用户名: 密码: 验证码:
HCF-1和NSPc-1调控细胞周期的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宿主细胞因子HCF-1(Host Cell Factor-1)是细胞增殖过程中必需的染色质相关蛋白,在细胞周期调控中发挥重要的作用。哺乳动物细胞中敲低该基因表达水平后,大部分细胞都会被阻滞在G1期,并且细胞的正常有丝分裂也会受到影响,出现多核现象(multi-nucleation)。Cdc42作为Rho GTPase家族蛋白中的重要成员,也具有类似的细胞周期调控作用。NSPc-1是2001年才被报道发现的PcG家族新成员,该基因存在于成人的所有组织中。前期研究工作发现,NSPc-1作为一个典型的PcG家族蛋白,具有核转录抑制因子的特性,并且NSPc-1对细胞G1-S期进程具有一定的促进作用。本论文对HCF-1和NSPc-1调控细胞周期的分子机制进行了研究。
     采取RNA干扰的方法发现,敲低HCF-1后Cdc42的表达水平降低,但是敲低Cdc42的表达水平对HCF-1基本没有影响。这说明HCF-1具有促进Cdc42基因表达的作用。染色质免疫沉淀和DNA亲和层析实验都发现,HCF-1可以特异性结合于Cdc42基因启动子区(-1060~-644)区段。上述结果说明,HCF-1在转录水平调控Cdc42基因的表达。
     HCF-1对Cdc42的表达调控作用也是与细胞周期的进程紧密相关的。HCF-1在S期达到表达高峰,Cdc42的表达高峰稍迟于HCF-1。并且,HCF-1在S期结合于Cdc42基因启动子的蛋白量也相应高于G1期和M期。这说明,HCF-1在S期的高表达造成HCF-1在Cdc42基因启动子区的结合量增加,从而促进了Cdc42的表达,因此Cdc42的表达高峰稍迟于HCF-1。
     HCF-1对细胞G1-S期进程和有丝分裂具有重要的调控作用。HCF-1表达敲低后,细胞增殖减慢,BrdU掺入率降低,G1-S期进程出现阻滞,cylin A基因的表达降低,有丝分裂中期染色体在赤道板出现排列异常和多核现象。Cdc42表达敲低后细胞也出现了类似的表型。过表达Cdc42基因的组成活性突变体Cdc42F28L可以在一定程度上挽救HCF-1表达敲低导致的细胞G1-S期进程阻滞、cyclin A基因表达降低和多核现象发生的比率。上述结果说明,HCF-1对G1-S期进程和有丝分裂的调控作用是通过其下游靶基因Cdc42实现的。
     实验中还检测了NSPc-1稳定过表达和稳定表达敲低的细胞系中7种主要CDKI分子的表达变化时发现,NSPc-1稳定过表达细胞中p21基因的表达水平出现降低,NSPc-1稳定表达敲低的细胞中p21基因的表达升高。这提示p21基因可能是NSPc-1的调控靶基因。
     实验中还发现,NSPc-1结合于p21基因启动子区(-1357~-1063)区段,并依赖于其中-1203位的维甲酸受体反应元件(RARE)。p21基因具有抑制G1-S期进程的作用,因此这就可以初步解释NSPc-1促进细胞G1-S期进程的分子机制。
     综上所述,宿主细胞因子HCF-1转录水平调控促进Cdc42基因的表达,并且HCF-1对G1-S期进程和有丝分裂的调控作用是通过其靶基因Cdc42介导的。多梳蛋白NSPc-1通过抑制p21基因的转录对G1-S期进程发挥的调控作用,并且NSPc-1对p21基因启动子区的调控作用依赖于上游—1203位的维甲酸受体反应元件(RARE)。
Host cell factor 1 (HCF-1) as a requisite component of chromatin related complexduring cell replication pocesses the function on cell-cycle progression. In mammalian cellswith HCF-1 knockdown, most cells are arrested in G1 and fail to enter S phase. Moreover,normal mitosis is also affected with more or less extent of multi-nucleation in different celllines. Cdc42 as one of the most characterized members of Rho GTPases has been greatlyproved to have the similar abilities to regulate cell cycle progression. NSPc-1 was firstidentified in 2000 as the new PcG member, which is ubiquitously expressed in all kinds ofhuman adult tissues. Our published data have identified that as a typical PcG member,NSPc-1 has transcriptional repression activity and could promote G1-S progression of cellcycle. This PhD dissertation is mainly focused on the studies of molecular mechanisms ofHCF-1 and NSPc-1 on cell cycle regulation.
     RNA interference assays found that Cdc42 expression level is decreased inaccompany with loss of HCF-1 function, but HCF-1 unaffected after Cdc42 RNAi. Theresult demonstrates that HCF-1 could promote the expression of Cdc42.
     Sequentially Chromatin Immunoprecipitaion assay and DNA pulldown assays bothclarify the exact binding of HCF-1 on Cdc42 promoter (-1060~-644). Taken together,HCF-1 transcriptionally regulates Cdc42 expression.
     The effect of HCF-1 on regulating Cdc42 expression is associated with cell cycleprogression. The highest level of HCF-1 is appeared in synchronized population at S phase,while Cdc42's is sequentially appeared with several hours later. The binding ratio ofHCF-1 on Cdc42 promoter at S phase is consequently higher than G1 phase and M phasepopulation. It is consequently concluded that the higher expression level of HCF-1 at Sphase leads to more HCF-1 binding on Cdc42 promoter, which then promotes theexpression of Cdc42. Therefore, the expression peak of Cdc42 is appeared after HCF-1with a little delay.
     HCF-1 has important function on G1-S progression and mitosis. After knockdown of HCF-1, cell proliferation is delayed, cell cycle is arrested at G1 phase with decreased BrdUincorporation and lower expression of cyclin A, chromsome misalignment andmulti-nucleation appear. Cdc42 as the target gene regulated by HCF-1 also possess thesimilar abnormal phenotype after expression knockdown. Over-expression of constituentactive mutant Cdc42F28L could rescue the abnormal phenotype after HCF-1 knockdown,such as lowered BrdU incorporation, decreased cyclin A expression level and BrdU lowerincoporation. Taken together, the function of HCF-1 on G1-S progression and mitosis isachieved through its transcriptional target Cdc42.
     Screening of 7 CDKIs within NSPc1 stable overexpressed and NSPc1 stableknockdowned cell lines found that only the expression level of p21 was repressed whenNSPcl overexpressed; Correspondently, p21 was upregulated in NSPc1 stablyknockdowned cell lines. This infers that p21 may be the target gene regulated by NSPc1.
     Moreover, Chromatin Immunoprecipitaion assay and DNA pulldown assays wereused to find that NSPc1 could bind the region (-1357~-1063) of p21 promoter, and itsbinding activity is dependent on retinoic acid receptor response element (RARE) located at-1203 within the above region, p21 gene has been identified to have the inhibitory effect onG1-S progression, therefore it is believable that the effect of NSPc1 on G1-S progression isdependent on its transcriptional regulation on p21.
     In summary, HCF-1 on the transcriptionl level regulates the expression of Cdc42,which mediate its effect on G1-S progression and mitosis. NSPc-1 transcriptionally inhibitsp21 gene expression, which mediates its effect on G1-S progression. The effect ofNSPc-1 on regulating p21 promoter is dependent on the retinoic acid receptor responseelement (RARE) located at-1203.
引文
1. Wilson, A.C., LaMarco, K., Peterson, M.G. and Herr, W. (1993) The VP16 accessory protein HCF is a family of polypeptides processed from a large precursor protein. Cell, 74, 115-125.
    2. Kristie, T.M. and Sharp, P.A. (1993) Purification of the cellular C1 factor required for the stable recognition of the Oct-1 homeodomain by the herpes simplex virus alpha-trans-induction factor (VP16). J Biol Chem, 268, 6525-6534.
    3. Wysocka, J., Myers, M.P., Laherty, C.D., Eisenman, R.N. and Herr, W. (2003) Human Sin3 deacetylase and trithorax-related Setl/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev, 17, 896-911.
    4. Wysocka, J. and Herr, W. (2003) The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem Sci, 28,294-304.
    5. Roizman, B., and sears, A. E. (1996). Lippincott-Raven, Philadelphia.
    6. Vogel, J.L. and Kristie, T.M. (2000) The novel coactivator C1 (HCF) coordinates multiprotein enhancer formation and mediates transcription activation by GABP. Embo J, 19,683-690.
    7. Gunther, M., Laithier, M. and Brison, O. (2000) A set of proteins interacting with transcription factor Sp1 identified in a two-hybrid screening. Mol Cell Biochem, 210, 131-142.
    8. Luciano, R.L. and Wilson, A.C. (2003) HCF-1 functions as a coactivator for the zinc finger protein Krox20. The Journal of biological chemistry, 278, 51116-51124.
