用户名: 密码: 验证码:
微弧氧化后医用Ti6Al4V合金的组织结构和生物与力学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别采用表面纳米化(N)、普通喷丸(S)及超音速轰击(SP)方法在医用Ti6Al4V合金材料(M)表面制备出不同尺度的微坑结构,然后采用微弧氧化法在预处理表面构建不同微坑镶嵌多孔生物陶瓷涂层(N-MAO、S-MAO、SP-MAO涂层)。采用模拟体液(SBF)中浸泡评价不同微坑镶嵌多孔涂层诱导仿生磷灰石生长的能力。采用X射线衍射(XRD)、扫描电子显微镜(SEM)及能谱(EDS)等分析手段研究微弧氧化涂层在SBF浸泡前后、涂层试样疲劳断裂与摩损后表面的显微组织结构,并揭示涂层对生物活性、疲劳与摩擦学性能的影响机制。
     结果表明:含Ca(H_2PO_4)_2+Ca(CH_3COO)_2溶液中制备的M-MAO、N-MAO、S-MAO、SP-MAO涂层主要由金红石与锐钛矿TiO_2相组成,并含Ca、P化合物;10μm厚涂层与5μm厚涂层相比,涂层中金红石相稍有增多;另外,随涂层厚度增加,M-MAO与N-MAO涂层表面粗糙度增大,而S-MAO与SP-MAO表面粗糙度减小。
     不同种类微坑多孔涂层浸入SBF中周后出现明显的晶态磷灰石沉积,诱导能力依次为SP-MAO>N-MAO>S-MAO>M-MAO;5μm厚涂层诱导能力好于10μm厚涂层,10μm厚涂层金红石相增多不利于提高生物活性。经NaOH碱处理后不同种类微坑多孔涂层磷灰石诱导能力明显提高,这是由于表面引入的Ti-OH功能团,促进了磷灰石的形核生长;相比较,涂层表比表面大(粗糙度大)的S-MAO与SP-MAO涂层诱导能力强。
     微弧氧化涂层会降低不同预处理Ti6Al4V合金的疲劳寿命,5μm与10μm厚涂层试样与相应基体相比疲劳寿命降低约为12%和30%。Ti6Al4V合金先纳米化(N)、普通喷丸(S)及超音速轰击(SP)预处理后再微弧氧化可提高涂层试样的疲劳寿命。
     不同微坑多孔微弧氧化涂层厚度为10μm涂层的耐磨性能明显优于5μm厚涂层。SP-MAO5、SP-MAO10与N-MAO10涂层表现出最好的抗磨性能。涂层可使Ti6Al4V阳极腐蚀电位向正方向偏移,即提高合金在SBF中的化学稳定性和良好的抗腐蚀性能。
In this research, the surface nanocrystallization (N), shot-peening (S) and supersonic bombardment (SP) methods were used to prefabricate the micro-crater structure at different scales on the surface of Ti6Al4V alloy, then on the top layer of the pretreated alloy, microarc oxidation was adopted to fabricate the micro-pit setting porous bioceramic coatings (N-MAO, S-MAO, SP-MAO coating). The apatite induction ability of the various bioceramic coatings was evaluated by simulated body fluid (SBF) immersion test. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) and other methods were used to determine the microstructure of coatings before and after immersion in SBF, the coating samples after fatigue fracture and worn surface of the coatings, and further revealing the possible influencing mechanisms on biological activity, fatigue and tribological properties.
     The results show that the M-MAO, N-MAO, S-MAO, SP-MAO coatings prepared in Ca (H2PO4)2 + Ca (CH3COO)2 solution mainly consist of rutile and anatase TiO_2 phases, and a small amount of amorphous compounds containing Ca and P elements. The different system coatings with 10μm thickness have a slight increase content of rutile compared with the corresponding 5μm thick coating. In addition, with the coating thickness increasing from 5 to 10μm, M-MAO and N-MAO coatings surface roughness increase, and S-MAO and SP-MAO surface roughness decrease respectively.
     After immersed in SBF for 8 weeks, the obvious apatite crystal products deposit on the coatings surface, and by the observation of apatite deposition, ranking the apatite induction ability as SP-MAO>N-MAO>S-MAO>M-MAO. In addition, 5μm thick coatings exhibit a better induced ability than 10μm thick coatings, which is attributed to the poor activity with slightly higher rutile phase content in 10μm thick coatings. After NaOH alkali heat treatment, the different types coatings show an significant improvement of apatite induction capacity , which is attributed to the introduced Ti-OH functional groups by the alkali heat treatment, to significantly promote the nucleation and growth of apatite. Comparatively, the rougher S-MAO and SP-MAO coatings with larger surface area have the more strong induction ability.
     The microarc oxidation coatings reduce the fatigue life of Ti6Al4V alloy, the coated Ti6Al4V specimens with 5μm and 10μm thick coating decrease the corresponding fatigue life by about 12% and 30% compared with the uncoated substrate, respectively. The pretreatments of surface nanocrystallization (N), shotpeening (S) and supersonic bombardment (SP) can improve the fatigue life of coated specimens.
