用户名: 密码: 验证码:
氯吡格雷对尼古丁诱导的大鼠血管内皮损伤的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过使用氯吡格雷干预尼古丁诱导的血管内皮损伤的大鼠模型,探讨氯吡格雷对血管内皮细胞损伤的保护作用及机制。
     方法:健康雄性Sprague Dawley(SD)大鼠共40只,体重180~220g,随机分为5组,每组8只,分别为:对照组、模型组、氯吡格雷低剂量组、氯吡格雷中剂量组和氯吡格雷高剂量组。模型组每天给予腹腔注射尼古丁(2 mg /kg),连续4周,建立血管内皮损伤模型。氯吡格雷低剂量组在模型组的基础上给予氯吡格雷溶液(3mg/kg)灌胃,氯吡格雷中剂量组在模型组的基础上给予氯吡格雷溶液(10mg/kg)灌胃,氯吡格雷高剂量组在模型组的基础上给予氯吡格雷溶液(30mg/kg)灌胃。在造模前一天及造模4周后,舌下静脉抽血测定大鼠血浆中SOD、ET-1及NO的水平。试验结束后取各组大鼠胸主动脉做成石蜡切片,免疫组织化学SABC法染色,于光镜下观察血管内皮细胞eNOS的表达情况。同时取各组大鼠胸主动脉做成电镜标本,通过扫描电镜观察血管内皮细胞的形态学变化。
     结果:(1)造模4周后,与对照组比较,模型组血浆中SOD含量下降(p <0.01);三个剂量治疗组与模型组比较血浆SOD含量明显升高(p <0.01);模型组,造模后与造模前比较,血浆SOD含量降低(p <0.01);低、中剂量组,造模后与造模前比较,血浆SOD含量降低(p <0.05,p <0.01);高剂量组,造模前后,血浆SOD含量的差异没有显著性(p >0.05);
     (2)造模4周后,与对照组比较,模型组血浆NO含量降低(p <0.01);三个剂量治疗组与模型组比较血浆NO含量明显升高(p <0.05,p <0.01);模型组,造模后与造模前比较,血浆NO含量降低(p <0.01);低、中剂量组,造模后与造模前比较,血浆NO含量降低(p <0.05,p <0.01);高剂量组,造模前后,血浆NO含量的差异没有显著性(p >0.05);
     (3)造模4周后,与对照组比较,模型组血浆ET-1的含量升高(p <0.01);与模型组比较,低剂量组血浆ET-1的含量降低,但差异没有显著性(p >0.05),而中、高剂量氯吡格雷组血浆ET-1的含量下降(p <0.01);模型组,造模后与造模前比较,血浆ET-1含量升高(p <0.01);三个剂量治疗组,造模后与造模前比较,血浆ET-1含量升高(p <0.05,p <0.01);
     (4) eNOS免疫组化染色可见eNOS在对照组血管内皮细胞的阳性表达率为(86.50±5.42%),模型组血管内皮细胞的eNOS阳性细胞表达率(32.75±7.086%)较对照组明显减少(p <0.01),低剂量治疗组血管内皮细胞的eNOS阳性细胞表达率(39.50±6.02%)较模型组升高(p <0.05),中、高剂量组血管内皮细胞的eNOS阳性细胞表达率分别为(49.00±5.95%)、(70.25±6.62%)较模型组明显升高(p <0.01);
     (5)电镜可见:模型组大鼠胸主动脉内皮出现明显损伤,细胞间隙增大或出现深大裂隙,胞膜表面部分脱落呈大小不等的虫蚀状、火山口状缺损,三个氯吡格雷治疗组损伤明显轻于模型组,内皮细胞呈带状排列,大小形态相似,结构基本正常,呈修复状态,而且随氯吡格雷浓度递增呈现损伤减轻的趋势。
     结论:氯吡格雷可能是通过提高血管内皮细胞中eNOS的表达,从而改善尼古丁对血管内皮细胞的损伤。
Objective To reseach the protective effect of clopidogrel on nicotine - induced endothelial dysfunction in rats.