    9. Knez, J., Piluso, D., Bilan, P. and Capone, J.P. (2006) Host cell factor-1 and E2F4 interact via multiple determinants in each protein. Mol Cell Biochem, 288, 79-90.
    10. Freiman, R.N. and Herr, W. (1997) Viral mimicry: common mode of association with HCF by VP 16 and the cellular protein LZIP. Genes & development, 11, 3122-3127.
    11. Lu, R. and Misra, V. (2000) Zhangfei: a second cellular protein interacts with herpes simplex virus accessory factor HCF in a manner similar to Luman and VP16. Nucleic Acids Res, 28, 2446-2454.
    12. Johnson, K.M., Mahajan, S.S. and Wilson, A.C. (1999) Herpes simplex virus transactivator VP16 discriminates between HCF-1 and a novel family member, HCF-2. J Virol, 73, 3930-3940.
    13. Goto, H., Motomura, S., Wilson, A.C, Freiman, R.N., Nakabeppu, Y., Fukushima, K., Fujishima, M., Herr, W. and Nishimoto, T. (1997) A single-point mutation in HCF causes temperature-sensitive cell-cycle arrest and disrupts VP16 function. Genes Dev, 11, 726-737.
    14. Wilson, A.C, Freiman, R.N., Goto, H., Nishimoto, T. and Herr, W. (1997) VP16 targets an amino-terminal domain of HCF involved in cell cycle progression. Mol Cell Biol, YI, 6139-6146.
    15. Reilly, PT., Wysocka, J. and Herr, W. (2002) Inactivation of the retinoblastoma protein family can bypass the HCF-1 defect in tsBN67 cell proliferation and cytokinesis. Mol Cell Biol, 22, 6767-6778.
    16. Wysocka, J., Reilly, P.T. and Herr, W. (2001) Loss of HCF-1-chromatin association precedes temperature-induced growth arrest of tsBN67 cells. Mol Cell Biol, 21, 3820-3829.
    17. Julien, E. and Herr, W. (2003) Proteolytic processing is necessary to separate and ensure proper cell growth and cytokinesis functions of HCF-1. Embo J, 22, 2360-2369.
    18. Nunes, M., Blanc, I., Maes, J., Fellous, M., Robert, B. and McElreavey, K. (2001) NSPcl, a novel mammalian Polycomb gene, is expressed in neural crest-derived structures of the peripheral nervous system. Mech Dev, 102, 219-222.
    19. Gong, Y., Wang, X., Liu, J., Shi, L., Yin, B., Peng, X., Qiang, B. and Yuan, J. (2005) NSPc1, a mainly nuclear localized protein of novel PcG family members, has a transcription repression activity related to its PKC phosphorylation site at S183. FEES Lett, 579, 115-121.
    20. Narayanan, A., Nogueira, M.L., Ruyechan, W.T. and Kristie, T.M. (2005) Combinatorial transcription of herpes simplex virus and varicella zoster virus immediate early genes is strictly determined by the cellular coactivator HCF-1. J Biol Chem, 280, 1369-1375.
    21. Birukov, K.G., Bochkov, V.N., Birukova, A.A., Kawkitinarong, K., Rios, A., Leitner, A., Verin, A.D., Bokoch, G.M., Leitinger, N. and Garcia, J.G. (2004) Epoxycyclopentenone-containing oxidized phospholipids restore endothelial barrier function via Cdc42 and Rac. Circ Res, 95, 892-901.
    22. Johnson, D.I. (1999) Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol Mol Biol Rev, 63, 54-105.
    23. Lamarche, N., Tapon, N., Stowers, L., Burbelo, P.D., Aspenstrom, P., Bridges, T., Chant, J. and Hall, A. (1996) Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell, 87, 519-529.
    24. Olson, M.F., Ashworth, A. and Hall, A. (1995) An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through Gl. Science, 269, 1270-1272.
    25. Gjoerup, O., Lukas, J., Bartek, J. and Willumsen, B.M. (1998) Rac and Cdc42 are potent stimulators of E2F-dependent transcription capable of promoting retinoblastoma susceptibility gene product hyperphosphorylation. J Biol Chem, 273, 18812-18818.
    26. Lin, R., Bagrodia, S., Cerione, R. and Manor, D. (1997) A novel Cdc42Hs mutant induces cellular transformation. Curr Biol, 7, 794-797.
    27. Kirmizis, A. and Farnham, PJ. (2004) Genomic approaches that aid in the identification of transcription factor target genes. Exp Biol Med (Maywood), 229, 705-721.
    28. Upstate. (2000).
    29. Hata, A., Seoane, J., Lagna, G, Montalvo, E., Hemmati-Brivanlou, A. and Massague, J. (2000) OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell, 100, 229-240.
    30. Yasuda, S., Oceguera-Yanez, F., Kato, T., Okamoto, M., Yonemura, S., Terada, Y, Ishizaki, T. and Narumiya, S. (2004) Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature, 428 , 767-771.
    31. Wu, W.J., Erickson, J.W., Lin, R. and Cerione, R.A. (2000) The gamma-subunit of the coatomer complex binds Cdc42 to mediate transformation. Nature, 405, 800-804.
    32. Arellano, M. and Moreno, S. (1997) Regulation of CDK/cyclin complexes during the cell cycle. Int J Biochem Cell Biol, 29, 559-573.
    33. Jeffrey, P.D., Tong, L. and Pavletich, N.P. (2000) Structural basis of inhibition of CDK-cyclin complexes by INK4 inhibitors. Genes Dev, 14, 3115-3125.
    34. Gjoerup, O., Chao, H., DeCaprio, J.A. and Roberts, T.M. (2000) pRB-dependent, J domain-independent function of simian virus 40 large T antigen in override of p53 growth suppression. J Virol, 74, 864-874.
    35. Oceguera-Yanez, F., Kimura, K., Yasuda, S., Higashida, C, Kitamura, T, Hiraoka, Y, Haraguchi, T. and Narumiya, S. (2005) Ect2 and MgcRacGAP regulate the activation and function of Cdc42 in mitosis. The Journal of cell biology, 168, 221-232.
    36. Jacobs, J.J., Scheijen, B., Voncken, J.W., Kieboom, K., Berns, A. and van Lohuizen, M. (1999) Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev, 13,2678-2690.
    37. Itahana, K., Zou, Y., Itahana, Y., Martinez, J.L., Beausejour, C, Jacobs, J.J., Van Lohuizen, M., Band, V., Campisi, J. and Dimri, G.P. (2003) Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol Cell Biol, 23, 389-401.
    38. Tetsu, O., Ishihara, H., Kanno, R., Kamiyasu, M., Inoue, H., Tokuhisa, T., Taniguchi, M. and Kanno, M. (1998) mel-18 negatively regulates cell cycle progression upon B cell antigen receptor stimulation through a cascade leading to c-myc/cdc25. Immunity, 9,439-448.
    39. Pines, J. (1999) Four-dimensional control of the cell cycle. Nat Cell Biol, 1, E73-79.
    40. Sherr, C.J. and Roberts, J.M. (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev, 13, 1501-1512.
    41. Ogryzko, V.V., Wong, P. and Howard, B.H. (1997) WAF1 retards S-phase progression primarily by inhibition of cyclin-dependent kinases. Mol Cell Biol, 17,4877-4882.
    42. Chen, Y.Q., Cipriano, S.C., Arenkiel, J.M. and Miller, F.R. (1995) Tumor suppression by p21 WAF1. Cancer Res, 55, 4536-4539.
    43. Cardinali, M., Jakus, J., Shah, S., Ensley, J.F., Robbins, K.C. and Yeudall, W.A. (1998) p21(WAF1/Cip1) retards the growth of human squamous cell carcinomas in vivo. Oral Oncol, 34, 211-218.
