury in rats. Neuroscience, 2006, 140(2): 685-697.
    
    12. JS Truettner, OF Alonso, W Dalton Dietrich, etal. Influence of therapeutic hypothermia on matrix metalloproteinase activity after traumatic brain injury in rats. J Cereb Blood Flow Metab, 2005, 25(11): 1505-1516.
    
    13. JS Truettner, T Suzuki, WD Dietrich, etal. The effect of therapeutic hypothermia on the expression of inflammatory response genes following moderate traumatic brain injury in the rat. Brain Res Mol Brain Res, 2005, 138(2): 124-134.
    
    14. Mauro Arrica, Bruno Bissonnette. Therapeutic Hypothermia, rdiothoracic and Vascular Anesthesia, 2007, 11(1): 6-15.
    
    15. HG Fritz, B Walter, H Holzmayr, etal. A pig model with secondary increase of intracranial pressure after severe traumatic brain injury and temporary blood loss. J Neurotrauma, 2005, 22(7): 807-821.
    
    16. Y Iwamoto, T Yamaki, N Murakami, etal. Investigation of morphological change of lateral and midline fluid percussion injury in rats, using magnetic resonance imaging. Neurosurgery, 1997, 40(1): 163-167.
    
    17. BJKelley, OFarkas, J Lifshitz, etal. Traumatic axonal injury in the perisomatic domain triggers ultrarapid secondary axotomy and Wallerian degeneration. Exp Neurol, 2006, 198(2): 350-360.
    
    18. J Lifshitz, BJ Kelley, JT Povlishock, etal. Perisomatic thalamic axotomy after diffuse traumaticbrain injury is associated with atrophy rather than cell death. J Neuropathol Exp Neurol, 2007, 66(3): 218-229.
    
    19. E Schultke, H Kamencic, M Zhao, GF Tian, etal. Neuroprotection following fluid percussion brain trauma: a pilot study using quercetin. J Neurotrauma, 2005, 22(12): 1475-1484.
    
    20. S Hoshino, S Kobayashi, T Furukawa, etal. Multiple immunostaining methods to detect traumatic axonal injury in the rat fluid-percussion brain injury model. Neurol Med Chir (Tokyo), 2003, 43(4): 165-174.
    
    21. T Kita, T Tanaka, N Tanaka, etal. The role of tumor necrosis factor-alpha in diffuse axonal injury following fluid-percussive brain injury in rats. Int J Legal Med, 2000, 113(4): 221-228.
    22. T Yamaki, N Murakami, Y Iwamoto, etal. A modified fluid percussion device. J Neurotrauma, 1994, 11(5): 613-622.
    
    23. C Zhong, X Zhao, J Sarva, etal. NAAG peptidase inhibitor reduces acute neuronal degeneration and astrocyte damage following lateral fluid percussion TBI in rats. J Neurotrauma, 2005, 22 (2): 266-276.
    
    24. XB Jiang, K Ohno, L Qian, etal. Changes in local cerebral blood flow, glucose utilization, and mitochondrial function following traumatic brain injury in rats. Neurol Med Chir (Tokyo), 2000, 40(1): 16-29.
    
    25. N Garga, DH Lowenstein. Posttraumatic epilepsy: a major problem in desperate need of major advances. Epilepsy Curr, 2006, 6(1): 1-5.
    
    26. JH Yi, DV Pow, AS Hazell. Early loss of the glutamate transporter splice-variant GLT-1v in rat cerebral cortex following lateral fluid-percussion injury. Glia, 2005, 49(1): 121-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700