     Methods 40 SD rats, Weight 180~220g, were divided into five groups:①normal control group,②nicotine control group (2 mg / kg),③low-dose clopidogrel group (nicotine 2 mg / kg + clopidogrel 3mg/kg),④middle dose clopidogrel group (nicotine 2 mg / kg + clopidogrel 10mg/kg),⑤high-dose clopidogrel group (nicotine 2 mg / kg + clopidogrel 30mg/kg). The day before and 4 weeks later of modeling, sublingual vein blood,to measure plasma SOD, ET-1 and NO levels of the rats. After the test , take each group of rat thoracic aorta to Make of paraffin sections, SABC immunohistochemical staining method ,to observed the expression of eNOS In vascular endothelial cells under light microscope . We observe the morphological changes of vascular endothelial cells by the scanning electron microscopy.
     Results (1) The plasma SOD levels of model group were obviously lower than the control group (p <0.01),the plasma SOD levels of three-dose treatment group were obviously higher than the model group 4 weeks after modeling(p <0.01); the plasma SOD levels of model group were obviously lower than the the pre-modeling (p <0.01); the plasma SOD levels of low、middle dose group were obviously lower than the the pre-modeling (p <0.05, p <0.01); the plasma SOD levels of high-dose group were similar to the pre-modeling(p >0.05).(2) The plasma NO levels of model group were obviously lower than the control group (p <0.01),the plasma NO levels of three-dose treatment group were obviously higher than the model group 4 weeks after modeling(p <0.05, p <0.01); the plasma NO levels of model group were obviously lower than the the pre-modeling (p <0.01); the plasma NO levels of low、middle dose group were obviously lower than the the pre-modeling (p <0.05, p <0.01); the plasma NO levels of high-dose group were similar to the pre-modeling(p >0.05). (3) The plasma ET-1 levels of model group were obviously higher lower than the control group (p <0.01),the plasma ET-1 levels of middle、high dose treatment group were obviously lower than the model group 4 weeks after modeling(p <0.05, p <0.01); the plasma ET-1 levels of model group were obviously higher than the the pre-modeling (p <0.01); the plasma ET-1 levels of three-dose treatment group were obviously higher than the the pre-modeling (p <0.05, p <0.01).
     (4)The eNOS immunohistochemistry shows the eNOS positive of endothelial cells expression of the control group were(86.50±5.42%). The eNOS positive of endothelial cells expression of the model group (32.75±7.086%) were lower than the control group (p < 0.01). low-dose treatment group(39.50±6.02%) were higher than the model group (p <0.05). compared with model group ,the eNOS positive of endothelial cells expression of middle and high dose group ( 49.00±5.95%), (70.25±6.62%) were significantly higher (p <0.01).
     (5)SEM : the thoracic aortic endothelial apparent injury in the model group. Compared with the model group, the thoracic aorta endothelial damage of three-dose treatment group were mitigation.
     Conclusion Clopidogrel can significantly relieve the nicotine on vascular endothelial cell damage.
引文
[1] Sima AV, Stancu CS, Simionescu M, et al. Vascular endothelium in atherosclerosis[J]. Cell Tissue Res. 2009,335(1):191-203.
    [2] Loomans CJ, De Koning EJ, Staal FJ, et al. Endothelial progenitor cell dysfunction in type 1 diabetes: another consequence of oxidative stress? [J]. Antioxid Redox Signal, 2005,7(11-12):1468-75.
    [3] Cui B, Huang L, Song YM, et al. The relationship between circulating endothelial progenitor cells and the risk factors of CHD as well as the severity of coronary lesions, and its clinical significance[J]. Chinese journal of cardiovascular diseases, 2005,33(9):785-8.
    [4] Cosentino F, Rubatta S, Savoia C, et al. Endothelial dysfunction and stroke[J]. J Cardiovasc Pharmacol 2001,38:S75–8.
    [5] Yang JT, Chang CN, Wu JH, et al. Cigarette smoking decreases neurotrophin-3 expression in rat hippocampus after transient forebrain ischemia[J]. Neurosci Res, 2008,60:431-8.
    [6] Harker LA, Ross R, Glomset JA, et al. The role of endothelial cell injury and platelet response in atherogenesis[J]. Thromb Haemost, 1978,39(2):312-21.
    [7] Fang Q, Sun H, Mayhan WG. Impairment of nitric oxide synthase-dependent dilatation of cerebral arterioles during infusion of nicotine[J]. Am J Physiol Heart Circ Physiol, 2003,284(2):H528-H534.