     The wear resistance of coatings with 10μm thick is better than 5μm thick coating. SP-MAO5, SP-MAO10 and N-MAO10 coatings performance the best wear resistance. Applications of various coatings enable the corrosion potential of Ti6Al4V to shift positive direction, thus improving the chemical stability and having good corrosion resistance in SBF.
引文
1 H. Li, K. A. Khor, P. Cheang. Impact Formation and Microstructure Characteriz-ation of Thermal Sprayed Hydroxyapatite/Titania Composite Coatings. Bio-materials. 2003, 24:949-957
    2 V. Deram, C. Minichiello, R. N. Vannier, et al. Microstructural Characterizations of Plasma Sprayed Hydroxyapatite Coatings. Surface and Coatings Technology. 2003, 166:153-159
    3 Y. M. Zhang, P. Bataillon-Linez, P. Huang, et al. Hildebrand. Surface Analyses of Microarc Oxidized and Hydrothermally Treated Titanium and Effect on Osteoblast Behavior. J. of Biomedical Materials Research. 2004, 68A:383-391
    4 L. H. Li, H. W. Kim, S. H. Lee, et al. Biocompatibility of Titanium Implants Modified by Microarc Oxidation and Hydroxyapatite Coating. J. of Biomedical Materials Research. 2005, 73A:48-54
    5来永春,陈如意,邓志威.微弧氧化技术在纺织工业中的应用.腐蚀科学与防护技术. 1998, 10(1):49-52
    6 J. G. C. Wolke, K. D. Groot, J. A. Jansen. In Vivo Dissolution Behavior of Various RF Magnetron Sputter Ca-P Coatings. J. of Biomedical Materials Research. 1998, 39:524-530
    7 S. Nishiguchi, H. Kato, M. Neo, et al. Alkali-and Heat-treated Porous Titanium for Orthopedic Implants. J. of Biomedical Materials Reseach. 2001, 54:198-208
    8 H. M. Kim, F. Miyaji, T. Kokubo, et al. Preparation of Bioactive Ti and Its Alloys via Simple Chemical Surface Treatment. J. of Biomedical Materials Research. 1996, 32:409-417
    9 C. B. Mao, H. D. Li, F. Z. Cui, et al. Oriented Growth of Hydroxyapatite on (0001) Textured Titanium with Functionalized Self-assembled Silane Monolayer as Template. J. of Materials Chemistry. 1998, 8:2795-2801
    10 Q. Liu, J. Ding, F. K. Mante, et al. The Role of Surface Functional Groups in Calcium Phosphate Nucleation on Titanium Foil: A Self-assembled Monolayer Technique. Biomaterials. 2002, 23:3103-3111
    11 X. X. Wang, S. Hayakawa, K. Tsuru, et al. Bioactive Titania Gel Layers formed by Chemical Treatment of Ti Substrate with a H2O2/HCl Solution. Biomaterials.2002, 23:1353-1357
    12范德增,莫宣学,翁润生等.钛及钛合金在医学上的应用研究.口腔材料器械杂志. 1999, 8(1):46-48
    13 M. A. Pickckford, T. Scamp. D. H. Harrison. Morbidity after goid weight insertion into the upper eyehd in facialpalsy. Br J Plast Surg. 1992, 45:460
    14张岩,蒋垚.镁基金属作为生物骨科材料应用的研究进展.国际生物医学工程杂志. 2009,32(1): 41-44
    15张玉梅,郭天文,李佐臣.钛及钛合金在口腔科应用的研究方向.生物医学工程学杂志. 2000, 17(2):206-205
    16 G. Amsel, D. Samuel. The Mechanism of Anodic Oxidation. J. Phys. Chem. Solids. 1962, 23:1707-1718
    17 P. Gupta, G. Tenhundfeld, E. O. Daigle, et al. Electrolytic Plasma Technology: Science and Engineering-An Overview. Surface & Coatings Technology. 2007, 201:8746-8760
    18 E. Matykina, A. Berkani, P. Skeldon, et al. Real-Time Imaging of Coating Growth During Plasma Electrolytic Oxidation of Titanium. Electroche-mical Acta. 2007, 53:1987-1994
    19薛文斌,邓志威,李永良等. Ti-6Al-4V在NaAlO2溶液中的微.弧氧化陶瓷膜的组织结构研究.材料科学与工艺. 2000, 8(3):41-45
    20 T. G. Woo, W. Y. Jeon, H. H. Park, et al. Surface Characteristics of Titanium Anodized in the Four Different Types of Electrolyte. Electrochemical Acta. 2007. 53:863-870
    21 Y. M. Wang, B. L. Jiang, T. Q. Lei, et al. Microarc Oxidation and Spraying Graphite Duplex Coating Formed on Titanium Alloy for Antifriction Purpose. Applied Surface Science. 2005, 246:214-221
