用户名: 密码: 验证码:
电纺β-磷酸三钙/明胶引导组织再生膜的制备及研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:制备一种β-磷酸三钙(β-TCP)与明胶(Gel)杂化的纳米纤维引导组织再生膜,并对其生物相容性进行研究,为新型牙周组织再生材料的研制提供理论依据。
     方法:采用静电纺丝技术制备β-磷酸三钙与明胶的杂化纤维膜。通过扫描电子显微镜(SEM)和力学拉伸实验对杂化纤维膜进行表征,通过MTT以及细胞与材料共培养实验对其生物相容性进行评价。
     结果:杂化纤维膜交联前、后其纤维的平均直径分别为200~300 nm和400~500 nm,在交联之后其拉伸断裂应力从(1.08±0.24)MPa提高到(6.47±0.85)MPa。杂化纤维膜在细胞毒性上与阳性对照间有统计学差异(P<0.01),与阴性对照无统计学差异,并且人成骨样细胞(MG-63)可以成功的贴附生长在该材料上。
     结论:β-磷酸三钙/明胶纳米纤维引导组织再生膜可以成功地用电纺丝法制备出来,且其生物相容性较好,表明该材料可以用于组织工程学的研究,是一个具有很好应用前景的牙周组织工程再生材料。
AIM: Preparing a kind of gelatin(Gel) withβ-tricalcium phosphate(β-TCP) hybrid nanofibrous membrane and testing its biocompatibility for guided tissue regeneration.
     METHODS: The hybrid nanofibrous membrane is made by the electrospinning technique. Through the ways of scanning electron microscopy (SEM), mechanical tensile test, MTT test and cell co-culture with the material to character the material and study its biocompatibility.
     RESULTS: After crossing-linking the average diameter of hybrid nanofibrous were increased from 200-300nm to 500-600nm. By cross-linking its tensile fracture stress is markedly improved from (1.08±0.24)MPa to (6.47±0.85)MPa. In regard to cytotoxicity there is significant difference between the positive control and the hybrid nanofibrous membrane(P<0.01),and there is no significant difference compared with the negative control.At last, the osteoblast-like cells(MG-63) could successfully attach and proliferate on the hybrid nanofibrous membrane.
     CONCLUSION: Theβ-tricalcium phosphate / gelatin guided tissue regeneration membrane can be prepared by the electrospinning technique successfully. Because of its good biocompatibility, the hybrid nanofibrous membrane can be used for tissue engineering, indicating that the hybrid nanofibrous membrane is a promising material for periodontal tissue regeneration.
引文
[1]. Gottlow J, Nyman S, Karring T, et al. New attachment formation as the result of controlled tissue regeneration. J Clin Periodontol, 1984;11(8):494-503.
    [2]. Buser D, Dula K, Belser U, et al. Localized ridge augmentation using guided bone regeneration. Int J Periodontics Restorative Dent, 1993;13(1):29-45.
    [3]. Nojima N, Kobayashi M, Shionome M, et al. Fibroblastic cells derived from bovine periodontal ligaments have the phenotypes of osteoblasts. J Periodont Res, 1990;25(3):179-185.
    [4]. Dahlin C, Gottlow J, Lindhe A, et al. Healing of maxillary and mandibular bone defects using a membrane technique. An experimental study in monkeys. Scand J Plast Reconstr Surg, 1990;24(1):13-19.
    [5]. Dahlin C, Alberius P, Linde A. Osteopromotion for cranioplasty: An experimental study in rats using a membrane technique. J Neuro Surg, 1991;74(3):487-491.
    [6]. Nyman S, Gottlow J, Karring T, et al. The regenerative potential of the periodontal ligament: An experimental study in the monkeys. J Clin Periodontol, 1982;9(3):257-261.
    [7]. Gottlow J, Nyman S, Karring T, et al. New attachment formation as the result of controlled tissue regeneration. J Clin Periodontol, 1984;11(8):494-503.
    [8].张子军,卢世璧,王继芳,等.引导性骨再生中内源性BMP的作用.中华骨科杂志, 1996;16(11):719-722.
    [9]. Dahlin C, Andersson L, Linde A. Bone augmentation at fenestrated implants by osteopromotive membrane techniques: An controlled clinical study. Clin Oral Implants Res, 1991;2(4):159-165.
    [10]. Seibert J, Nyman S. Localized ridge augmentation in dogs: A pilot study using membranes and hydroxyapatite. J Periodontol, 1990;61(3):157-165.
    [11]. Becker W, Becker BE, Handlesman, et al. Bone formation at dehisced dental implant sites treated with implant augmentation material: A pilot study in dogs. Int J Periodont Res Dent, 1990;10(2):93~101.