    44. Gartel, A.L. and Radhakrishnan, S.K.. (2005) Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res, 65, 3980-3985.
    45. Gartel, A.L., Ye, X., Goufman, E., Shianov, P., Hay, N., Najmabadi, F. and Tyner, A.L. (2001) Myc represses the p21(WAF1/CIP1) promoter and interacts with Spl/Sp3. Proc Natl Acad Sci U S A, 98, 4510-4515.
    46. Seoane, J., Le, H.V. and Massague, J. (2002) Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature, 419, 729-734.
    47. Liu, Y.C., Chen, C.J., Wu, H.S., Chan, D.C., Yu, LC, Yang, A.H., Cheng, Y.L., Lee, S.C. and Harn, H.J. (2004) Telomerase and c-myc expression in hepatocellular carcinomas. Eur J Surg Oncol, 30, 384-390.
    48. Mader, S., Chen, J.Y., Chen, Z., White, J., Chambon, P. and Gronemeyer, H. (1993) The patterns of binding of RAR, RXR and TR homo- and heterodimers to direct repeats are dictated by the binding specificites of the DNA binding domains. Embo J, 12, 5029-5041.
    49. Herr, W. (1998) The herpes simplex virus VP16-induced complex: mechanisms of combinatorial transcriptional regulation. Cold Spring Harbor symposia on quantitative biology, 63, 599-607.
    50. Lu, R., Yang, P., O'Hare, P. and Misra, V. (1997) Luman, a new member of the CREB/ATF family, binds to herpes simplex virus VP16-associated host cellular factor. Molecular and cellular biology, 17,5117-5126.
    51. Piluso, D., Bilan, P. and Capone, J.P. (2002) Host cell factor-1 interacts with and antagonizes transactivation by the cell cycle regulatory factor Miz-1. The Journal of biological chemistry, 277, 46799-46808.
    52. Mahajan, S.S., Little, M.M., Vazquez, R. and Wilson, A.C. (2002) Interaction of HCF-1 with a cellular nuclear export factor. The Journal of biological chemistry, 277, 44292-44299.
    53. Delehouzee, S., Yoshikawa, T., Sawa, C, Sawada, J., Ito, T., Omori, M., Wada, T., Yamaguchi, Y, Kabe, Y. and Handa, H. (2005) GABP, HCF-1 and YY1 are involved in Rb gene expression during myogenesis. Genes Cells, 10, 717-731.
    54. Khurana, B. and Kristie, T.M. (2004) A protein sequestering system reveals control of cellular programs by the transcriptional coactivator HCF-1. The Journal of biological chemistry, 279, 33673-33683.
    55. Etienne-Manneville, S. and Hall, A. (2002) Rho GTPases in cell biology. Nature, 420, 629-635.
    56. Julien, E. and Herr, W. (2004) A switch in mitotic histone H4 lysine 20 methylation status is linked to M phase defects upon loss of HCF-1. Mol Cell, 14, 713-725.
    57. Stark, G.R. and Taylor, W.R. (2006) Control of the G2/M transition. Mol Biotechnol, 32, 227-248.
    58. Bartek, J. and Lukas, J. (2001) Pathways governing G1/S transition and their response to DNA damage. FEBS Lett, 490, 117-122.
    59. Bartek, J. and Lukas, J. (2001) Cell cycle. Order from destruction. Science, 294, 66-67.
    60. Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K. and Elledge, S.J. (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell, 75, 805-816.
    61. el-Deiry, W.S., Harper, J.W., O'Connor, P.M., Velculescu, V.E., Canman, C.E., Jackman, J., Pietenpol, J.A., Burrell, M., Hill, D.E., Wang, Y. et al. (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res, 54, 1169-1174.
    62. Dulic, V., Kaufmann, W.K., Wilson, S.J., Tlsty, T.D., Lees, E., Harper, J.W., Elledge, S.J. and Reed, S.I. (1994) p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced Gl arrest. Cell, 76,1013-1023.
    63. Zhang, H., Xiong, Y. and Beach, D. (1993) Proliferating cell nuclear antigen and p21 are components of multiple cell cycle kinase complexes. Mol Biol Cell, 4, 897-906.
    64. Xiong, Y, Hannon, G.J., Zhang, H., Casso, D., Kobayashi, R. and Beach, D. (1993) p21 is a universal inhibitor of cyclin kinases. Nature, 366, 701-704.
    65. Gieseg, M.A., Man, M.Z., Gorski, N.A., Madore, S.J., Kaldjian, E.P. and Leopold, W.R. (2004) The influence of tumor size and environment on gene expression in commonly used human tumor lines. BMC Cancer, 4, 35.
    66. Carson, J.P., Zhang, N., Frampton, G.M., Gerry, N.P., Lenburg, M.E. and Christman, M.F. (2004) Pharmacogenomic identification of targets for adjuvant therapy with the topoisomerase poison camptothecin. Cancer Res, 64, 2096-2104.
    67. Sultmann, H., von Heydebreck, A., Huber, W., Kuner, R., Buness, A., Vogt, M., Gunawan, B., Vingron, M., Fuzesi, L. and Poustka, A. (2005) Gene expression in kidney cancer is associated with cytogenetic abnormalities, metastasis formation, and patient survival. Clin Cancer Res, 11, 646-655.
    68. Wang, H., Wang, L., Erdjument-Bromage, H., Vidal, M., Tempst, P., Jones, R.S. and Zhang, Y. (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature, 431, 873-878.
    69. Gearhart, M.D., Corcoran, C.M., Wamstad, J.A. and Bardwell, V.J. (2006) Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol Cell Biol, 26, 6880-6889.
    70. Huynh, K.D., Fischle, W, Verdin, E. and Bardwell, V.J. (2000) BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev, 14, 1810-1823.
    71. Chen, J.D., Umesono, K. and Evans, R.M. (1996) SMRT isoforms mediate repression and anti-repression of nuclear receptor heterodimers. Proc Natl Acad Sci U S A, 93, 7567-7571.
    72. Horlein, A J., Naar, A.M., Heinzel, T., Torchia, J., Gloss, B., Kurokawa, R., Ryan, A., Kamei, Y., Soderstrom, M., Glass, CK. et al, (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature, 377, 397-404.
    73. Huang, E.Y., Zhang, J., Miska, E.A., Guenther, M.G., Kouzarides, T. and Lazar, M.A. (2000) Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. Genes Dev, 14,45-54.
    74. Privalsky, M.L. (2004) The role of corepressors in transcriptional regulation by nuclear hormone receptors. Annu Rev Physiol, 66, 315-360.
    Adnane J, Bizouarn FA, Qian Y, Hamilton AD, Sebti SM. 1998. p21 (WAF1/CIP1) is upregulated by the geranylgeranyltransferase I inhibitor GGTI-298 through a transforming growth factor b- and Sp1-responsive element: Involvement of the small GTPase rhoA. Mol Cell Biol 18:6962-6970.
    Agard, D.A., Y. Hiraoka, P. Shaw, and J.W. Sedat. 1989. Fluorescence microscopy in three dimensions. Methods Cell Biol. 30:353-377.
    Agnel, M., L. Roder, C. Vola, and R. Griffin-Shea. 1992. A Drosophila rotund transcript expressed during spermatogenesis and imaginal disc morphogenesis encodes a protein which is similar to human Rac GTPase-activating (racGAP) proteins. Mol. Cell. Biol. 12:5111-5122.
    Aktories, K., G. Schmidt, and I. Just. 2000. Rho GTPases as targets of bacterial protein toxins. Biol. Chem. 381:421-426.
    Assoian, R. K., and Zhu, X. 1997. Cell anchorage and the cytoskeleton as partners in growth factor dependent cell cycle progression. Curr. Opin. Cell Biol. 9, 93-98
    