    [8] Jiang DJ, Jia SJ, Yan J, et al. Involvement of DDAH/ADMA/NOS pathway in nicotine-induced endothelial dysfunction[J]. Biochem Biophys Res Commun, 2006,349(2):683-693.
    [9] Tsai CH, Yeh HI, Tian TY, et al. Down-regulating effect of nicotine on connexin43 gap junctions in human umbilical vein endothelial cells is attenuated by statins[J]. Eur J Cell Biol, 2004,82(12):589-595
    [10] Wang Y, Wang Z, Zhou Y, et al. Nicotine stimulates adhesion molecular expression via calcium influx and mitogen-activated protein kinases in human endothelial cells[J]. Int J Biochem Cell Biol, 2006,38(2):170-182.
    [11] Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function and cardiovascular risk [J]. N Eng J Med, 2003, 348 (7) : 593-600.
    [12] McNeill KL, Fontana L, Russell-Jones DL, et al. Inhibitory effects of low-density lipoproteins from men with type II diabetes on endothelium-dependent relaxation[J].JAm Coll Cardiol, 2000,35(6):1622-1627.
    [13] Au-Yeung KK, Woo CW, Sung FL, et al. Hyperhomocysteinemia activates nuclear factor-kappaB in endothelial cells via oxidative stress[J]. Circ Res, 2004,94(1):28-36.
    [14] Ceravolo R, Maio R, Pujia A, et al. Pulse pressure and endothelial dysfunction in never- treated hypertensive patients[J]. J Am Coll Cardiol, 2003, 41(10):1753~1758.
    [15] Yamagishi K., Iso H, Kitamura A, et al. Smoking raises the risk of total and ischemic strokes in hypertensive men[J]. Hypertension Research,2003, 26(2), 209– 217.
    [16] Mannami T, Iso H, Baba S, et al.. Cigarette smoking and risk of stroke and its subtypes among middleaged Japanese men and women: the JPHC Study Cohort I[J]. Stroke, 2004,35(3):1248–1253.
    [17] Uvarov V, Popov I. Development and metrological characterization of quantitative X-ray diffraction phase analysis for the mixtures of clopidogrel bisulphate polymorphs [J]. J Pharm Biomed Anal, 2008,46(4):676-682.
    [18] Kanko M, Maral H, Akbas MH, et al. Protective effects of clopidogrel on oxidant damage in a rat model of acute ischemia[J]. Tohoku J Exp Med, 2005,205(2):133-139.
    [19] Hermann A, Rauch BH,B raunM, et al. Platelet CD40 ligand (CD40L )—subcellular localization, regulation of expression, and inhibition by clopidogrel[ J ].Platelets, 2001, 12 (2) : 74-82.
    [20] Klinkhardt U,Bauersachs R,Adams J,et al. Clopidogrel but not aspirin reduces P-selectin exp ression and formation of platelet-leukocyte aggregates in patients with atherosclerotic vascular disease [ J ]. Clin Pharmacol Ther, 2003, 73 ( 3 ) :232-241.
    [21] Ayral Y, Rauch U, Goldin-Lang P, et al. Prolonged application of clopidogrel reduces inflammation after percutaneous coronary intervention in the porcine model [J]. Cardiovasc Revasc Med,2007,8(3):183-188.
    [22] Heitzer T, Rudolph V, Schwedhelm E, et al. Clopidogrel improves systemic endothelial nitric oxide bioavailability in patients with coronary artery disease: evidence for antioxidant and antiinflammatory effects. Arterioscler Thromb Vasc Biol, 2006,26(7):1648-1652.
    [23] Arnon Afek, Evgeny Kogan, Sofia Maysel-Auslender, et al. Clopidogrel attenuates atheroma formation and induces a stable plaque phenotype in apolipoprotein E knockout mice[J]. Microvascular Research, 2009, 77:364–369.
    [24] Balakumar P, Sharma R, Singh M. Benfotiamine attenuates nicotine and uric acid-induced vascular endothelial dysfunction in the rat[J]. Pharmacol Res, 2008,58(5-6):356-363.