    22 J. A. M. D. Camargo, H. J. Cornelis, V. M. O. H. Cioffi, et al. Coating Residual Stress Effects on Fatigue Performance of 7050-T7451 Aluminum Alloy. Surface & Coatings Technology. 2007, 201(24):9448-9455
    23 R. H. U. Khan, A. L. Yerokhin, T. Pilkington, A. Leyland, A. Matthews. Residual Stresses in Plasma Electrolytic Oxidation Coatings on Al Alloy Produced by Pulsed Unipolar Current. Surface & Coatings Technology. 2005, 200:1580-1586
    24 B. Rajasekaran, S. Ganesh Sundara Raman, L. Rama Krishna, et al. Influence of microarc oxidation and hard anodizing on plain fatigue and fretting fatiguebehaviour of Al-Mg-Si alloy. Surf. Coat. Technol. 2008, 202:1462-1469
    25 D. J. Buchanan, R. Johna. Relaxation of Shot-Peened Residual Stresses Under Creep Loading. Scripta Materialia. 2009, 131:031008
    26 J. L. Patel, N. Saka. Microplasmic coatings. Am. Ceram. Soc. Bull. 2001, 80(4): 27-29
    27薛文斌,邓志威,来永春等.有色金属表面微弧氧化技术评述.金属热处理. 2000, (1):1-3
    28 L. H. Li, Y. M. Kong, H. W. Kim, et al. Improved Biological Performance of Ti Implants due to Surface Modification by Microarc Oxidation. Biomaterials. 2004, 25:2867-2875
    29 K. Anselme. Osteoblast Adhesion on Biomaterials. Biomaterials. 2000, 21:667-681
    30 P. Huang, K. W. Xu, Y. Han. Preparation and Apatite Layer formation of Plasma Electrolytic Oxidation Film on Titanium for Biomedical Application. Materials Letters. 2005, 59:185-189
    31 W. H. Song, Y. K. Jun, Y. Han, S. H. Hong. Biomimetic Apatite Coatings on Microarc Oxidized Titania. Biomaterials. 2004, 25:3341-3349
    32 X. L. Zhu, J. L. Ong, S. Y. Kim, et al. Surface Characteristics and Structure of Anodic Oxide Films Containing Ca and P on a Titanium Implant Material. J. of Biomedical Materials Research. 2002, 60:333-338
    33 A. L. Yerokhin, A. Shatrov, V. Samsonov, et al. Fatigue properties of Keronite coatings on a magnesium alloy. Surf. Coat. Technol. 2004, 182:78-84
    34 B. Lonyuk, I. Apachitei, J. Duszczyk. The effect of oxide coatings on fatigue properties of 7475-T6 aluminium alloy. Surf. Coat. Technol. 2007, 201:8688-8694
    35 B. Rajasekaran, S. Ganesh Sundara Raman, S. V. Joshi, et al. Effect of microarc oxidised layer thickness on plain fatigue and fretting fatigue behaviour of Al-Mg-Si Alloy. Int. J. Fatigue. 2008, 30:1259-1266
    36 O. P. Terleeva, V. I. Belevantsev, A. I. Slonova, et al. Comparison Analysis of Formation and Some Characteristics of Microplasma Coatings on Aluminum and Titanium Alloys. Protection of Metals. 2006, 42(3):272-279
    37 Y. K. Shin, W. S. Chae, Y. W. Song, et al. Formation of Titania Photocatalyst Films by Microarc Oxidation of Ti and Ti-6Al-4V Alloys. ElectrochemistryCommunications. 2006, 8:465-470
    38张聪慧,刘研蕊,兰新哲.钛合金表面高能喷丸纳米化后的组织与性能.热加工工艺. 2006(35):6-7
    39 L. Müller, F. A. Müller. Preparation of SBF with Different HCO3- Content and Its Influence on the Composition of Biomimetic Apatites. Acta Biomateriala. 2006, 2:181-189
    40 D. T. Asquith, A. L. Yerokhin, J.R. Yates, et al. Effect of combined shot-peening and PEO treatment on fatigue life of 2024Al alloy. Thin Solid Films 515 (2006) 1187-1191
    41王亚明. Ti6A14V合金微弧氧化涂层的形成机制与摩擦学行为.哈尔滨工业大学博士学位论文. 2006:49-79
    42 M. Woydt, A. Skopp, I. Dorfel, et al. Wear Engineering Oxides/Anti-Wear Oxides. Wear. 1998, 218:84-95
    43 M. Woydt. Tribological Characteristics of Polycrystalline MagnéLi-Type Titan-ium Dioxides. Tribol. Lett. 2000, 8:117-130
    44 M. N. Gardos. MagnéLi Phases of Anion-Deficient Rutile as Lubricious Oxides. Part I. Tribological Behavior of Single-crystal and Polycrystalline Rutile (Ti{n}O{2n-1}). Tribol. Lett. 2000, 8:65-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700