    Bakal CJ, Finan D, LaRose J, Wells CD, Gish G, Kulkarni S, DeSepulveda P, Wilde A, Rottapel R: The Rho GTP exchange factor Lfc promotes spindle assembly in early mitosis. Proc Natl Acad Sci USA 2005, 102:9529-9534.
    Bagrodia, S., Derijard, B., Davis, R. J., and Cerione, R. A. 1995. Cdc42 and PAK-mediated Signaling Leads to Jun Kinase and p38 Mitogen-activated Protein Kinase Activation. J. Biol. Chem. 270, 27995-27998
    
    Bagrodia, S., Taylor, S. J., Creasy, C. L., Chernoff, J., and Cerione, R. A. 1995. Identification of a Mouse p21 Activated Kinase JBiol. Chem. 270, 22731-22737
    Ban, R., Y. Irino, K. Fukami, and H. Tanaka. 2004. Human mitotic spindleassociated protein PRC1 inhibits MgcRacGAP activity toward Cdc42 during the metaphase. J. Biol. Chem. 279:16394-16402.
    Bettencourt-Dias M, Giet R, Sinka R, Mazumdar A, Lock WG, Balloux F, Zafiropoulos PJ, Yamaguchi S, Winter S, Carthew RW et al.: Genome-wide survey of protein kinases required for cell cycle progression. Nature 2004, 432:980-987.
    Bostock, C.J., D.M. Prescott, and J.B. Kirkpatrick. 1971. An evaluation of the double thymidine block for synchronizing mammalian cells at the G1-S border. Exp. Cell Res. 68:163-168.
    Bottazzi, M. E., Zhu, X., Bohmer, R. M., and Assoian, R. K. 1999. Regulation of p21cip1 Expression by Growth Factors and the Extracellular Matrix Reveals a Role for Transient ERK Activity in G1 Phase. J. Cell Biol. 146, 1255-1264
    Botz, J., Zerfass-Thome, K., Spitkovsky, D., Delius, H., Vogt, B., Eilers, M., Hatzigeorgiou, A., and Jansen-Durr, P. 1996. Cell cycle regulation of the murine cyclin E gene depends on an E2F binding site in the promoter. Mol. Cell. Biol. 16, 3401-3409
    Bourdoulous, S., Orend, G., MacKenna, D. A., Pasqualini, R., and Ruoslahti, E. 1998. Fibronectin Matrix Regulates Activation of RHO and CDC42 GTPases and Cell Cycle Progression. J. Cell Biol. 143, 267-276
    Boyer L, Travaglione S, Falzano L, Gauthier NC, Popoff MR, Lemichez E, Fiorentini C, Fabbri A. 2003. Rac GTPase instructs NF-kB activation by conveying the SCF complex and IkB a to the ruffling membranes. Mol Biol Cell. Chardin P. 1999. Rnd proteins: A new family of Rho-related proteins that interfere with the assembly of filamentous actin structures and cell adhesion. Prog Mol Subcell Biol 22:39-50.
    Chen, F., L. Ma, M.C. Parrini, X. Mao, M. Lopez, C. Wu, P.W. Marks, L. Davidson, D.J. Kwiatkowski, T. Kirchhausen, et al. 2000. Cdc42 is required for PIP(2)-induced actin polymerization and early development but not for cell viability. Curr. Biol. 10:758-765.
    Chou, M. M., and Blenis, J. 1996. The 70 kDa S6 Kinase Complexes with and Is Activated by the Rho Family G Proteins Cdc42 and Racl. Developmental Cell 85, 573-583
    Chou MM, Masuda-Robens JM, Gupta ML. 2003. Cdc42 promotes G1 progression through p70 S6 kinase-mediated induction of cyclin E expression. J Biol Chem. Sep 12;278(37):35241-7. Epub 2003 Jul 3.
    Cleveland, D.W., Y. Mao, and K.F. Sullivan. 2003. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell. 112:407-421.
    Coso, O. A., Chiariello, M., Yu, J.-C, Teramoto, H., Crespo, P., Xu, N., Miki, T., and Gutkind, J. S. 1995. The small GTP-binding proteins Racl and Cdc42regulate the activity of the JNK/SAPK signaling pathwayCell 81, 1137-1146
    