    [25] Schumacher WA, Bostwick JS, Ogletree ML, et al. Biomarker optimization to track the antithrombotic and hemostatic effects of clopidogrel in rats[J]. J Pharmacol Exp Ther, 2007,322(1):369-377.
    [26] Balakumar P, Kaur J,et al. Is nicotine a key player or spectator in the induction and progression of cardiovascular disorders? [J]. Pharmacol Res, 2009,60:361-368
    [27] Arrick DM, Mayhan WG. Acute infusion of nicotine impairs nNOS-dependent reactivity of cerebral arterioles via an increase in oxidative stress [J]. J Appl Physiol, 2007,103(6):2062-2067.
    [28] Yetik-Anacak G, Catravas JD. Nitric oxide and the endothelium: history and impact on cardiovascular disease[J]. Vascul Pharmacol, 2006,45(5):268-276.
    [29] Chatterjee A, Black SM, Catravas JD. Endothelial nitric oxide (NO) and its pathophysiologic regulation[J].Vascul Pharmacol, 2008,49(4-6):134-140.
    [30] Moncada S, Palmer RM, Higgs EA. The discovery of nitric oxide as the endogenous nitrovasodilator[J]. Hypertension, 1988,12(4):365-372.
    [31] Lauren T, Knapp , Beatrie I , et al . Peroxynitrite - induced tyrosine nitration andinhibation of protein kinase C[J] . Bioch Bioph Res Comm, 2001 ,286 :764 - 770.
    [32] Pradhan L, Mondal D, Chandra S, et al. Molecular analysis of cocaine-induced endothelial dysfunction: role of endothelin-1 and nitric oxide[J]. Cardiovasc Toxicol,2008,8(4):161-171.
    [33] Luo HL, Zang WJ, Lu J, et al. The protective effect of captopril on nicotine-induced endothelial dysfunction in rat[J]. Basic Clin Pharmacol Toxicol, 2006,99(3):237-245.
    [34] van der Loo B, Schildknecht S, Zee R, et al. Signalling processes in endothelial ageing in relation to chronic oxidative stress and their potential therapeutic implications in humans[J]. Exp Physiol, 2009,94(3):305-310
    [35] Yu LH, Liu GT. Schisanhenol attenuated ox-LDL-induced apoptosis and reactive oxygen species generation in bovine aorta endothelial cells in vitro[J]. J Asian Nat Prod Res, 2008,10(7-8):799-806.
    [36] Klinkhardt U, Dragutinovic I, Harder S. P-selectin (CD62p) and P-selectin glycoprotein ligand-1 (PSGL-1) polymorphisms: minor phenotypic differences in the formation of platelet-leukocyte aggregates and response to clopidogrel[J ]. Int J Clin Pharmacol Ther, 2005,43(6):255-263.
    [1] Sima AV. Vascular endothelium in atherosclerosis[J].Cell Tissue Res, 2009, 33(5):191-203.
    [2] Dimitrova KR, DeGroot KW, Pacquing AM, et al. Estradiol prevents homocysteine-induced endothelial injury in male rats[J].Cardiovasc Res, 2002,53(3):589-596.
    [3] Welch GN, Loscalzo J ,et al. Homocysteine and atherothrombosis[J]. N Engl J Med,1998,338(15):1042-1050.
    [4] Au-Yeung KK, Woo CW, Sung FL,et al.Hyperhomocysteinemia activates nuclear factor-kappaB in endothelial cells via oxidative stress[J]. Circ Res J, 2004, 94(1):28-36.
    [5] Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk[J]. The New England journal of medicine, 2003,348(7):593-600.
    [6] Lentz SR, Sobey CG, Piegors DJ, et al. Vascular dysfunction in monkeys with diet-induced hyperhomocysteinemia[J].Clin Invest,1996,98(1):24–29.
    [7] Tawakol A, Omland T, Gerhard M, et al. Hyperhomocysteinemia is associatedwith impaired endothelium-dependent vasodilatation in humans[J]. Circulation J, 1997,95(5):1119-1121.
    [8]田丽,李新,张哲成等.高同型半胱氨酸血症对大鼠脑血管的影响及干预[J].中国神经精神疾病杂志[J].2009,35(2):119-120.
    [9] Balakumar P, Sharma R, Singh M. Benfotiamine attenuates nicotine and uric acid-induced vascular endothelial dysfunction in the rat[J]. Pharmacol Res, 2008,58(5-6):356-63.