    [12]. Becker J, Neukam FW, Schliephake H. Restoration of the lateral sinus wall using a collagen typeⅠmembrane for guided tissue regeneration. Int J Oral Maxillofac Surg, 1992;21(4):243-246.
    [13]. Gher ME, Quuintero G, Assad D, et al. Bone Grafting and guided bone regeneration for immediate dental implants in humans. J Periodontol, 1994; 65(9):881~891.
    [14]. Caffesse RG, Smith BA, Nasjleti CE, et al. Cell proliferation after flap surgery, root conditioning and fibronectin application. J Periodontol, 1987;58(10):661-666.
    [15]. Barboza EP. Clinical and histologic evaluation of the demineralized freeze-dried bone membrane used for ridge augmentation. Int J Periodontics Restorative Dent. 1999;19(6):601-607.
    [16]. Vernino AR, Jones FL, Holt RA, et al. Evaluation of the potential of a polylactic acid barrier for correction of periodontal defects in baboons: a clinical and histologic study. Int J Periodontics Restorative Dent. 1995;15(1):84-101.
    [17].肖骏,刘俊宾,夏仁云,等.脱矿人牙骨基质与聚乳酸膜复合体修复骨缺损的研究.华中科技大学学报(医学版), 2002;31(5):560-563.
    [18]. Hatton PV, Walsh J, Brook IM. The response of cultured bone cells to resorbable polyglycolic acid and silicone membranes for use in orbital floor fracture repair. Clin Mater, 1994;17(2):71-80.
    [19]. Liao S, Watari F, Zhu Y, et al. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro. Dental Materials, 2006;7.
    [20]. Li WJ,Laurencin CT,Caterson EJ,et al.Electrospun nanofibrous structure:A novel scaffold for tissue engineering[J]. J Biomed Mater Res, 2002,60:613-621.
    [21]. Xu CY,Inai R,Kotaki M,et al.Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for bone tissue engineering[J]. Tissue Eng 2004,10:1160.
    [22]. Stevens MM,George JH.Exploring and engineering the cell surface interface [J]. Science, 2005,310:1135–1138.
    [23]. Balakrishnan B, Jayakrishnan A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds[J]. Biomaterials,2005,26:3941-3951.
    [24]. Zhang YZ, Ouyang HW.Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds[J].Wiley Int Sci,2004,9:156–165.
    [25]. Takahashi Y,Yamamoto M,Tabata Y.Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and Beta-tricalcium phosphate[J].Biomaterials,2005,26:3587-3596.
    [26]. Hutmacher DW . Scaffolds in tissue engineering bone and cartilage[J]. Biomaterials,2000,21:2529-2543.
    [27]. Bames CP,Sell SA,Boland ED,et al.Nanofiber technology:Designing the nex generation of tissue engineering scaffolds[J].Advanced Drug Delivery Reviews,2007,59:1413-1433.
    [1]. Reneker DH, Chun I. Nanometre diameter fibers of polymer-produced by electrospinning. Nanotechnology, 1996;7(3):216-223.
    [2]. Formhals A. Process and apparatus for preparing artificial threads. US Patent, 1975504, 1934.
    [3]. Boughman PK. Electrostatic spinning of acrylic microfibers. J of Colloid and Interface Science, 1971;36(1):71-79.
    [4]. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrostatics, 1995;35:(2):151-160.
    [5]. Bunchko CJ, Chen LC, Shen Y, et al. Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer, 1999;40(26):7397-7407.
    [6]. Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer, 1999;40(16):4585-4592.
    [7].何创龙,黄争鸣,张彦中,等.静电纺丝法制备组织工程纳/微米纤维支架.自然科学进展, 2005;15(10):1175-1182.
    [8]. Zhang YZ, Venugopal J, Huang ZM, et al. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules, 2005;6(5):2583-2539.
    [9]. Bhattarai N, Edmondson D, Veiseh O, et al. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials. 2005;26(31):6176-6184.
    [10]. Nair LS, Bhattacharyya S, Bender JD, et al. Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications. Biomacromolecules, 2004; 5(6):2212-2220.
    [11]. Yoshimoto H, Shin YM, Teri H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 2003;24(12):2077-2082.
    [12]. Shin M, Yoshimoto H, Vacanti JP. In vivo bone tissue engineering usingmesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng, 2004;10(1-2):33-41.
    [13]. Li WJ, Laurencin CT, Caterson EJ, et al. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J Biomed Mater Res, 2002;60(4):613-614.
    [14]. Li WJ, Danielson KG, Alexander PG, et al. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res, 2003;67A(4):1105-1114.