    Danen EH, Sonneveld P, Sonnenberg A, Yamada KM. 2000. Dual stimulation of Ras/mitogen-activated protein kinase and RhoA by cell adhesion to fibronectin supports growth factor-stimulated cell cycle progression. J Cell Biol 151:1413-1422.
    Darzynkiewicz, Z. 1994. Cell cycle analysis by flow cytometry. In Cell Biology: A Laboratory Handbook. Vol. 1. J.E. Celis, editor. Academic Press, New York. 261-271.
    Diehl JA. 2002. Cycling to cancer with cyclin D1. Cancer Biol Ther 1:226-231.
    
    Etienne-Manneville S, Hall A. 2002. Rho GTPases in cell biology. Nature 420:629-635.
    Dujardin, D., U.I. Wacker, A. Moreau, T.A. Schroer, J.E. Rickard, and J.R. De Mey. 1998. Evidence for a role of CLIP-170 in the establishment of metaphase chromosome alignment. J. Cell Biol. 141:849-862.
    Ekholm, S. V., and Reed, S. I. 2000. Regulation of Gl cyclin-dependent kinases in the mammalian cell cycle. Curr. Opin. Cell Biol. 12, 676-684
    Etienne-Manneville, S., and A. Hall. 2001. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKC_. Cell. 106:489-498.
    
    Etienne-Manneville, S., and A. Hall. 2002. Rho GTPases in cell biology. Nature.420:629-635.
    Frost, J. A., Steen, H., Shapiro, P., Lewis, T., Ahn, N., Shaw, P. E., and Cobb, M. H. 1997. EMBO J. 16, 6426-6438
    Frost, J. A., Khokhlatchev, A., Stippec, S., White, M. A., and Cobb, M. H. 1998. Differential Effects of PAK1-activating Mutations Reveal Activity-dependent and -independent Effects on Cytoskeletal Regulation. J. Biol. Chem. 273, 28191-28198
    
    Ghosh PM, Moyer ML, Mott GE, Kreisberg JI. 1999. Effect of cyclin E overexpression on lovastatin-induced G1 arrest and RhoA inactivation in NIH3T3 cells. J Cell Biochem 74:532-543.
    Gille H, Downward J. 1999. Multiple ras effector pathways contribute to G (1) cell cycle progression. J Biol Chem 274:22033-22040.
    Gjoerup, O., Lukas, J., Bartek, J., and Willumsen, B. M. 1998. Rac and Cdc42 Are Potent Stimulators of E2F-dependent Transcription Capable of Promoting Retinoblastoma Susceptibility Gene Product Hyperphosphorylation. J. Biol. Chem. 273, 18812-18818
    Glotzer M. 2001. Animal cell cytokinesis. Annu Rev Cell Dev Biol 17:351-386.
    Guasch RM, Scambler P, Jones GE, Ridley AJ. 1998. RhoE regulates actin cytoskeleton organization and cell migration. Mol Cell Biol 18:4761-4771.
    