    [10] Dani JA, De Biasi M. Cellular mechanisms of nicotine addiction[J]. Pharmacol Biochem Behav J, 2001,70(4):439-446.
    [11] Fang Q, Sun H, Mayhan W G, et al.Impairment of nitric oxide synthase- dependent dilatation of cerebral arterioles during infusion of nicotine. American Journal of Physiology[J].Heart Circulation Physiology, 2003, 284(2):H528– H534.
    [12] Jiang DJ, Jia SJ, Zhou Z, et al.Involvement of DDAH/ADMA/NOS pathway in nicotine-induced endothelial dysfunction[J].Biochem Biophy Res Com, 2006, 349(2):683–693.
    [13] Tsai CH, Yeh HI, Tian TY, et al. Down-regulating effect of nicotine on connexin43 gap junctions in human umbilical vein endothelial cells is attenuated by statins[J]. Eur J Cell Biol JT-European journal of cell biology, 2004,82(12): 589-595.
    [14] Y Wang, Z Wang, Y Zhou, et al.Nicotine stimulates adhesion molecular expression via calcium influx and mitogen-activated protein kinases in human endothelial cells[J].Biochem Cell Biol, 2006, 38(2):170–182.
    [15]谭斌,黄煌,谷彬等.牛磺酸对低密度脂蛋白所致大鼠血管内皮损伤的保护作用[J].湘南学院学报,2005, 7(4):1-4.
    [16] ChenM, Masaki T, Sawamura T, et al.LOX - 1, the receptor for oxidized low-density lipoprotein identified from endothelial cells:implications in endothelial dysfunction and atherosclerosis [J] .Pharmacol Ther, 2002, 95 (1):89–100.
    [17] Nagase M, Abe J, Takahashi K, et al. Genomic organization and regulation of expression of the lectin-like oxidized low-density lipoprotein receptor( LOX- 1)gene[J] .Biol Chem,1998, 273( 50) :33702- 33707.
    [18]徐立朋,秦旭平,廖端芳.氯沙坦对两肾一夹型高血压大鼠血管内皮功能的影响[J].中国药理学通报[J].2003,19 (3) :270-273.
    [19] Ceravolo R, Maio R, Pujia A, et al. Pulse pressure and endothelial dysfunction in never-treated hypertensive patients[J]. J Am Coll Cardiol, 2003, 41(10): 1753-1758.
    [20] SatoM, Ohashi T.Biorheological views of endothelial cell responses to mechanical stimuli[J].Biorheology,2005, 42(6):421-441.
    [21] Shinsuke Miyahara,Junichi Kiryu,Kazuaki Miyamoto,et al. Alteration of Leukocyte–Endothelial Cell Interaction During Aging in Retinal Microcirculation of Hypertensive Rats[J].Jpn J Ophthalmol 2006, 50(6):509–514.
    [22]张红旗,徐丹令,都颖,等.用血管紧张素缓释泵制作大鼠血管内皮损伤模型探讨一种内皮早期损伤模型的新方法[J].中国临床医学,2007,14(4):451-454.
    [23] Yang LX.Role of TRPC1 and NF-kappaB in mediating angiotensin II-induced Ca2+ entry and endothelial hyperpermeability[J]. Peptides, 2009,30(7):1368-1373.
    [24] Zhang H,Schmeisser A,Garlichs CD, et al.Angiotensin II-induced superoxide anion generation in human vascular endothelial cells: role of membrane-bound NADH-/NADPH-oxidases[J].Cardiovasc Res. 1999,44(1):215-222.
    [25] Oriji GK. Angiotensin II-induced ET and PGI2 release in rat aortic endothelial cells is mediated by PKC. Prostaglandins Leukot Essent Fatty Acids, 1999,61(2): 113-117.
    [26] Vlassara H , Fuh H , Makita Z , et al . Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals : a model for diabetic and aging complications [J]. Proc Natl Acad Sci USA JT.1992,89(24): 12043-12047.
    [27] Cai H, Dikalov S, Griendling KK, et al. Detection of reactive oxygen species and nitric oxide in vascular cells and tissues: comparison of sensitivity and specificity[J]. Methods Mol Med,2007,139: 293-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700