    [15]. Li WJ, Tuli R, Okafor C, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesinchymal stem cells. Biomaterials. 2005;26(6):599-609.
    [16]. Shields KJ, Beckman MJ, Bowlin GL, et al. Mechanical properties and cellular proliferation of electrospun collagen type II. Tissue Eng, 2004;10(9-10):1510-1517.
    [17]. Xu CY, Inai R, Kotaki M, et al. Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering. Biomaterials, 2004;25(10):877-886.
    [18]. Mo CY, Xu CY, Kotaki M, et al. Electrospun P(LLA-CL) nanofibers: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials, 2004;25(10):1883-1890.
    [19]. Xu CY, Inai RJ, Kotaki M, et al. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng, 2004;10(7):1160-1168.
    [20]. He W, Ma Z, Yong T, et al. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials, 2005;26(36):7606-7615.
    [21]. Stitzel JD, Pawlowski K, Wnek GE, et al. Arterial smooth muscle cell proliferation on a novel biomimicking, biodegradable vascular graft scaffold. J Biomater Appl, 2001;16:22-33.
    [22]. Shin M, Ishii O, Sueda T, et al. Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials, 2004;25(17):3717-3723.
    [23]. Yang F, Murugan R, Wang S, et al. Electrospinning of nano/micro scalepoly(L-lactic) aligned fivers and their potential in neural tissue engineering. Biomaterials, 2005;26(15):2603-2610.
    [24]. Bini TB, Gao S, Xu X, et al. Peripheral nerve regeneration by microbraided poly(L-lactide-co-glycolide) biodegradable polymer fibers. J Biomed Mater Res A. 2004;68(2):286-295.
    [25]. Gopal R, Kaur S, Ma Z, et al. Electrospun nanofibrous filtration membrane. J Menbrane Sci, 2006;281(1-2):581-586.
    [26]. Fujihara K, Kotaki, M, Ramakrishna S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials, 2005;26:4139-4147.
    [27]. Kim HW, Song HW, Kim HE. Nanofiber generation of gelatin-hydroxyapatite biomietics for guided tissue regeneration. Advanced Functional Materials 2005;15:1988-1994.
    [28]. Kim KH, Lim J, Park HN, et al. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. Journal of Biotechnology, 2005;120(3):327-339.
    [29]. Tan ST, Wendorff JH, Pietzonka C et al. Biocompatible and biodegradable polymer nanofibers displaying superparamagnetic properties. Chemphyschem, 2005; 6(8):1461-1465.
    [30]. Xu XY, Yang QB, Wang YZ, et al. Biodegradable electrospun poly(L-lactide) fibers containing antibacterial silver nanoparticles. European Polymer Journal, 2006;42(9):2081-2087.
    [31]. Xu XL, Chen XS, Xu XY, et al. BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells. Journal of Controlled Release, 2006;114(3):307-316.
    [32]. Xu XL, Yang LX, Xu XY, et al. Ultrafine medicated fibers electrospun from W/O emulsions. Journal of Controlled Release, 2005;108(1-2):33-42.
    [33]. Kim K, Luu YL, Chang C, et al. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospunnanofibrous scaffolds. Journal of Control Release, 2004;98(1):47-56.
    [34]. Li C, Vepari C, Jin HJ, et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials, 2006;27(16):3115-3124.
    [35]. Casper CL, Yamaguchi N, Kiick KL, et al. Functionalizing electrospun fibers with biologically relevant macromolecules. Biomacromolecules, 2005;6(4):1998-2007.
    [36]. Van EL, Grondahl L, Chua KN, et al. Controlled release of hrparin from poly(ε-caprolactone) electrospun fibers. Biomaterials, 2006;27(9):2042-2050.
    [37]. Chew SY, Wen J, Yim EK, et al. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules, 2005; 6(4):2017-2024.
    [38]. Ye P, Xu ZK, Wu J, et al. Nanofibrous poly(acrylonitrile-co-maleic acid)membranes functionalized with gelatin and chitosan for lipase immobilization. Biomaterials, 2006;27(22):4169-4176.
    [39]. Pawlowski K J, Belvin H L, Raney D L, et al. Electrospinning of a micro-air vehicle wing skin. Polymer, 2003;44(4):1309-1314.
    [40]. Kedem S, Schmidt J, Paz Y, et al. Composite polymer nanofibers with carbon nanotubes and titanium dioxide particles. Langmuir, 2005; 21(12): 5600-5604.
    [41]. Zeng J, Aigner A, Czubayko F, et al. Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules, 2005;6(3):1484-1488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700