    Gundersen GG, Bretscher A: Microtubule asymmetry. Science 2003, 300:2040-2041.
    Hara T, Abe M, Inoue H, Yu LR, Veenstra TD, Kang YH, Lee KS, Miki T: Cytokinesis regulator ECT2 changes its conformation through phosphorylation at Thr-341 in G2/M phase. Oncogene 2006, 25:566-578.
    
    Hengst L, Reed SI. 1996. Translational control of p27Kipl accumulation during the cell cycle. Science 271:1861-1864.
    Higashida C, Miyoshi T, Fujita A, Oceguera-Yanez F, Monypenny J, Andou Y, Narumiya S, Watanabe N: Actin polymerization-driven molecular movement of mDial in living cells. Science 2004, 303:2007-2010.
    Hirai A, Nakamura S, Noguchi Y, Yasuda T, Kitagawa M, Tatsuno I, Oeda T, Tahara K, Terano T, Narumiya S, et al. 1997. Geranylgeranylated rho small GTPase (s) are essential for the degradation of p27Kip1 and facilitate the progression from G1 to S phase in growth-stimulated rat FRTL-5 cells. J Biol Chem 272:13-16.
    Hirose, K., T. Kawashima, I. Iwamoto, T. Nosaka, and T. Kitamura. 2001. MgcRacGAP is involved in cytokinesis through associating with mitotic spindle and midbody. J. Biol. Chem. 276:5821-5828.
    Hofken T, Schiebel E. 2004. Novel regulation of mitotic exit by the Cdc42 effectors Gic1 and Gic2. J Cell Biol 164:219-231.
    Hu W, Bellone CJ, Baldassare JJ. 1999. RhoA stimulates p27 (Kip) degradation through its regulation of cyclin E/CDK2 activity. J Biol Chem 274:3396-3401.
    
    Huckaba TM, Pon LA. 2002. Cytokinesis: Rho and formins are the ringleaders. Curr Biol 12:R813-R814.
    Ishizaki T, Morishima Y, Okamoto M, Furuyashiki T, Kato T, Narumiya S: Coordination of microtubules and actin cytoskeleton by a rho effector, mDial. Nat Cell Biol 2001, 3:8-14.
    Jantsch-Plunger, V., P. Gonczy, A. Romano, H. Schnabel, D. Hamill, R. Schnabel, A.A. Hyman, and M. Glotzer. 2000. CYK-4: A Rho family GTPase activating protein (GAP) required for central spindle formation and cytokinesis. J. Cell Biol. 149:1391-1404.
    Kawashima, T., K. Hirose, T. Satoh, A. Kaneko, Y. Ikeda, Y. Kaziro, T. Nosaka, and T. Kitamura. 2000.
    
    MgcRacGAP is involved in the control of growth and differentiation of hematopoietic cells. Blood. 96:2116-2124.
    Kimura, K., T. Tsuji, Y. Takada, T. Miki, and S. Narumiya. 2000. Accumulation of GTP-bound RhoA during cytokinesis and a critical role of ECT2 in this accumulation. J. Biol. Chem. 275:17233-17236.
    Kishi, K., T. Sasaki, S. Kuroda, T. Itoh, and Y. Takai. 1993. Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI). J. Cell Biol. 120:1187-1195.
    Lamarche N, Tapon N, Stowers L, Burbelo PD, Aspenstrom P, Bridges T, Chant J, Hall A. Cell.Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. 1996 Nov 1;87(3):519-29.
    Laufs U, Marra D, Node K, Liao JK. 1999. 3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors attenuate vascular smooth muscle proliferation by preventing rho GTPase-induced down-regulation of p27 (Kip1) .J Biol Chem 274:21926-21931.
    Lee RJ, Albanese C, Fu M, D'Amico M, Lin B, Watanabe G, Haines, GK, 3rd, Siegel PM, Hung MC, Yarden Y, et al. 2000. Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol Cell Biol 20:672-683.
    Lenart P, Bacher CP, Daigle N, Hand AR, Elis R, Terasaki M, Ellenberg J: A contractile nuclear network drives chromosome congression in oocytes. Nature 2005,436:812-818.
    Li, F., L. Adam, R.K. Vadlamudi, H. Zhou, S. Sen, J. Chernoff, M. Mandal, and R. Kumar. 2002. p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Rep. 3:767-773.
    Li F, Higgs HN: The mouse formin mDia1 is a potent actin nucleation factor regulated by autoinhibition. CurrBiol 2003,13:1335-1340.
    Liberto M, CobrinikD, Minden A. 2002. Rho regulates p21(CIPl), cyclin Dl, and checkpoint control in mammary epithelial cells. Oncogene 21:1590-1599.
    Lin, R., Bagrodia, S., Cerione, R., and Manor, D. 1997. A novel Cdc42Hs mutant induces cellular transformation. Curr. Biol. 7, 794-797.
    Liu H, Di Cunto F, Imarisio S, Reid LM. 2003. Citron kinase is a cell cycle-dependent, nuclear protein required for G2/M transition of hepatocytes. J Biol Chem 278:2541-2548.
    Lloyd AC, Obermuller F, Staddon S, Barth CF, McMahon M, Land H. 1997. Cooperating oncogenes converge to regulate cyclin/cdk complexes. Genes Dev 11:663-677.
    Lundberg, A. S., and Weinberg, R. A. 1998. Functional Inactivation of the Retinoblastoma Protein Requires Sequential Modification by at Least Two Distinct Cyclin-cdk Complexes. Mol. Cell. Biol. 18,753-761
    Mabuchi, I., Y. Hamaguchi, H. Fujimoto, N. Morii, M. Mishima, and S. Narumiya. 1993. A rho-like protein is involved in the organisation of the contractile ring in dividing sand dollar eggs. Zygote. 1:325-331.
    Maddox AS, Burridge K: RhoA is required for cortical retraction and rigidity during mitotic cell rounding. J Cell Biol 2003, 160:255-265.
    Mammoto A, Huang S, Moore K, Oh P, Ingber DE. 2004. Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition. J Biol Chem 279:26323-26330.
    
    Manke IA, Lowery DM, Nguyen A, Yaffe MB: BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 2003,302:636-639.
    Manser, E., Leung, T., Salihuddin, H., Zhao, Z.-S., and Lim, L. 1994. A brain serine/threonine protein kinase activated by Cdc42 and Racl.Nature 367, 40-46
    
    Martin, G. A., Bollag, G., McCormick, F., and Abo, A. 1995.. A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20.EMBO J. 14, 1970-1978.
    Matsuo, N., M. Hoshino, M. Yoshizawa, and Y. Nabeshima. 2002. Characterization of STEF, a guanine nucleotide exchange factor for Racl, required for neurite growth. J. Biol. Chem. 277:2860-2868.
    Matsushime, H., Quelle, D. E., Shurtleff, S. A., Shibuya, M., Sherr, C. J., and Kato, J. Y. 1994. D-type cyclin-dependent kinase activity in mammalian cells. Mol. Cell. Biol. 14, 2066-2076
    Mettouchi A, Klein S, Guo W, Lopez-Lago M, Lemichez E, Westwick JK, Giancotti FG. 2001. Integrin-specific activation of Rac controls progression through the G (1) phase of the cell cycle. Mol Cell 8:115-127.
    Miki, T., C.L. Smith, J.E. Long, A. Eva, and T.P. Fleming. 1993. Oncogene ect2 is related to regulators of small GTP-binding proteins. Nature. 362:462-465.
    Minden, A., Lin, A., Claret, F.-X., Abo, A., and Karin, M. Selective activation of the JNK signaling cascadeand c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs1995. Cell 81, 1147-1157
    Minoshima, Y., T. Kawashima, K. Hirose, Y. Tonozuka, A. Kawajiri, Y.C. Bao, X. Deng, M. Tatsuka, S. Narumiya, W.S. May Jr., et al. 2003. Phosphorylation by Aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev. Cell. 4:549-560.
    Moon, S.Y., and Y. Zheng. 2003. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 13:13-22.
    Moore KA, Sethi R, Doanes AM, Johnson TM, Pracyk JB, Kirby M, Irani K, Goldschmidt-Clermont PJ, Finkel T. 1997. Racl is required for cell proliferation and G2/M progression. Biochem J 326 (Pt 1) : 17-20.
    Nevins, J. R. 1992. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258, 424-429
    Olson MF, Ashworth A, Hall A. 1995. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269:1270-1272.
    Olson MF, Paterson HF, Marshall CJ. 1998. Signals from Ras and Rho GTPases interact to regulate expression of p21 Wafl/Cip1. Nature 394:295-299.
    Qiu RG, Chen J, Kirn D, McCormick F, Symons M. 1995a. An essential role for Rac in Ras transformation. Nature 374:457-459.
    Qiu RG, Chen J, McCormick F, Symons M. 1995b. A role for Rho in Ras transformation. Proc Natl Acad Sci USA 92:11781-11785.
    Qiu RG, Abo A, McCormick F, Symons M. 1997. Cdc42 regulates anchorage-independent growth and is necessary for Ras transformation. Mol Cell Biol 17:3449-3458.
    Palazzo AF, Cook TA, Alberts AS, Gundersen GG: mDia mediates rho-regulated formation and orientation of stable microtubules. Nat Cell Biol 2001,3:723-729.
    Pestov, D., and Lau, L. F. 1994. Genetic Selection of Growth-Inhibitory Sequences in Mammalian Cells. Proc. Natl. Acad. Sci. U. S. A. 91, 12549-12553
    Philips, A., Roux, P., Coulon, V., Bellanger, J. M., Vie, A., Vignais, M. L., and Blanchard, J. M. 2000. Differential Effect of Rac and Cdc42 on p38 Kinase Activity and Cell Cycle Progression of Nonadherent Primary Mouse Fibroblasts. J. Biol. Chem. 275, 5911-5917.
    Planas-Silva, M. D., and Weinberg, R. A. 1997. The restriction point and control of cell proliferation. Curr. Opin. Cell Biol. 9, 768-772
    Prokopenko, S.N., A. Brumby, L. O'Keefe, L. Prior, Y. He, R. Saint and H.J. Bellen. 1999. A putative exchange factor for Rhol GTPase is required for initiation of cytokinesis in Drosophila. Genes Dev. 13:2301-2314.
    
    Ridley AJ. 2001. Rho family proteins: Coordinating cell responses. Trends Cell Biol 11:471-477.
    
    Riento K, Guasch RM, Garg R, Jin B, Ridley AJ. 2003. RhoE binds to ROCK I and inhibits downstream signaling. Mol Cell Biol 23:4219-4229.
    Roovers K, Assoian RK. 2003. Effects of rho kinase and actin stress fibers on sustained extracellular signal-regulated kinase activity and activation of g(1) phase cyclin-dependent kinases. Mol Cell Biol 23:4283-4294.
    Roovers K, Klein EA, Castagnino P, Assoian RK. 2003. Nuclear translocation of LIM kinase mediates Rho-Rho kinase regulation of cyclin D1 expression. Dev Cell 5:273-284.
    Rosenblatt J, Cramer LP, Baum B, McGee KM: Myosin Iidependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell 2004,117:361-372.
    Schwartz MA, Assoian RK. 2001. Integrins and cell proliferation: Regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J Cell Sci 114:2553-2560.
    Sewing A, Wiseman B, Lloyd AC, Land H. 1997. High-intensity Raf signal causes cell cycle arrest mediated by p21Cipl. Mol Cell Biol 17:5588-5597.
    Sherr CJ. 2000. Cell cycle control and cancer. Harvey Lect 96:73-92.
    Sherr CJ, Roberts JM. 1999. CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev 13:1501-1512.
    Skop, A.R., H. Liu, J. Yates III, B.J. Meyer, and R. Heald. 2004. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science. 305:61-66.
    Somers, W.G., and R. Saint. 2003. A RhoGEF and Rho family GTPase-activating protein complex links the contractile ring to cortical microtubules at the onset of cytokinesis. Dev. Cell. 4:29-39.
    Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume AM, Artelt J, Bettencourt P, Cassin E et al.: Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 2005,434:462-469.
    Swant JD, Rendon BE, Symons M, Mitchell RA. 2005. Rho GTPase-dependent signaling is required for macrophage migration inhibitory factor-mediated expression of cyclin Dl. J Biol Chem 280:23066-23072.
    Symons, M., Derry, J. M. J., Karlak, B., Jiang, S., Lemahieu, V., McCormick, F., Francke, U., and Abo, A. 1996. Wiskott-Aldrich Syndrome Protein, a Novel Effector for the GTPase CDC42Hs, Is Implicated in Actin Polymerization. Developmental Cell 84, 723-734
    Takenawa, T., and Miki, H. 2001. WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J. Cell Sci. 114, 1801-1809
    Tatsumoto, T., X. Xie, R. Blumenthal, I. Okamoto, and T. Miki. 1999. Human ECT2 is an exchange factor for Rho GTPases, phosphorylated in G2/M phases, and involved in cytokinesis. J. Cell Biol. 147:921-928.
    Tatsumoto, T., H. Sakata, M. Dasso, and T. Miki. 2003. Potential roles of the nucleotide exchange factor ECT2 and Cdc42 GTPase in spindle assembly in Xenopus egg cell-free extracts. J. Cell. Biochem. 90:892-900.
    Thery M, Racine V, Pepin A, Piel M, Chen Y, Sibarita J-B, Bornens M: The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol 2005, 7:947-953.
    Toure, A., O. Dorseuil, L. Morin, P. Timmons, B. Jegou, L. Reibel, and G. Gacon. 1998. MgcRacGAP, a new human GTPase-activating protein for Rac and Cdc42 similar to Drosophila rotundRacGAP gene product, is expressed in male germ cells. J. Biol. Chem. 273:6019-6023.
    Vadlamudi, R.K., L. Adam, R.A. Wang, M. Mandal, D. Nguyen, A. Sahin, J. Chernoff, M.C. Hung, and R. Kumar. 2000. Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J. Biol. Chem. 275:36238-36244.
    Van de Putte, T., A. Zwijsen, O. Lonnoy, V. Rybin, M. Cozijnsen, A. Francis, V. Baekelandt, CA. Kozak, M. Zerial, and D. Huylebroeck. 2001. Mice with a homozygous gene trap vector insertion in mgcRacGAP die during pre-implantation development. Mech. Dev. 102:33-44.
    Vidal A, Millard SS, Miller JP, Koff A. 2002. Rho activity can alter the translation of p27 mRNA and is important for RasV12-induced transformation in a manner dependent on p27 status. J Biol Chem 277:16433-16440.
    Villalonga P, Guasch RM, Riento K, Ridley AJ. 2004. RhoE inhibits cell cycle progression and Ras-induced transformation. Mol Cell Biol 24:7829-7840.
    Vlach J, Hennecke S, Amati B. 1997. Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. EMBO J 16:5334-5344.
    Vogt A, Qian Y, McGuire TF, Hamilton AD, Sebti SM. 1996. Protein geranylgeranylation, not farnesylation, is required for the G1 to S phase transition in mouse fibroblasts. Oncogene 13:1991-1999.
    Vogt A, Sun J, Qian Y, Hamilton AD, Sebti SM. 1997. The geranylgeranyltransferase-I inhibitor GGTI-298 arrests human tumor cells in GO/G1 and induces p21(WAF1/CIP1/SDI1) in a p53-independent manner. J Biol Chem 272:27224-27229.
    Volarevic, S., Stewart, M. J., Ledermann, B., Zilberman, F., Terracciano, L., Montini, E., Grompe, M., Kozma, S. C, and Thomas, G. 2000. Proliferation, But Not Growth, Blocked by Conditional Deletion of 40S Ribosomal Protein S6. Science 288,2045-2047.
    Wang, Y.L. 2001. The mechanism of cytokinesis: reconsideration and reconciliation. Cell Struct. Funct. 26:633-638.
    Wittmann, T., A. Hyman, and A. Desai. 2001. The spindle: a dynamic assembly of microtubules and motors. Nat. Cell Biol. 3:E28-E34.
    Weber JD, Hu W, Jefcoat SC, Jr, Raben DM, Baldassare JJ. 1997. Ras-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced G1 progression through the independent regulation of cyclin D1 and p27. J Biol Chem 272:32966-32971.
    Weiss RH, Ramirez A, Joo A. 1999. Short-termpravastatin mediates growth inhibition and apoptosis, independently of Ras, via the signaling proteins p27Kipl and P13 kinase. J Am Soc Nephrol 10:1880-1890.
    Welsh CF, Roovers K, Villanueva J, Liu Y, Schwartz MA, Assoian RK. 2001. Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nat Cell Biol 3:950-957.
    Wennerberg K, Forget MA, Ellerbroek SM, Arthur WT, Burridge K, Settleman J, Der CJ, Hansen SH. 2003. Rnd proteins function as RhoA antagonists by activating p190 RhoGAP. Curr Biol 13:1106-1115.
    
    Westwick JK, Lambert QT, Clark GJ, Symons M, Van Aelst L, Pestell RG, Der CJ. 1997. Rac regulation of transformation, gene expression, and actin organization by multiple, PAKindependent pathways. Mol Cell Biol 17:1324-1335.
    Yamamoto M, Marui N, Sakai T, Morii N, Kozaki S, Ikai K, Imamura S, Narumiya S. 1993. ADP-ribosylation of the rhoA gene product by botulinum C3 exoenzyme causes Swiss 3T3 cells to accumulate in the Gl phase of the cell cycle. Oncogene 8:1449-1455.
    Yasuda S, Oceguera-Yanez F, Kato T, Okamoto M, Yonemura S, Terada Y, Ishizaki T, Narumiya S. 2004. Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature 428:767-771.
    Yoshizaki H, Ohba Y, Parrini MC, Dulyaninova NG, Bresnick AR, Mochizuki N, Matsuda M: Cell-type-specific regulation of RhoA activity during cytokinesis. J Biol Chem 2004, 279:44756-44762.
    Yu, X., C.C.S. Chini, M. He, G. Mer, and J. Chen. 2003. The BRCT domain is a phospho-protein binding domain. Science. 302:639-642.
    Yuce O, Piekny A, Glotzer M: An ECT2-centralspindlin complex regulates the localization and function of RhoA. J Cell Biol 2005, 170:571-582.
    Zhang, S., Han, J., Sells, M. A., Chernoff, J., Knaus, U. G., Ulevitch, R. J., and Bokoch, G. M. 1995. Rho Family GTPases Regulate p38 Mitogen-activated Protein Kinase through the Downstream Mediator Pakl. J. Biol. Chem. 270,23934-23936
    Zheng, Y. 2001. Dbl family guanine nucleotide exchange factors. Trends Biochem. Sci. 26:724-732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700